

Supporting Information

for

Preparation of anthracene-based tetraperimidine hexafluorophosphate and selective recognition of chromium(III) ions

Qing-Xiang Liu, Feng Yang, Zhi-Xiang Zhao, Shao-Cong Yu and Yue Ding

Beilstein J. Org. Chem. 2019, 15, 2847–2855. doi:10.3762/bjoc.15.278

Supporting crystallographic data, fluorescence, UV, HRMS, and IR spectra of 3 and 3·Cr³⁺, general considerations, characterization data, and copies of the ¹H and ¹³C NMR spectra of all compounds

Table of contents

- 1. CCDC numbers for compound 3.
- 2. Crystal data and structure refinements for 3 (Table S1).
- 3. Crystal packing of compound 3 (Figure S1(a) and Figure S1(b).
- 4. Fluorescence and UV-vis spectroscopy for compound 3 (Figures S2-S9).
- 5. Figure S10 π_{13}^{15} bond of perimidine.
- 6. Figure of HRMS for **3**·Cr³⁺ (Figure S11).
- 7. Infrared spectra of **3** and $3 \cdot \text{Cr}^{3+}$ (Figure S12).
- 8. Figure of HRMS for **3** (Figure S13).
- 9. 1 H NMR and 13 C NMR spectra of intermediate and compound 3 (Figures S14–S22).

1. CCDC number for compound 3.

CCDC 1918752 contains the supplementary crystallographic data for compound The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving. html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: (+44) 223-336-033; or e-mail: deposit@ccdc.cam. ac. uk.

2. Crystal data and structure refinements for 3

Table S1: Crystal data and structure refinements for 3

Chemical formula	C ₇₆ H ₇₆ N ₁₀ P ₄ F ₂₄ ·4CH ₃ CN	F(000)	968
Formula weight	1875.57	Cryst size, mm	$0.25 \times 0.15 \times 0.14$
Cryst syst	Triclinic	$ heta_{ ext{min}}$, $ heta_{ ext{max}}$, $ ext{deg}$	3.74, 67.06
Space group	$P\overline{1}$	T/K	172.9(1)
a/Å	11.850(5)	No. of data collected	14087
b/Å	12.401(6)	No. of unique data	7439
c/Å	14.951(5)	No. of refined params	579
α/deg	92.4(1)	Goodness-of-fit on $F^{2 a}$	1.048
β/deg	94.3(1)	Final R indices ^b $[I > 2\sigma(I)]$	
γ/deg	107.3(4)	R_1	0.0754
V /Å 3	2086.65(1)	wR_2	0.1986
Z	1	R indices (all data)	
$D_{\rm calcd}$, Mg/m ³	1.493	R_1	0.1117
Abs coeff, mm ⁻¹	1.797	wR_2	0.2238

a $GOF = [\Sigma \omega (F_0{}^2 - F_c{}^2)^2 / (n - p)]^{1/2}$, where *n* is the number of reflection and *p* is the number of parameters refined. b $R_1 = \Sigma (||F_o| - |F_c||)/\Sigma |F_o|$; $wR_2 = [\Sigma [w(F_0{}^2 - F_c{}^2)^2]/\Sigma w(F_0{}^2)^2]^{1/2}$.

3. Crystal packing of compound 3

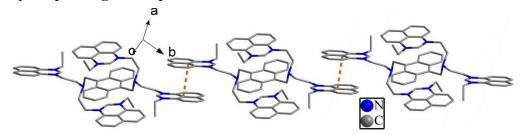


Figure S1(a): 1D supermolecular chain of 3.

