

Supporting Information

for

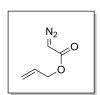
Reusable and highly enantioselective water-soluble Ru(II)- *Amm*-Pheox catalyst for intramolecular cyclopropanation of diazo compounds

Hamada S. A. Mandour, Yoko Nakagawa, Masaya Tone, Hayato Inoue, Nansalmaa Otog, Ikuhide Fujisawa, Soda Chanthamath and Seiji Iwasa

Beilstein J. Org. Chem. 2019, 15, 357-363. doi:10.3762/bjoc.15.31

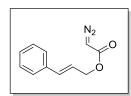
Full experimental details and analytical data (reaction method, ¹H NMR, ¹³C NMR, HPLC, X-ray analysis)

1. Analytical data for diazo compounds (1a-1e)	S2
2. Typical procedure for the synthesis of trans-allylic diazo-Weinre	b amide
derivatives (1f–s)	S4
3. Analytical data for various trans-allylic diazo-Weinreb amide de	rivatives
products (1f–s)	S5
4. Typical procedures for intramolecular cyclopropanation reactions of variance of the company o	rious
trans-allylic diazo-Weinreb amide derivatives using Ru(II)-Amm-Pheox as	a
catalyst (2a–s)	S6
5. Analytical data for various products (2a–s)	S6
6. Solubility of catalyst	S13
7. Solvent screening (Table S1)	S14
8. Reaction mechanism (Figure S1)	S15
9. X-ray analysis (Figure S2)	S16
10. NMR spectral data	S17
11. HPLC spectral data	S53
12. References	S84

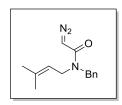

Materials and general methods

All reactions were performed under air atmosphere unless otherwise noted. Diethyl ether (Et₂O) was purchased from Kanto Chemical Co., Inc. All reactions were monitored by thin layer chromatography (TLC), glass plates pre-coated with silica gel Merck KGaA 60 F254, layer thickness 0.2 mm. All the starting materials are commercially available and were used after purification. The products were visualized by irradiation with UV light or by treatment with a solution of phosphomolybdic acid or by treatment with a solution of *p*-anisaldehyde. Flash column chromatography was performed using silica gel (Merck, Art. No.7734). ¹H NMR and ¹³C NMR (500 MHz, 400 MHz) spectra were recorded on JEOL JNM-ECX500, JEOL JNM-ECS400 spectrometer. Chemical shifts are reported as δ values (ppm) relative to CDCl₃ (7.26 ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and b = broad. Optical rotations were performed

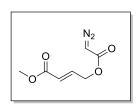
with a JASCO P-1030 polarimeter at the sodium D line (1.0 mL sample cell). DART mass (positive mode) analyses were performed on a LC-TOF JMS-T100LP. Infrared (IR) spectra were recorded on an FT/IR-4600 instrument (JASCO Co., Ltd., Tokyo, Japan). Enantiomeric excesses were determined by high-performance liquid chromatography (HPLC) analyses with a JASCO GULLIVER using Daicel CHIRALPAK or CHIRALCEL columns.


1. Analytical data for various diazo compounds

Allyl 2-diazoacetate¹ (1a)


Yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 5.93 (ddt, J = 16.05, 10.32, 5.35 Hz, 1H), 5.32 (dd, J = 17.20, 1.53 Hz, 1H), 5.25 (dd, J = 10.32, 1.15 Hz, 1H), 4.77 (brs, 1H), 4.68–4.64 (m, 2H) ppm.

Cinnamyl 2-diazoacetate² (1b)


Yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 7.26 Hz, 2H), 7.32 (t, J = 7.45 Hz, 2H), 7.28–7.23 (m, 1H), 6.66 (d, J = 16.05 Hz, 1H), 6.28 (dt, J = 16.05, 6.50 Hz, 1H), 4.81 (dd, J = 6.50, 1.15 Hz, 2H), 4.78 (brs, 1H) ppm.

N-Benzyl-2-diazo-*N*-(3-methylbut-2-en-1-yl)acetamide³ (1e)

Yellow liquid; 1 H NMR (500 MHz, CDCl₃) δ 7.19–7.37 (m, 5H), 5.11 (brs, 1H), 4.93 (brs, 1H), 4.45 (brs, 2H), 3.78 (brs, 2H), 1.71 (s, 3H), 1.58 (s, 3H) ppm.

Methyl (E)-4-(2-diazoacetoxy)but-2-enoate⁴ (1d)

Yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 6.95 (dt, J = 16.05, 4.59 Hz, 1H), 6.02 (dt, J = 15.67, 1.91 Hz, 1H), 4.83 (dd, J = 4.59, 1.91 Hz, 2H), 4.83 (brs, 1H), 3.75 (s, 3H) ppm.

2-Cyclohexylideneethan-1-ol

NaH in oil (132 mg, 5.5 mmol, 1.1 equiv) was washed by hexane, and THF was added (5 mL) at 0 °C. To a mixture was added triethyl phosphonoacetate (1.0 mL, 5 mmol, 1 equiv) and cyclohexanone in THF (5 mL). The mixture was stirred at 0 °C to rt for 8 h. The reaction mixture was quenched with NH₄Cl aq. (5 mL) and extracted with Et_2O . The organic layer was dried over Na_2SO_4 , and concentrated under reduced pressure to give ethyl 2-cyclohexylideneacetate as a colorless oil (93% yield, 783.8 mg, 4.7 mmol). This product was used for next reaction without further purification.

A solution of LiAlH₄ (353.7 mg, 9.3 mmol, 2 equiv) in Et₂O (5 mL) was added a solution of reactant (783.8 mg, 4.7 mmol, 1 equiv) in Et₂O (5 mL) at 0 °C. The mixture was stirred at 0 °C to rt for 2 h. The reaction mixture was quenched with H₂O and extracted with CH₂Cl₂. Purification was performed by silica gel column chromatography (Hex/EA = 9/1) to give 2-cyclohexylideneethan-1-ol as a colorless oil (71% yield, 418.0 mg, 3.3 mmol). ¹H NMR (500 MHz, CDCl₃) δ 5.36 (t, J = 7.26 Hz, 1H), 4.14 (d, J = 7.26 Hz, 2H), 2.23–2.08 (m, 4H), 1.58–1.51 (m, 6H) ppm.

2-Cyclohexylideneethyl 2-diazoacetate (1c)

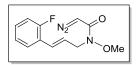
Bromoacetyl bromide (0.85 mL, 9.93 mmol, 3 equiv) was slowly added to a stirred solution of 2-cyclohexylideneethan-1-ol (418 mg, 3.31 mmol, 1 equiv) and K_2CO_3 in CH_2Cl_2 (15 mL). The mixture was stirred at 0 °C to rt for 1 h. The reaction mixture was quenched with H_2O and extracted with CH_2Cl_2 . Purification was performed by silica gel column chromatography to give 2-cyclohexylideneethyl 2-bromoacetate (85% yield, 696.4 mg, 2.81 mmol).

To a solution of 2-cyclohexylideneethyl 2-bromoacetate (696.0 mg, 2.81 mmol, 1 equiv) and N,N'-ditosylhydrazine (1.4 g, 4.21 mmol, 1.5 equiv) were dissolved in THF (8.5 mL) and cooled down to 0 °C for 30 min. The reaction mixture was quenched with NaHCO₃ aq. and extracted with Et₂O, the organic layer was dried over NaSO₄ and evaporated to give the crude product. Purification was performed by column chromatography (Hex/EA = 50/1, Hex/CH₂Cl₂ = 4/1) to give 2-cyclohexylideneethyl 2-diazoacetate as a yellow oil (187.4 mg, 34% yield, 0.96 mmol). This yield was determined by ¹H NMR, because desired product was not purified completely by column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 5.29 (t, J = 7.26 Hz, 1H), 4.74 (brs, 1H), 4.67 (d, J = 7.26 Hz, 2H), 2.09–2.23 (m, 4H), 1.50–1.58 (m, 6H) ppm. IR (neat) v 2930, 2109, 1695 cm⁻¹. HRMS (DART) calcd for C₁₀H₁₅N₂O₂ [M+H]⁺: 195.1133 found: 195.1132.

2. Typical procedure for the synthesis of *trans*-allylic diazo-Weinreb amide derivatives ⁶

According to the Fukuyama method, *O*-methylhydroxylamine hydrochloride was added to a solution of *trans*-allylic bromide and K₂CO₃ in CH₃CN, the reaction mixture was stirred at room temperature until the reaction was completed. After the evaporation of the solvent, the residue was used for the next step without further purification. K₂CO₃ and bromoacetyl bromide were added to the residue at 0 °C. The reaction mixture was stirred for 15 min and then the reaction was quenched with H₂O and extracted with CH₂Cl₂. The organic layer was washed with brine and dried over Na₂SO₄. After the evaporation of the solvent, the residue was used for the next step without further purification. The resulting bromoacetate was dissolved in THF. *N*,*N*^{*}-ditosylhydrazine and DBU were added dropwise at 0 °C and the reaction was stirred for 10 min. The reaction was quenched by the addition of saturated solution of NaHCO₃ and extracted with diethyl ether. The organic layer was washed with brine, dried over Na₂SO₄ and evaporated to give crude *trans*-allylic diazo-Weinreb amide derivatives that were purified by column chromatography to give the desired products.