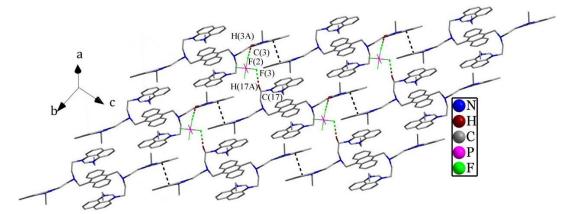
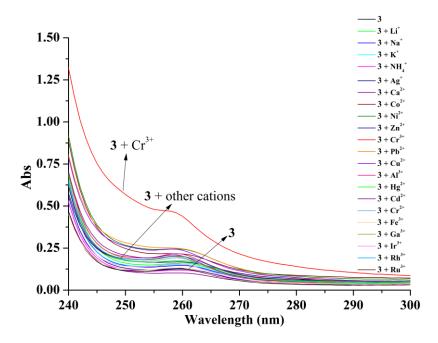
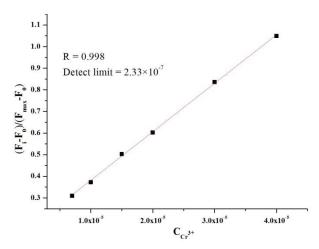




Figure S1(b): 2D supermolecular layer of 3.

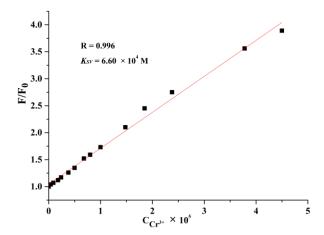

4. Fluorescence and UV-vis spectroscopy for compound 3

Figure S2: UV–vis absorption change of **3** (5.0 × 10⁻⁶ mol/L) upon the addition of the nitrate salts of K⁺, Na⁺, Li⁺, Ag⁺, NH₄⁺, Zn²⁺, Cd²⁺, Ca²⁺, Ni²⁺, Pb²⁺, Cu²⁺, Co²⁺, Al³⁺, Cr³⁺, Hg⁺, Hg²⁺, Rh³⁺, Ir³⁺, Cr²⁺, Ga³⁺, Ru³⁺ and Fe³⁺ (5 × 10⁻⁵ mol/L) in acetonitrile at 25 °C.

Figure S3: Emission (at 423 nm) of **3** at different concentrations of Cr^{3+} (0.7, 1.0, 1.5, 2.0, 3.0, 4.0×10^{-5} mol/L) added, normalized between the minimum emission (0.0 M Cr^{3+}) and the emission 4.0×10^{-5} mol/L Cr^{3+} . The detection limit was determined to be 2.33×10^{-7} mol/L.

Figure S4: Stern–Volmer plot of **3** (5.0 \times 10⁻⁶ mol/L) in the presence of Cr³⁺ in CH₃CN/DMSO 9:1 (v:v) at 25 °C, and the linear range is from 0.0–4.5 \times 10⁻⁵ mol/L.

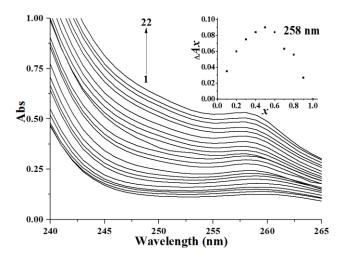
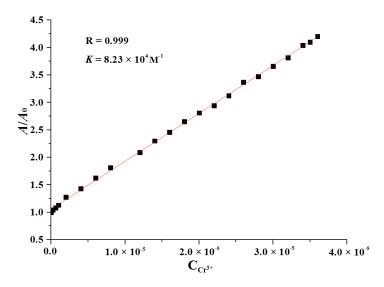
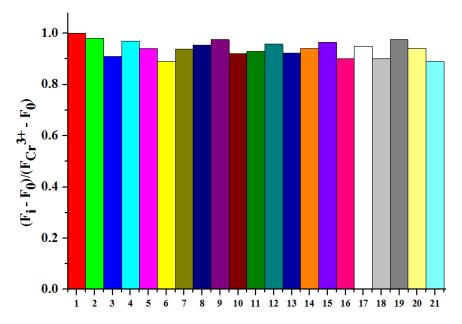




Figure S5: The UV-vis absorption spectra of 3 $(5.0 \times 10^{-6} \text{ mol/L})$ in CH₃CN/DMSO

9:1 (v/v) at 25 °C. C_{Cr}^{3+} for curves 1–22 are 0, 0.02, 0.06, 0.1, 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.5 and 3.6×10^{-5} . Inset: the Job's plot for $3 \cdot Cr^{3+}$ complex in CH₃CN/DMSO 9:1 (v/v) at 258 nm.