3. Analytical data for various *trans*-allylic diazo-Weinreb amide derivatives products


Data for compounds 1f-h were already reported. 5

(E)-2-Diazo-N-methoxy-N-[3-(3-nitrophenyl)allyl]acetamide (1g) ⁶

Yellow liquid; IR: v = 2984, 1715 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.70$ (s, 3H), 4.39 (dd, J = 1.15 Hz, J = 6.31 Hz, 2H), 5.37 (s, 1H), 6.34–6.40 (m, 1H), 6.63 (d, J = 16.05 Hz, 1H), 7.47 (t, J = 16.05 Hz, 1H), 7.66 (d, J = 7.64 Hz, 1H), 8.07 (d, J = 8.03 Hz, 1H), 8.21 (s, 1H)

ppm. 13 C NMR (125 MHz, CDCl₃): δ = 46.9, 48.7, 62.6, 121.2, 122.5, 127.0, 129.6, 131.4, 132.4, 138.3, 148.7, 168.8 ppm. HRMS (DART) m/z calcd for $C_{12}H_{14}N_4O_3$ [M+H] $^+$ 262.1066 found: 262.1062.

(E)-2-Diazo-N-[3-(2-fluorophenyl)allyl]-N-methoxyacetamide (1n) 6

Yellow liquid; IR: v = 2954, 1719 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.68$ (s, 3H), 4.37 (dd, J = 1.53, J = 6.05 Hz, 2H), 5.36 (s, 1H), 6.27–6.33 (m, 1H), 6.73 (d, J = 16.05 Hz, 1H), 6.99–7.03 (m, 1H), 7.07

 $(t, J = 15.29 \text{ Hz}, 1\text{H}), 7.17 - 7.22 \text{ (m, 1H)}, 7.42 \text{ (t, } J = 17.20 \text{ Hz}, 1\text{H}) \text{ ppm.} ^{13}\text{C NMR (125 MHz}, CDCl_3): } \\ \delta = 46.8, 49.4, 62.7, 115.7, 115.9, 124.2, 126.3, 127.6, 129.2, 159.3, 161.3, 168.7 \text{ ppm.} \\ \text{HRMS (DART) m/z calcd for $C_{12}H_{14}FN_3O [M+H]^+$ 236.1199, found 236.1192.}$

Data for compound 10 were already reported. 5

(E)-2-Diazo-N-methoxy-N-[3-(naphthalen-1-yl)allyl]acetamide (1p) 6

Yellow liquid; IR: v = 2967, 1694 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 4.84$ (d, J = 6.5 Hz, 2H), 5.38 (s, 1H), 6.23–6.29 (m, 1H), 7.35 (d, J = 15.67 Hz, 1H), 7.43 (t, J = 15.29 Hz, 1H), 7.47–7.35 (m, 1H), 7.58

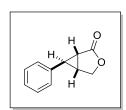
(d, J = 7.26 Hz, 1H), 7.77 (d, J = 8.41 Hz, 1H), 7.84 (d, J = 8.03 Hz, 1H), 8.1(d, J = 8.41 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 46.8$, 49.6, 62.9, 123.8, 124.1, 125.7, 125.9, 126.2, 126.8, 128.3, 128.6, 131.2, 131.2, 133.7, 134.3, 168.8 ppm. HRMS (DART) m/z calcd for $C_{16}H_{17}N_3O$ [M+H]⁺ 268.1450, found 268.1453.

Data for compounds **1q-s** were already reported. ⁵

4. Typical procedures for intramolecular cyclopropanation reactions of various trans-allylic diazo-Weinreb amide derivatives using Ru(II)-Amm-Pheox as a catalyst 6

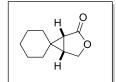
To a solution of Ru(II)-Amm-Pheox catalyst (0.003 mmol) in H_2O (1.00 mL), a solution of diazo Weinreb amide (1 mmol) in ether (1.00 mL) was added at room temperature. The progress of the reaction was monitored by TLC. After the reaction was completed, the two layers were separated and the aqueous layer was washed 3 times with ether. The collected ether layers were evaporated and the residue was purified using column chromatography on silica gel (Hex/EtOAc = 10:1) to give the desired product. The enantiomeric excesses of products were determined by HPLC analysis.

5. Analytical data for products


(1S,5R)-3-Oxabicyclo[3.1.0]hexan-2-one¹ (2a)

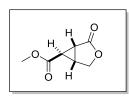
Colorless liquid; [α]²⁶D = -54.4 (c = 0.2 , CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 4.36 (dd, J = 9.17, 4.97 Hz, 1H), 4.28 (brd, J = 9.17 Hz, 1H), 2.27–2.20 (m, 1H), 2.10–2.05 (m, 1H), 1.30–1.25 (m, 1H), 0.91–0.86 (m, 1H) ppm. The ee value was determined by chiral HPLC analysis. Column

(CHIRALPAK IC-3), UV detector 220 nm, eluent: Hex/IPA = 7/3, Flow late = 1.2 mL/min, tR = 18.5 min (major product), tR = 17.7 min (minor product).


(1S,5R,6R)-6-Phenyl-3-oxabicyclo[3.1.0]hexan-2-one² (2b)

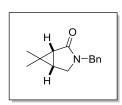
White Solid; $[\alpha]^{26}_D = -102.7$ (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, J = 7.64 Hz, 2H), 7.25 (t, J = 7.26 Hz, 1H), 7.06 (d, J = 6.88 Hz, 2H), 4.47 (dd, J = 9.56, 4.97 Hz, 1H), 4.41 (d, J = 9.56 Hz, 1H), 2.55–2.51 (m, 1H), 2.36–2.31 (m, 2H) ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK

OJ-H), UV detector 230 nm, eluent: Hex/IPA = 4/1, Flow late = 1.0 mL/min, tR = 20.4 min (major product), tR = 23.6 min (minor product).


(1R,5S)-3-Oxaspiro[bicyclo[3.1.0]hexane-6,1'-cyclohexan]-2-one (2c)

White solid; $[\alpha]^{26}_D = -43.4$ (c = 0.7 , CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 4.36 (dd, J = 9.56, 4.78 Hz, 1H), 4.13 (d, J = 9.94 Hz, 1H), 2.05 (t, J = 5.35 Hz, 1H), 1.94 (d, J = 6.50 Hz, 1H), 1.64–1.41 (m, 8H), 1.40–1.29 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) 174.8, 66.2, 35.6,

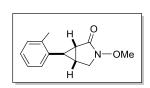
30.2, 29.8, 29.3, 25.9, 25.2, 25.1, 24.9 ppm. The *ee* value was determined by chiral HPLC analysis. Column (CHIRALPAK ID), UV detector 230 nm, eluent: Hex/IPA = 20/1, Flow late = 1.0 mL/min, tR = 20.2 min (major product), tR = 24.8 min (minor product). IR (neat) v 2920, 2849, 1770, 1176 cm⁻¹. HRMS (DART) calcd for $C_{10}H_{16}O_{2}$ [M+H]+: 167.1072 found: 167.1074.


Methyl (1R,5R,6R)-2-oxo-3-oxabicyclo[3.1.0]hexane-6-carboxylate4 (2d)

White solid; $[\alpha]^{28}_D = -52.4$ (c = 0.3, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 4.44 (dd, J = 9.94, 4.59 Hz, 1H), 4.32 (d, J = 9.94 Hz, 1H), 3.74 (s, 3H), 2.73–2.69 (m, 1H), 2.59 (dd, J = 6.50, 2.68 Hz, 1H), 2.00 (t, J = 3.06 Hz, 1H) ppm. The ee value was determined by chiral HPLC analysis. Column (CHIRALPAK IC), UV detector 220

nm, eluent: Hex/IPA = 7/3 (product was dissolved by CH_2Cl_2 .), Flow late = 1.2 mL/min, tR = 83.8 min (major product), tR = 76.1 min (minor product).

(1R,5S)-3-Benzyl-6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2-one³ (2e)


White solid; $[\alpha]^{28}_D = -25.8$ (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) 87.22-7.34 (m, 5H), 4.50 (d, J = 14.52 Hz, 1H), 4.15 (d, J = 14.52 Hz, 1H), 3.37 (dd, J = 11.08, 6.88 Hz, 1H), 2.99 (d, J = 11.08 Hz, 1H), 1.83 (dd, J = 6.50, 1.91 Hz, 1H), 1.56 (t, J = 6.50 Hz, 1H), 1.08 (s, 3H), 0.94 (s, 3H) ppm. The ee value was determined by chiral

HPLC analysis. Column (CHIRALPAK OJ-H), UV detector 254 nm, eluent: Hex/IPA = 30/1, Flow late = 1.0 mL/min, tR = 12.7 min (major product), tR = 15.6 min (minor product).

(1S,5R,6R)-3-Methoxy-6-phenyl-3-azabicyclo[3.1.0]hexane-2-one (2f)

Yellow liquid; $[\alpha]_D^{28}$ = -53.6 (c = 1.5, CHCl₃). Spectral data of this compound were already reported.⁵

(1S,5R,6R)-6-(2-Methylphenyl)-3-methoxy-3-azabicyclo[3.1.0]hexane-2-one (2h)

Yellow liquid; $[\alpha]_D^{27} = -37.8$ (c = 1, CHCl₃).

Spectral data of this compound were already reported. 5

(1S,5R,6R)-6-(3-Methylphenyl)-3-methoxy-3-azabicyclo[3.1.0]hexane-2-one (2i)

Yellow liquid; $[\alpha]_D^{27} = -35.3$ (c = 1, CHCl₃).

Spectral data of this compound were already reported. 5

(1S,5R,6R)-6-(4-Methylphenyl)-3-methoxy-3-aza-bicyclo[3.1.0]hexane-2-one (2j)

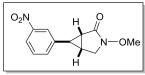
Yellow liquid; $[\alpha]_D^{25} = -34.2$ (c = 0.5, CHCl₃). Spectral data of this compound were already reported. ⁵

(2-Chlorophenyl)-3-methoxy-3-azabicyclo[3.1.0]hexane-2-one (2k)

Yellow liquid; $[\alpha]_D^{26} = -54.9$ (c = 1, CHCl₃).