Figure S6: Benesi–Hildebrand plot of **3** (5.0×10^{-6} mol/L) at 258 nm in the presence of Cr³⁺ in CH₃CN/DMSO 9:1 (v/v) at 25 °C.

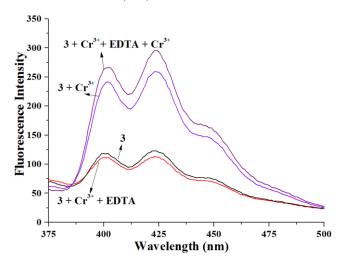


Figure S7: Change ratio $((F_i - F_0)/(F_{Cr^{3+}} - F_0))$ of fluorescence intensity of **3** (5.0 × 10^{-6} mol/L) at 423 nm upon the addition of 30 equiv Cr^{3+} in the presence of 30 equiv background cations. 1: Cr^{3+} ; 2: $Cr^{3+} + Li^+$; 3: $Cr^{3+} + Na^+$; 4: $Cr^{3+} + K^+$; 5: $Cr^{3+} + NH_4^+$; 6: $Cr^{3+} + Ag^+$; 7: $Cr^{3+} + Ca^{2+}$; 8: $Cr^{3+} + Co^{2+}$; 9: $Cr^{3+} + Ni^{2+}$; 10: $Cr^{3+} + Zn^{2+}$; 11: $Cr^{3+} + Cu^{2+}$; 12: $Cr^{3+} + Cd^{2+}$; 13: $Cr^{3+} + Pb^{2+}$; 14: $Cr^{3+} + Hg^{2+}$; 15: $Cr^{3+} + Al^{3+}$; 16: $Cr^{3+} + Cu^{2+}$; 17: $Cr^{3+} + Cu^{2+}$; 18: $Cr^{3+} + Cu^{2+}$; 19: $Cr^{3+} + Cu^{2+}$; 10: $Cr^{3+} + Cu^{2+}$; 10: $Cr^{3+} + Cu^{2+}$; 11: $Cr^{3+} + Cu^{2+}$; 12: $Cr^{3+} + Cu^{2+}$; 13: $Cr^{3+} + Cu^{2+}$; 14: $Cr^{3+} + Cu^{2+}$; 15: $Cr^{3+} + Al^{3+}$; 16: $Cr^{3+} + Cu^{2+}$; 17: $Cr^{3+} + Cu^{2+}$; 18: $Cr^{3+} + Cu^{2+}$; 19: $Cr^{3+} + Cu^{2+}$; 10: $Cr^{3+} + Cu^{2+}$; 11: $Cr^{3+} + Cu^{2+}$; 11: $Cr^{3+} + Cu^{2+}$; 12: $Cr^{3+} + Cu^{2+}$; 13: $Cr^{3+} + Cu^{2+}$; 14: $Cr^{3+} + Cu^{2+}$; 15: $Cr^{3+} + Cu^{2+}$; 16: $Cr^{3+} + Cu^{2+}$; 17: $Cr^{3+} + Cu^{2+}$; 18: $Cr^{3+} + Cu^{2+}$; 19: Cr^{3+

 $Rh^{3+};\ 17:\ Cr^{3+}+Ir^{3+};\ 18:\ Cr^{3+}+Cr^{2+};\ 19:\ Cr^{3+}+Ga^{3+};\ 20:\ Cr^{3+}+Ru^{3+};\ 21:\ Cr^{3+}+Fe^{3+}$ in CH₃CN/DMSO 9:1 (v/v) at 25 °C.

Figure S8: Fluorescence intensity of **3** (5.0×10^{-6} mol/L) in various mixtures of different Cr³⁺ salts (1: CrCl₃, 2: CrBr₃, 3: Cr₂(SO₄)₃, 4: Cr(OAc)₃, 5: Cr(NO₃)₃; 3.0×10^{-6} mol/L) in CH₃CN/DMSO 9:1 (v/v) at 25 °C.