Spectral data of this compound were already reported. 5

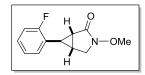
(3-Chlorophenyl)-3-methoxy-3-azabicyclo[3.1.0]hexan-2-one (2l)


Yellow liquid; $[\alpha]_D^{28} = -43.8$ (c = 1, CHCl₃).

Spectral data of this compound were already reported. 5

(1S,5R,6R)-6-(4-Chlorophenyl)-3-methoxy-3-azabicyclo[3.1.0] hexane-2-one (2m)

Yellow liquid; $[\alpha]_D^{25}$ = -57.0 (c = 0.64, CHCl₃). Spectral data of this compound were already reported.⁵

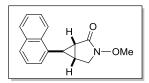

(1S,5R,6R)-3-Methoxy-6-(3-nitrophenyl)-3 azabicyclo[3.1.0] hexan-2-one (2g) ⁶

White solid; IR: v = 2937, 1719 cm-1. $[\alpha]_D^{25} = -41.2$ (c = 1, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 2.17 - 2.21$ (m, 2H), 2.28 (t, J = 6.50 Hz, 1H), 3.69 (d, J = 9.56 Hz, 1H), 3.77 (s, 3H), 3.89–3.93 (m, 1H),

7.40 (d, J = 7.64 Hz, 1H), 7.64 (t, J = 15.67 Hz, 1H), 7.89 (s, 1H), 8.07 (d, 8.03) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 19.3$, 27.4, 29.4, 47.7, 62.4, 120.8, 122.0, 129.7, 132.5, 140.5, 148.5, 168.3 ppm. HRMS (DART) m/z calcd for $C_{12}H_{12}N_2O_4$ [M+H]⁺ 284.0797, found 284.0796.

(1S,5R)-6-(2-Fluorophenyl)-3-methoxy-3-azabicyclo[3.1.0]hexan-2-one (2n)

Yellow liquid; IR: v = 2983, 1711 cm⁻¹. $[\alpha]_D^{25} = -53.0$ (c = 0.8, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 2.09-2.13$ (m, 1H), 2.19-2.21 (m, 1H), 2.32 (t, J = 6.88 Hz, 1H), 3.69 (dd, J = 1.15 Hz, J = 9.75 Hz, 1H),


3.84-3.87 (m, 1H), 6.89 (t, J = 15.29 Hz, 1H), 7.00-7.06 (m, 2H), 7.16-7.21 (m,1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 18.2, 24.0, 25.4, 47.8, 62.3, 124.3, 125.3, 126.8, 128.5, 169.1 ppm. HRMS (DART) m/z calcd for C₁₂H₁₂FNO₂ [M+H]⁺ 222.0930, found 222.0938.

(1S,5R,6R)-6-(2,4-dichlorophenyl)-3-methoxy-3-azabicyclo[3.1.0]hexan-2-one (2o)

Yellow liquid; $[\alpha]_D^{27} = -25.3$ (c = 1, CHCl₃).

Spectral data of this compound were already reported.⁵

(1S,5R)-3-Methoxy-6-(naphthalen-1-yl)-3-azabicyclo[3.1.0]hexan-2-one $(2p)^6$

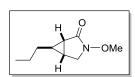
Yellow liquid; IR: v = 2926, 1689 cm⁻¹. $[\alpha]_D^{26} = -48$ (c = 1, CHCl₃). ¹H NMR (500 MHz, CDCl₃) $\delta = 2.18-2.21$ (m, 1H), 2.24-2.27 (m, 1H), 2.63 (t, J = 6.88 Hz, 1H), 3.82 (s, 3H), 3.84 (d, J = 1.15 Hz, 1H),


3.95–3.98 (m, 1H), 7.27 (d, J = 7.26 Hz, 1H), 7.38 (t, J = 15.67 Hz, 1H), 7.52 (t, J = 14.91 Hz, 1H), 7.58 (t, J = 15.29 Hz, 1H), 7.77 (d, J = 8.03 Hz, 1H), 7.86 (d, J = 7.64, 1H), 8.24 (d, J = 8.41 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 17.0$, 24.9, 28.3, 47.8, 62.3, 123.9, 124.5, 125.3, 126.2, 126.7, 128.2, 128.8, 132. 8, 133.2, 133.7, 169.6 ppm. HRMS (DART) m/z calcd for $C_{16}H_{15}NO_2$ [M+H]⁺ 253.1103, found 253.1107.

(1S,5R,6R)-3-Methoxy-1-methyl-6-phenyl-3-aza-bicyclo[3.1.0]hexane-2-one (2q)

Yellow liquid; $[\alpha]_D^{28} = -19.5$ (c = 0.94, CHCl₃).

Spectral data of this compound were already reported.⁵


(1S,5R,6R)-3-Methoxy-6-((E)-prop-1-en-1-yl)-3-azabicyclo[3.1.0]hexan-2-one (2r)

Yellow liquid; $[\alpha]_D^{26} = -27.6$ (c = 0.82, CHCl₃).

Spectral data of this compound were already reported.⁵

(1S,5R,6R)-3-Methoxy-6-propyl-3-azabicyclo[3.1.0] hexan-2-one (2s)

Yellow liquid; $[\alpha]_D^{26} = -32.3$ (c = 1, CHCl₃).

Spectral data of this compound were already reported.⁵

(15,2R,3R)-N-Benzyl-2-(hydroxymethyl)-3-phenylcyclopropane-1-carboxamide (3)

Benzylamine (23 μL, 0.218 mmol, 0.218 mmol, 1.16 equiv) was dissolved in dry THF (0.5 mL), cooled to -15 °C, and DIBAL-H (200 μL, 0.218 mmol, 1.16 equiv) was injected. After the mixture was stirred for 20 min, the solution was allowed to warm to 30 °C and left to react for 3 h. Then, it was cooled at -5 °C, and a solution of 2d (32.7 mg, 0.188 mmol, 1 equiv) in THF (1 mL) was added with stirring for 10 min. After 20 h at room temperature, the reaction was quenched with water and 4N HCl, and the product was extracted three times with Et₂O. The combined organic phase was washed with NaHCO₃ aq., then dried Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography with Hexane/EtOAc to give product 3 as white solid (44% yield, 95% ee, 16.0 mg, 0.056 mmol). $[\alpha]^{23}_{D} = -104.5$ (c 0.8, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.33 (dd, J = 7.64, 7.26 Hz, 2H), 7.29–7.23 (m, 5H), 7.19 (t, J = 7.26 Hz, 1H), 7.09 (d, J = 6.88 Hz, 2H), 6.20 (s, 1H), 4.49 (dd, J = 14.52, 5.73 Hz, 1H), 4.43 (dd, J = 14.52, 5.73 Hz, 1H), 4.12 (dd, J = 12.13, 3.63 Hz, 1H), 3.95 (dd, J = 12.13, 7.26 Hz, 1H), 2.90 (s, 1H), 2.79 (t, J = 5.73 Hz, 1H), 1.98–1.90 (m, 1H), 1.79 (dd, J = 8.79, 4.97 Hz, 1H) ppm. ¹³C NMR (125MHz, CDCl₃) δ 171.72, 140.15, 137.91, 128.93, 128.68, 127.94, 127.82, 126.66, 126.26, 59.79, 44.18, 32.01, 31.09, 28.26 ppm. The ee value was determined by chiral HPLC analysis. Column (CHIRALPAK IC-3), UV detector 254 nm, eluent: Hex/IPA = 5/1, flow late = 1.0 mL/min, tR = 11.3 min (minor product), tR = 13.4 min (major product). IR (neat) v 3307, 3063, 3029, 1639, 1544, 1028 cm⁻¹. HRMS (DART) calcd for $C_{18}H_{20}N_1O_2$ [M+H]⁺: 282.1493 found: 282.1494.

((1S,2R,3R)-2-(Methoxyamino)methyl)-3-(p-tolyl)cyclopropyl)(phenyl)methanone (4)

To a solution of 2f (85.0 mg, 0.42 mmol) in dry THF (2.0 mL) was slowly added a solution of PhMgBr (0.28 mL, 1.5 equiv, 3 M in THF) at 0 °C. The resulting mixture

was stirred for 30 min at 0 °C followed by addition of H_2O (2.0 mL). The product was extracted with CH_2Cl_2 (10 mL). The organic phase was separated and dried with Na_2SO_4 . The solvent was removed and the residue was purified by column chromatography on silica gel eluted with Hex/EA = 5/1 to give the desired cyclopropane 4 as a sole stereoisomer (37% yield, 98% ee, 43.8 mg, 0.16 mmol). [α]²²D = -89.8 (c 1.2, $CHCl_3$). 1H NMR (500 MHz, $CDCl_3$) δ 8.01 (d, J=7.26 Hz, 2H), 7.54 (dd, J=7.64, 7.26 Hz, 1H), 7.45 (dd, J=8.03, 7.26 Hz, 2H), 7.29 (dd, J=7.64, 7.26 Hz), 7.22–7.16 (m, 3H), 3.36 (s, 3H), 3.34 (dd, J=13.76, 5.35 Hz, 1H), 3.18 (dd, J=13.76, 8.41 Hz, 1H), 3.06 (dd, J=9.17, 5.35 Hz, 1H), 2.98–2.89 (m, 1H), 2.35–2.30 (m, 1H) ppm. ^{13}C NMR (125MHz, $CDCl_3$) 197.26, 140.18, 138.42, 132.92, 128.64, 128.60, 128.23, 126.65, 126.52, 61.71, 48.31, 33.34, 32.25, 31.15 ppm. The ee value was determined by chiral HPLC analysis. Column (CHIRALPAK IC-3), UV detector 254 nm, eluent: Hex/IPA = 9/1, Flow late = 0.5 mL/min, tR = 28.8 min (minor product), tR = 31.4 min (major product). IR (neat) v 3030, 2934, 1666 cm⁻¹. HRMS (DART) calcd for $C_{18}H_{20}N_1O_2$ [M+H]+: 282.1494 found: 282.1494.