Figure S9: Fluorescence reversibility of **3** upon the detection of Cr^{3+} . Fluorescent changes of **3** after the addition of Cr^{3+} , EDTA, Cr^{3+} in that order in CH₃CN/DMSO 9:1 (v/v) at 25 °C.

5. The Figure S10 $\,\pi_{13}^{15}\,$ bond of perimidine

$$\begin{array}{c|c}
 & 0 & R \\
\hline
0 & 0 & R \\
\hline
0 & 0 & R
\end{array}$$

Figure S10: π_{13}^{15} bond of perimidine.

6. Figure of HRMS for 3·Cr³⁺

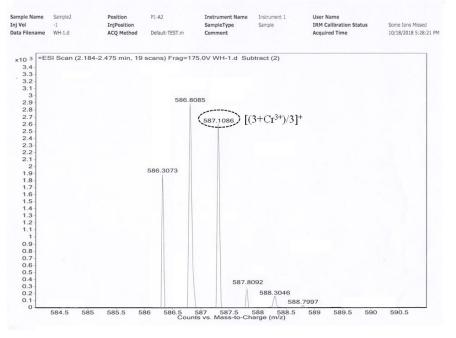


Figure S11: HRMS for $3 \cdot \text{Cr}^{3+}$.

7. Infrared spectra of 3 and 3·Cr³⁺

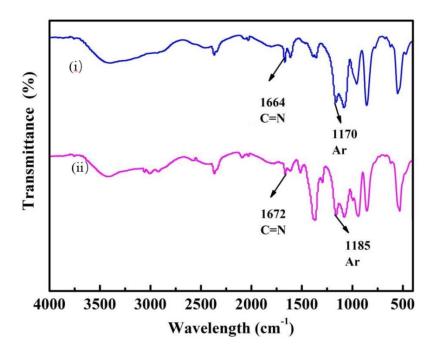


Figure S12: Infrared spectroscopy of 3 (top) and 3·Cr³⁺ (bottom).

8. Figure of HRMS for 3

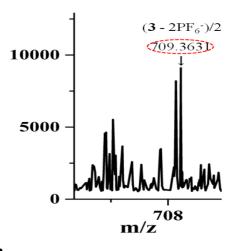
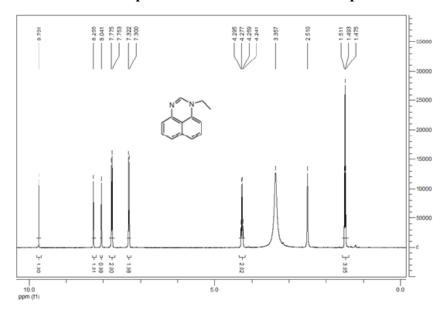
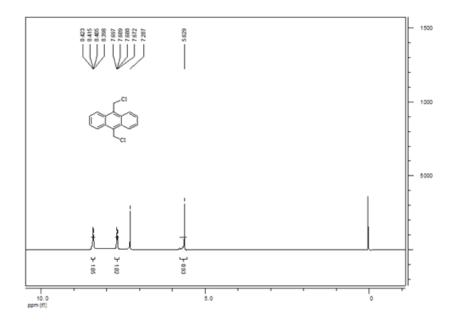
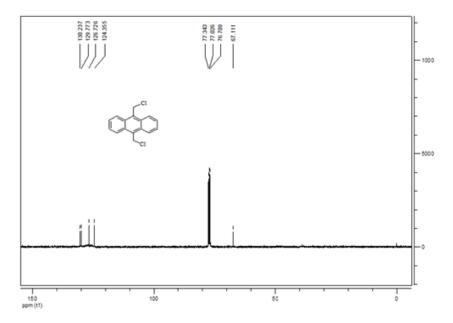
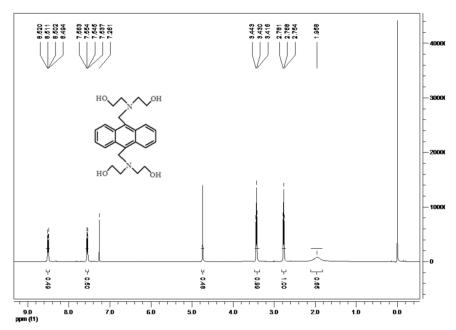
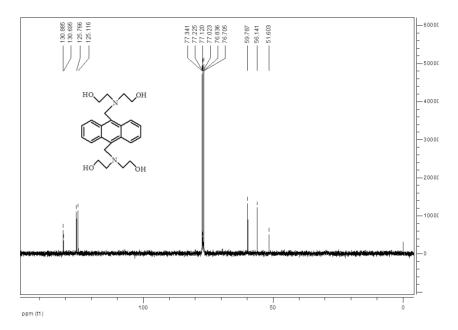
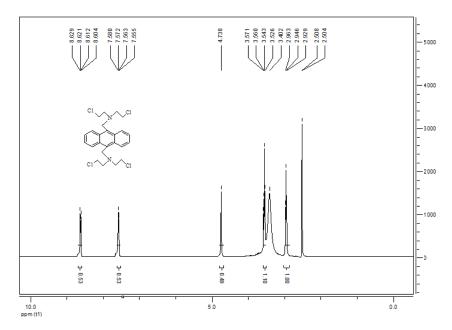