6. Solubility of catalyst

• Ru(II)-Pheox

Ru(II)-Pheox (2.5 mg) was dissolved in H₂O (6 mL) and Et₂O (6 mL). Ru(II)-Pheox was partially dissolved in water phase. The Et₂O phase was separated, and no catalyst was observed after removal of the solvent. The water phase was filtered to remove insoluble solid and the water was removed under reduced pressure to give Ru(II)-Pheox (0.3 mg) in 12% recovered yield.

• Ru(II)-Amm-Pheox

Ru(II)-Amm-Pheox (2.5 mg) was dissolved in H_2O (6 mL) and Et_2O (6 mL). Ru(II)-Amm-Pheox almost completely dissolved in water phase. The Et_2O phase was separated, and no catalyst was observed after removal of the solvent. The water phase was filtered and the water was removed under reduced pressure to give Ru(II)-Amm-Pheox (1.9 mg) in 76% recovered yield.

Based on these results, we expected that the Ru(II)-Amm-Pheox has more high solubility in water than Ru(II)-Pheox.

7. Solvent screening

Table S1. Solvent screening^a

Entry	cat.	Solvent	Time [h]	Yield [%]	ee [%] ^c
1	cat. 1	CH ₂ Cl ₂	1 min	92	90
2	cat. 2	CH ₂ Cl ₂	1 min	96	94
3	cat. 2	H ₂ O/Benzene	24	31	75
4	cat. 2	H ₂ O/Toluene	24	47	65
5	cat. 2	H ₂ O/Cyclohexane	24	37	67
6	cat. 2	H ₂ O/Heptane	24	42	75
7	cat. 2	H ₂ O/CHCl ₃	10	76	88
8	cat. 2	H ₂ O/CH ₂ Cl ₂	4	81	89
9	cat. 2	H ₂ O/ DCE	4	69	93
10	cat. 2	H ₂ O/DIPE	3	97	85
11	cat. 2	H ₂ O/Et ₂ O	1	99	99

^aReaction conditions: (3 mol %) of the cat. 2 was dissolved in water (1 mL) and a solution of diazo compound **1f** in the selected organic solvent (1 mL) was added. The reaction was stirred for the mentioned time at room temperature. ^bIsolated yield. ^cDetermined by chiral HPLC analysis. DCE = 1,2-dichloroethane, DIPE = diisopropyl ether, Et₂O = diethyl ether.

8. Reaction mechanism

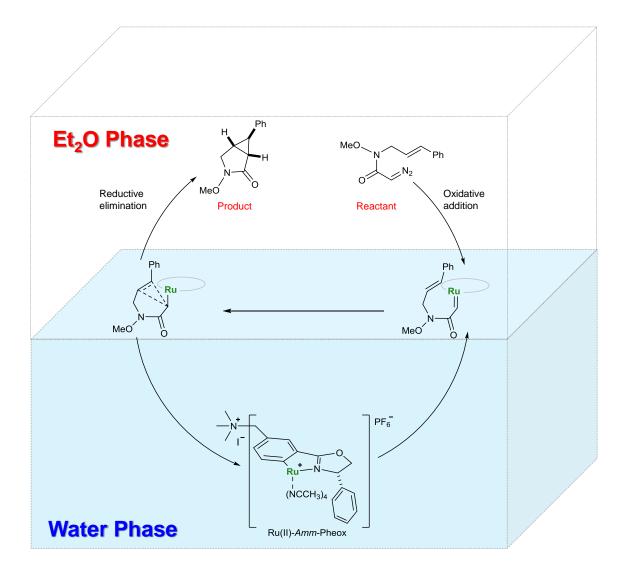
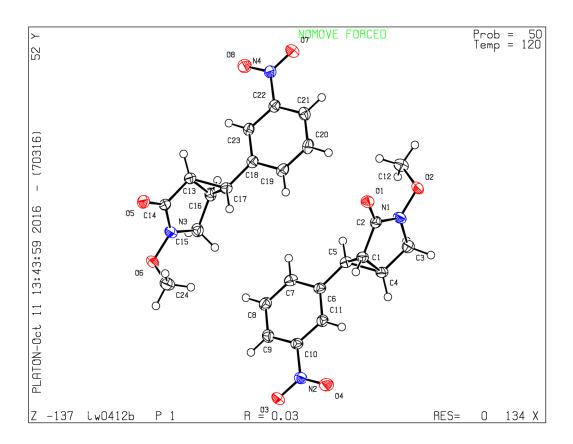
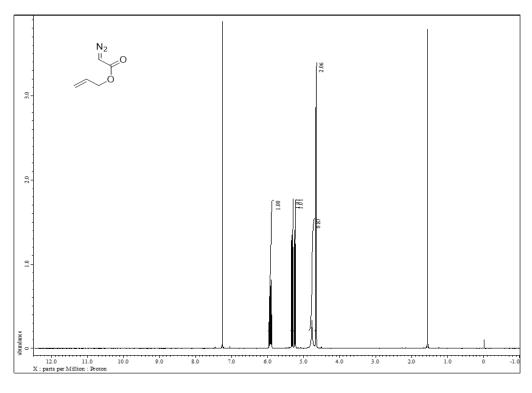
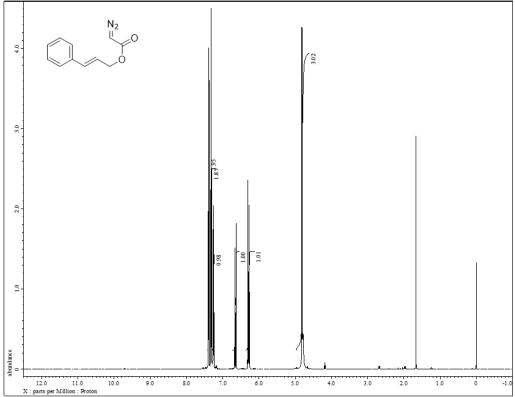
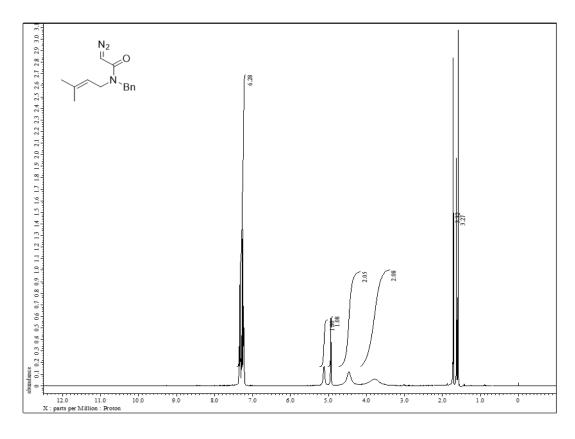
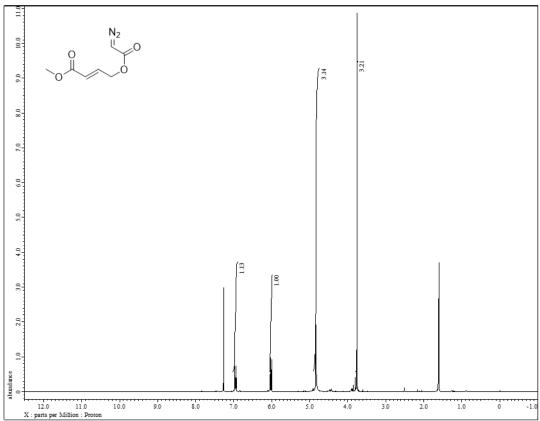
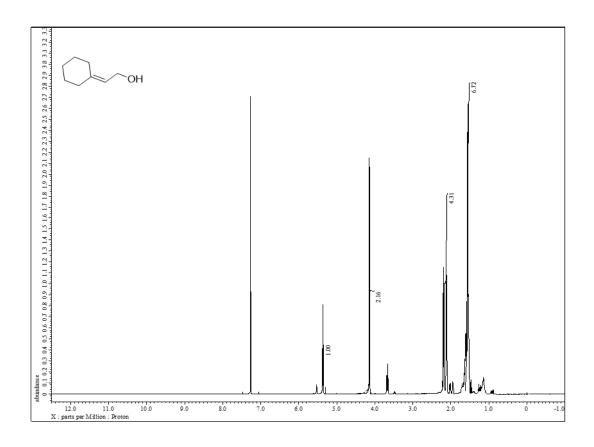


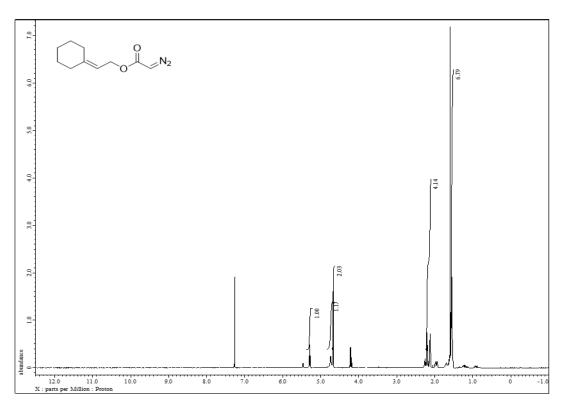
Figure S1. Plausible reaction mechanism in water/Et₂O.

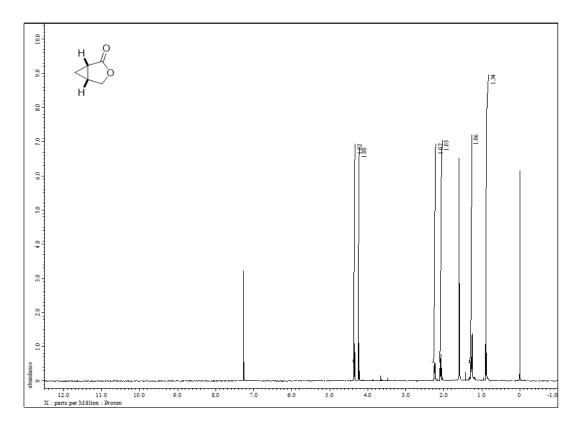
9. X-ray analysis

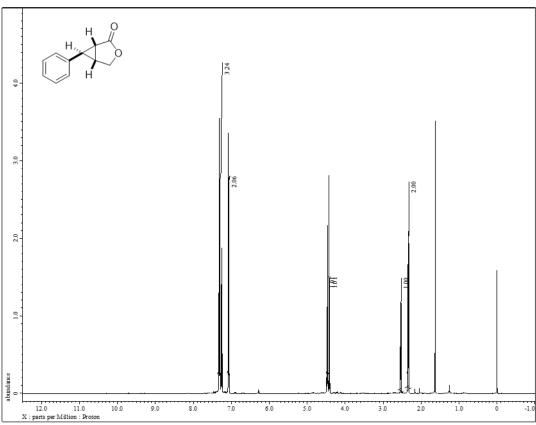





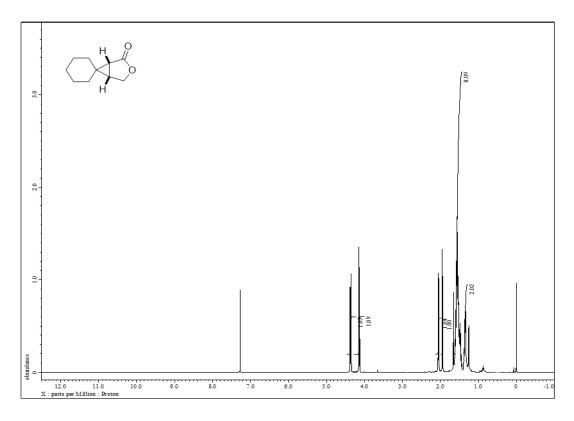

Figure S2. Thermal ellipsoid plot for 2g structure

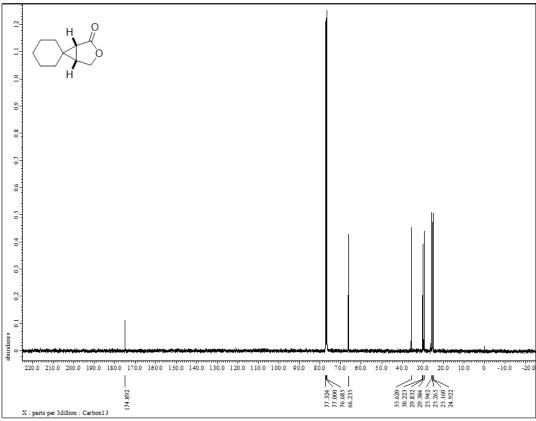

10. NMR spectral data

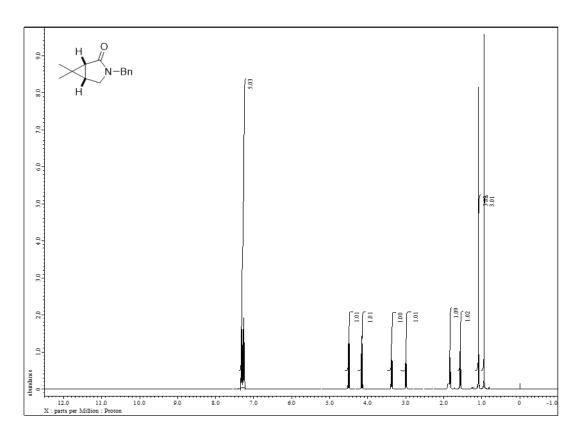


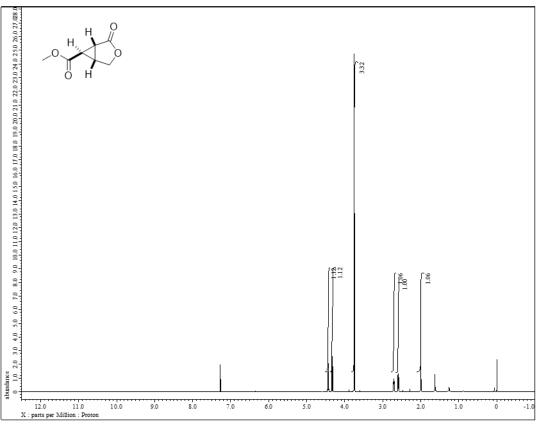


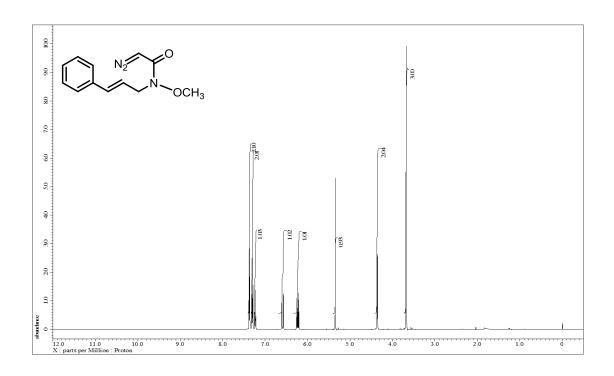


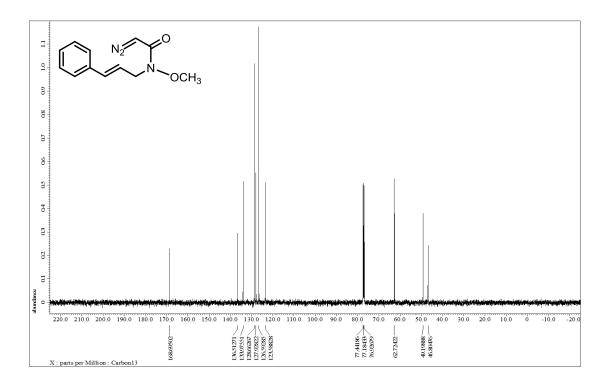


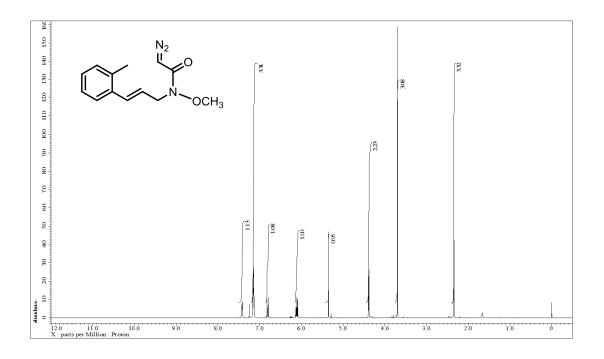


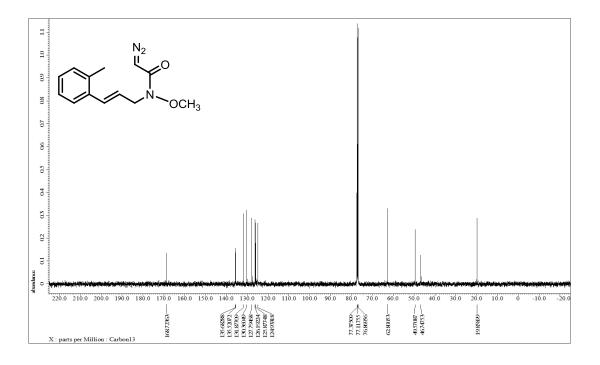