Figure S13: HRMS for 3.


9. ¹H NMR and ¹³C NMR spectra of intermediate and compound 3


Figure S14: The ¹H NMR (400 MHz, DMSO-*d*₆) spectra of 1-ethylperimidine.


Figure S15: The ¹H NMR (400 MHz, CDCl₃) spectra of 9,10-bis(chloromethyl)anthracene.


Figure S16: The ¹³C NMR (100 MHz, CDCl₃) spectra of 9,10-bis(chloromethyl)anthracene.

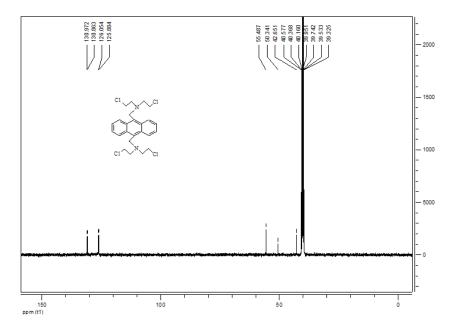

Figure S17: The ¹H NMR (600 MHz, CDCl₃) spectra of 9,10-bis[{*N,N*-di(2-hydroxyethyl)amino}methyl]anthracene.

Figure S18: The ¹³C NMR (150 MHz, CDCl₃) spectra of 9,10-bis[{*N,N*-di(2-hydroxyethyl)amino}methyl]anthracene.

Figure S19: The 1 H NMR (600 MHz, DMSO- d_6) spectra of 9,10-bis[{ $N,N-di(2-chloroethyl)amino}$ } methyl]anthracene.

Figure S20: The 13 C NMR (150 MHz, DMSO- d_6) spectra of 9,10-bis[{ $N,N-di(2-chloroethyl)amino}$ } methyl]anthracene.

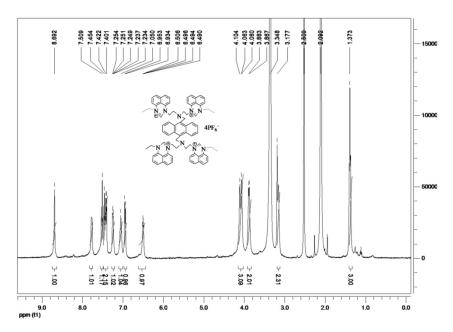


Figure S21: The 1 H NMR (600 MHz, DMSO- d_{6}) spectrum of 3.

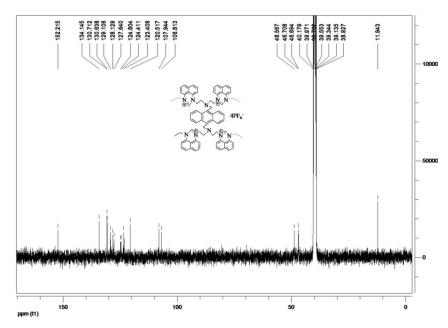


Figure S22: The 13 C NMR (150 MHz, DMSO- d_6) spectrum of 3.