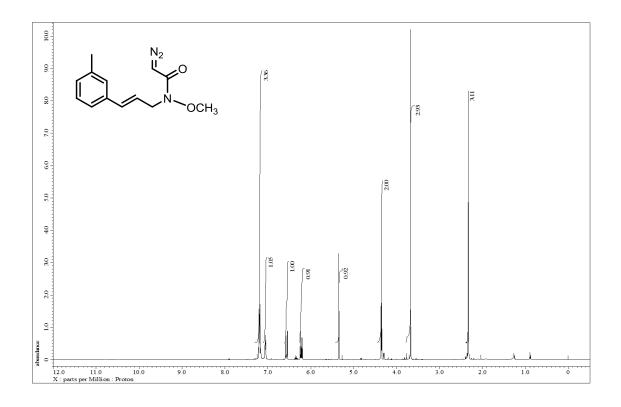


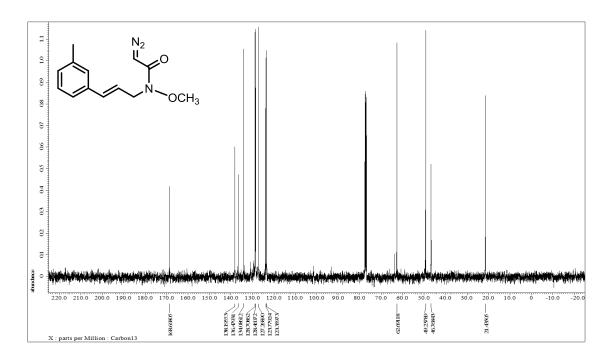


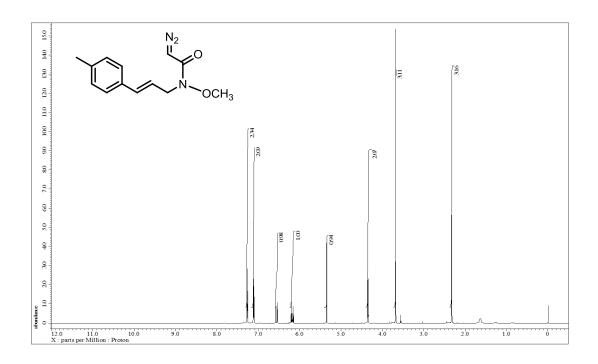


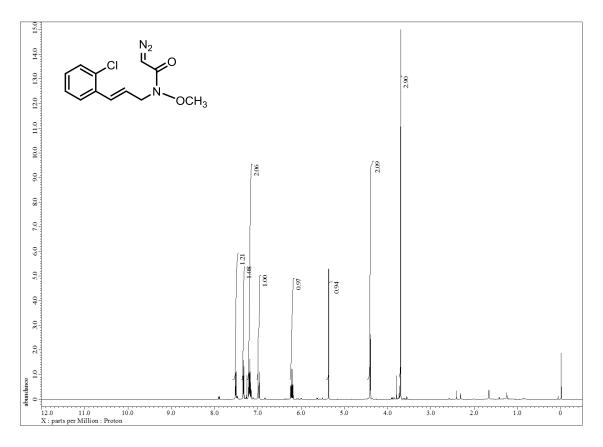


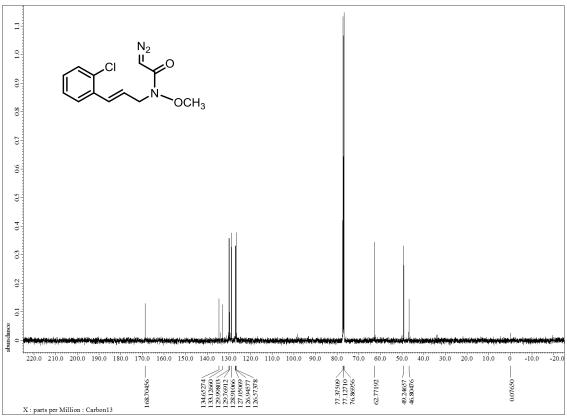


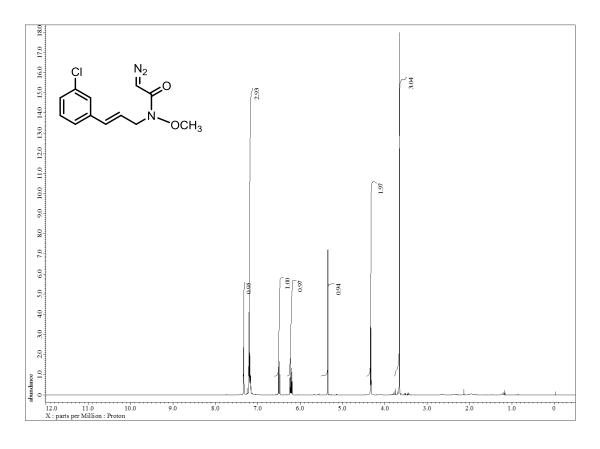


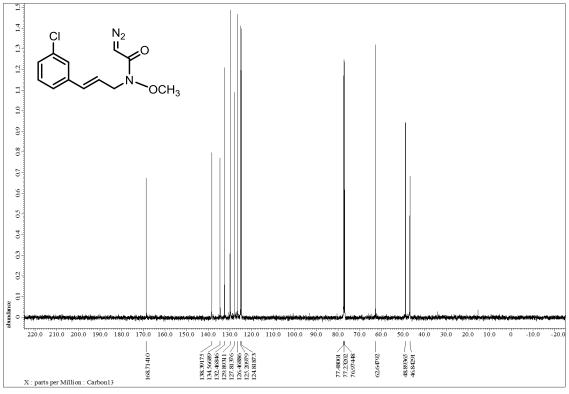


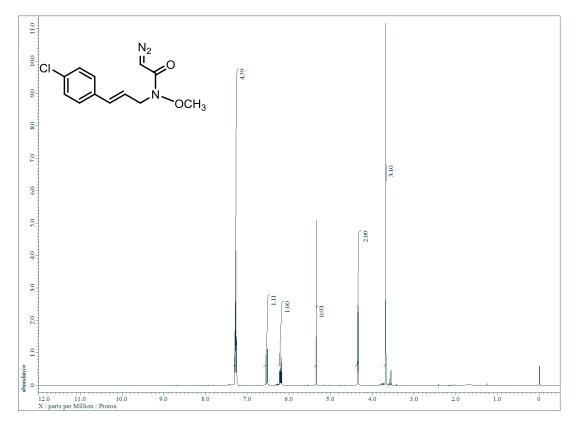


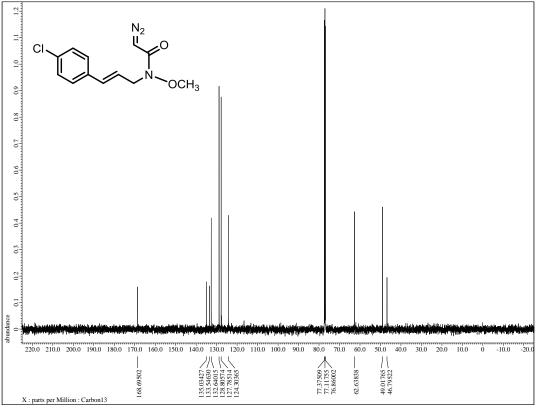


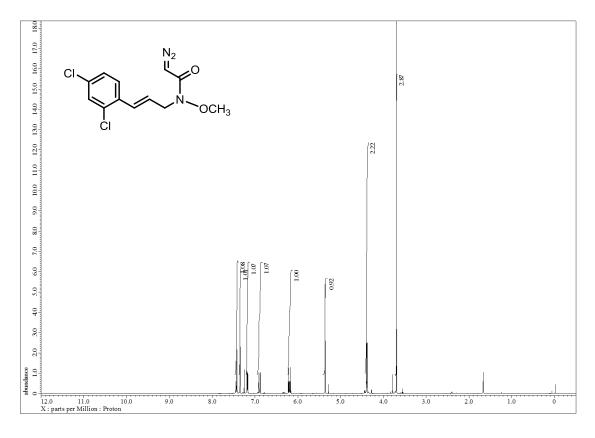


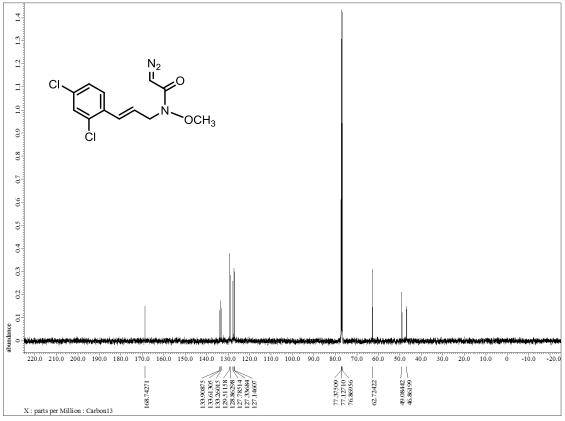


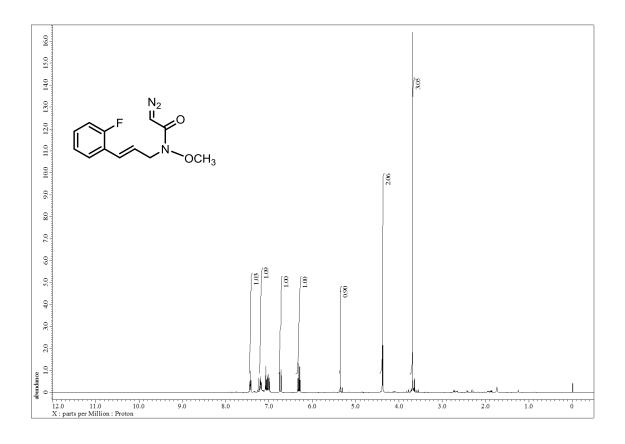


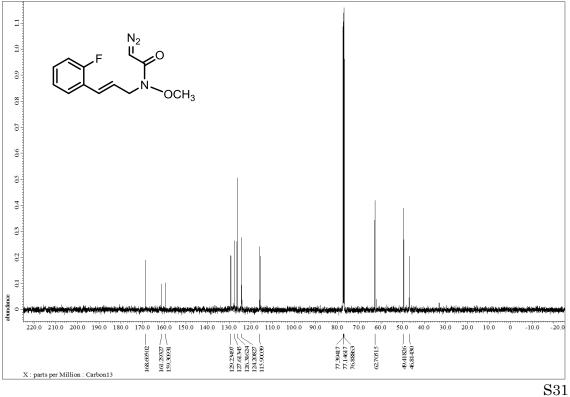


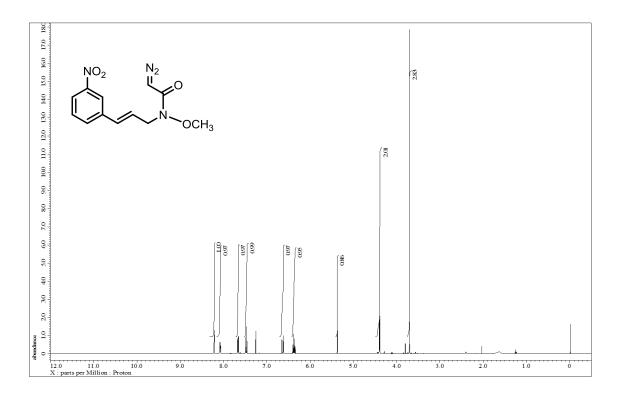


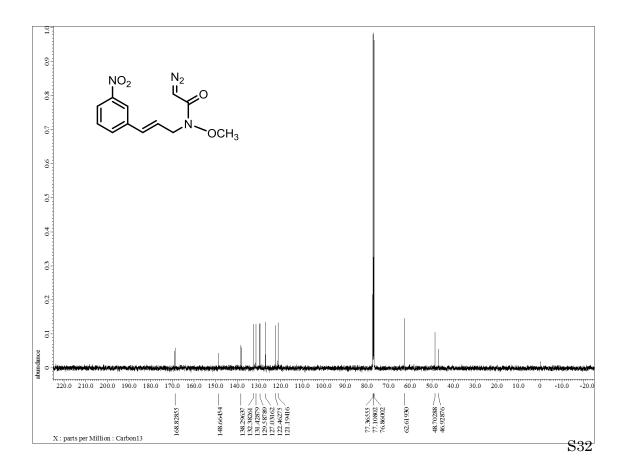


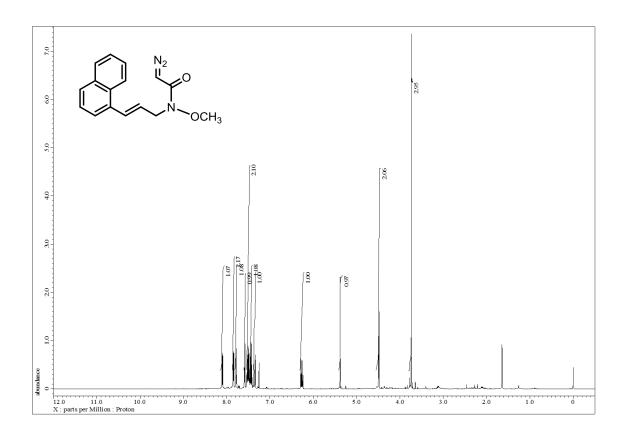


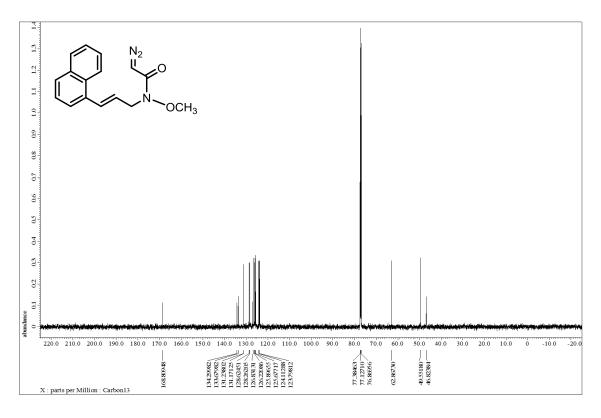


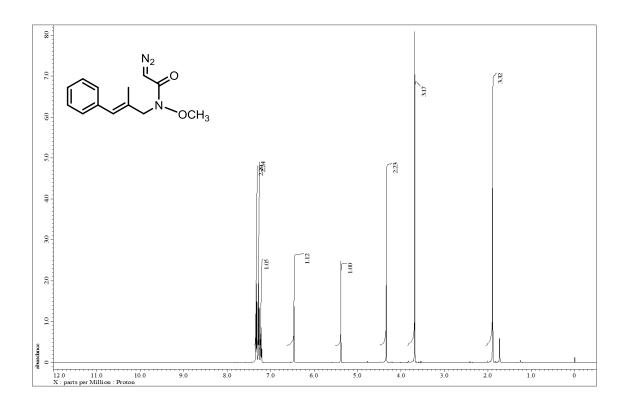


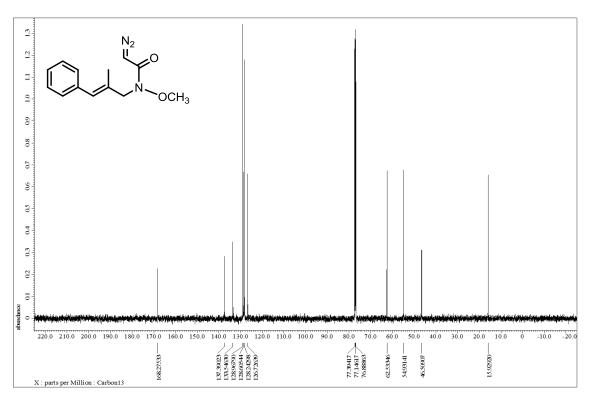


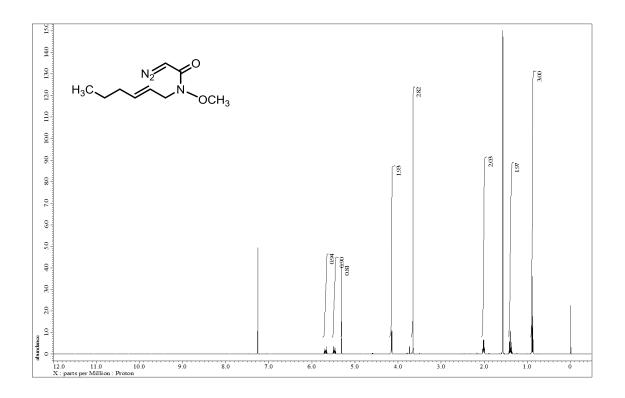


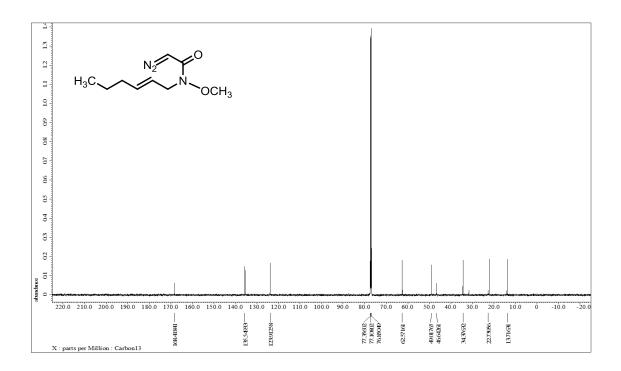


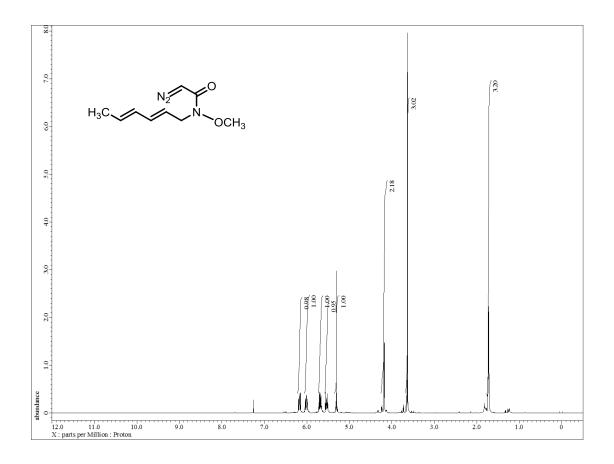


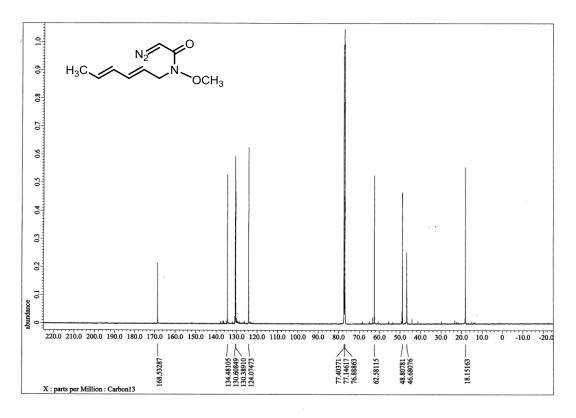


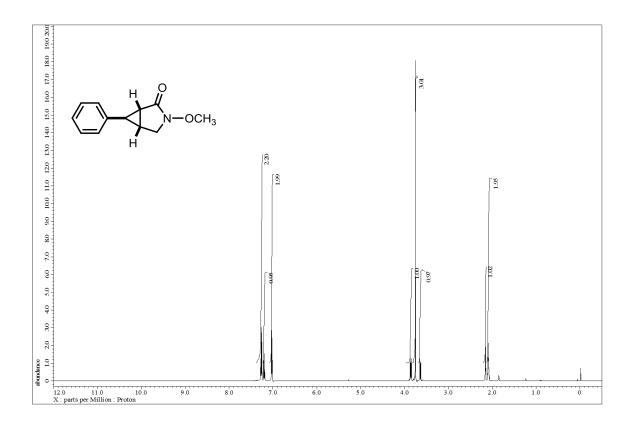


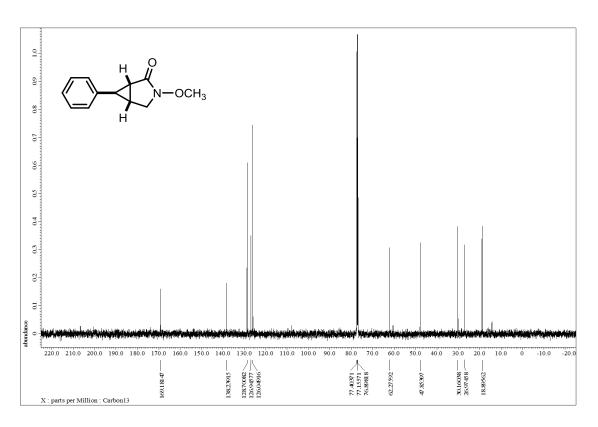


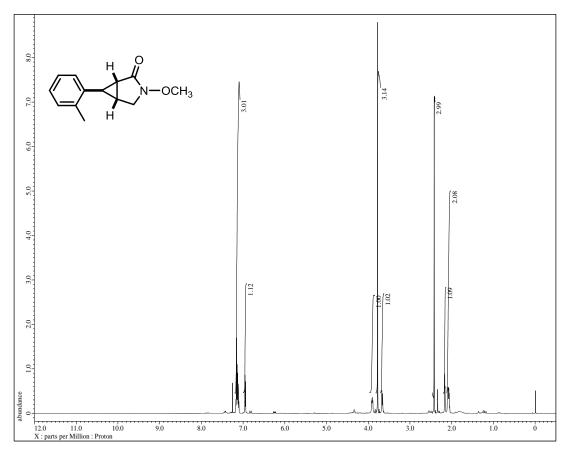


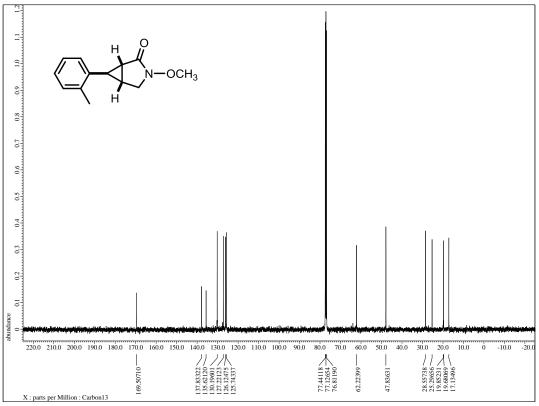


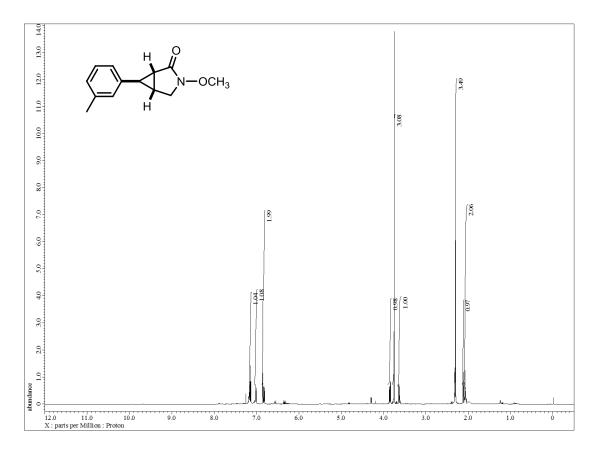


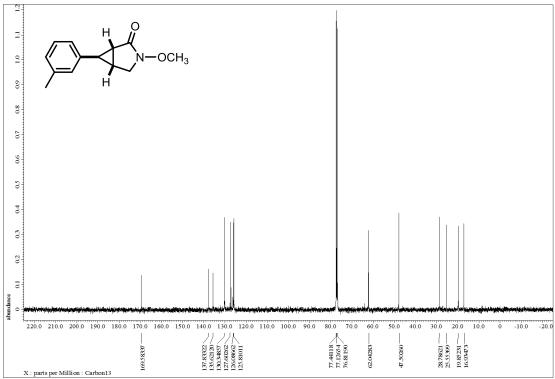


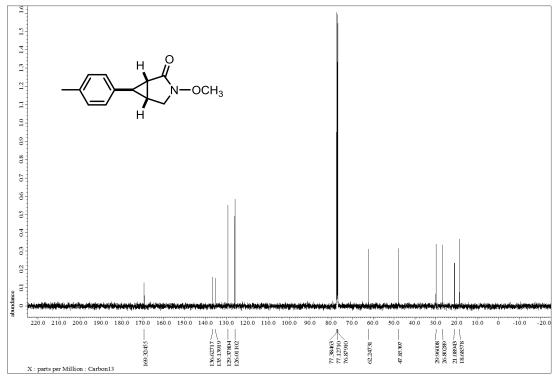


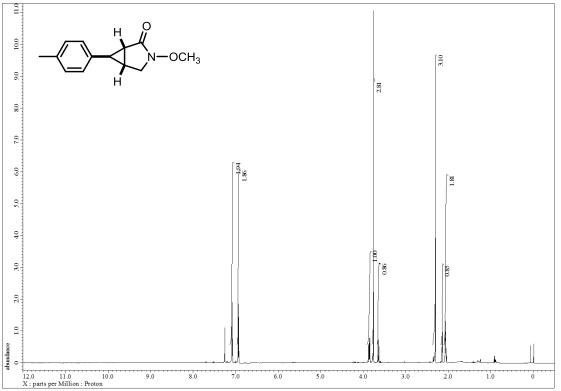


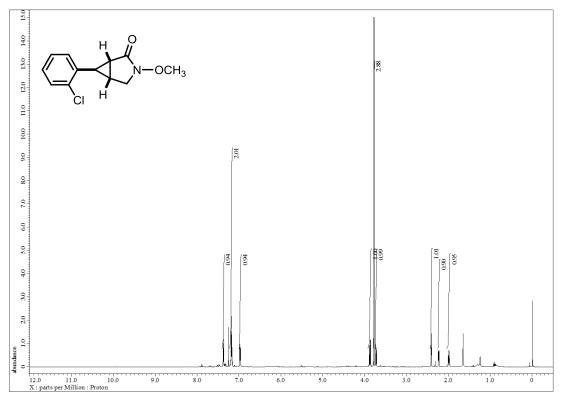


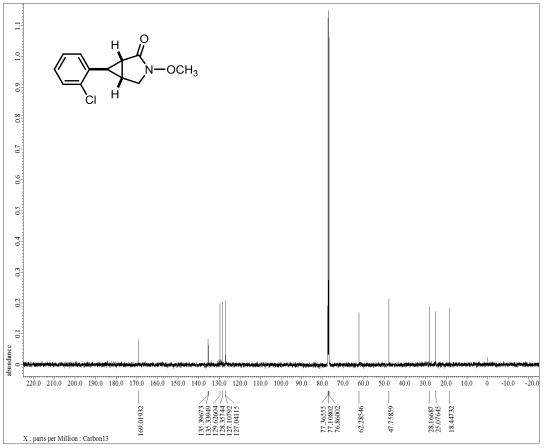




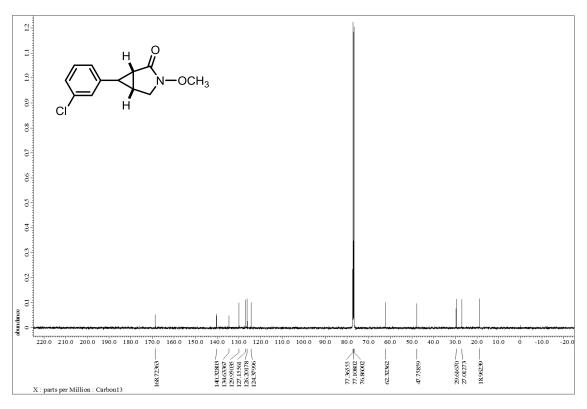


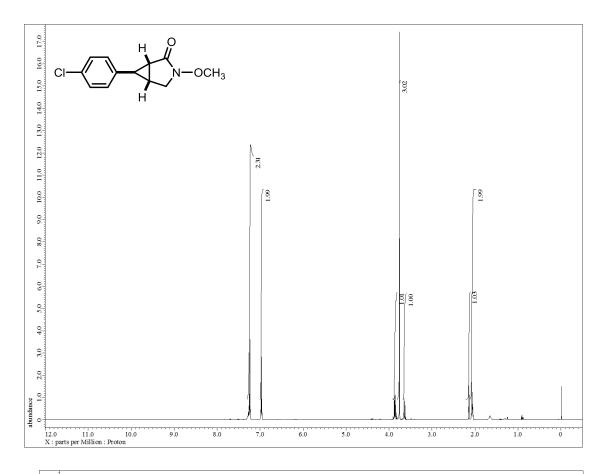


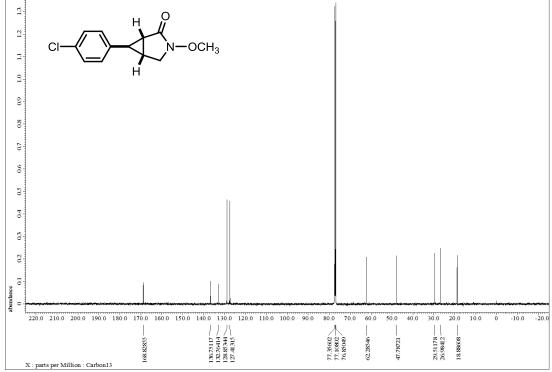


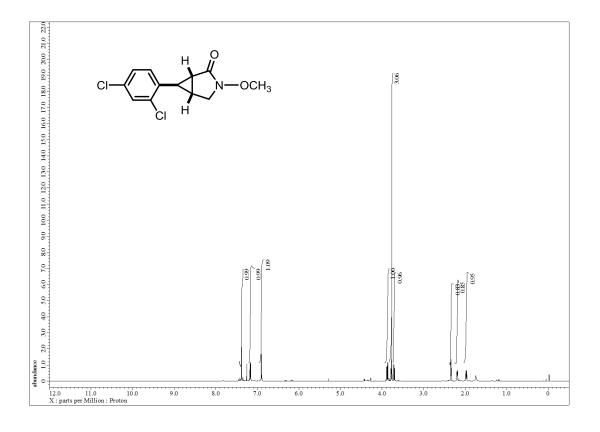


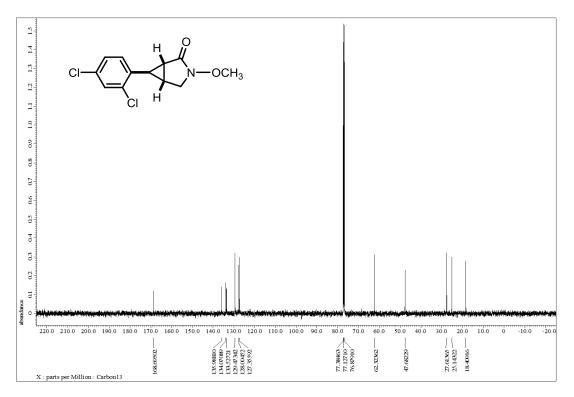


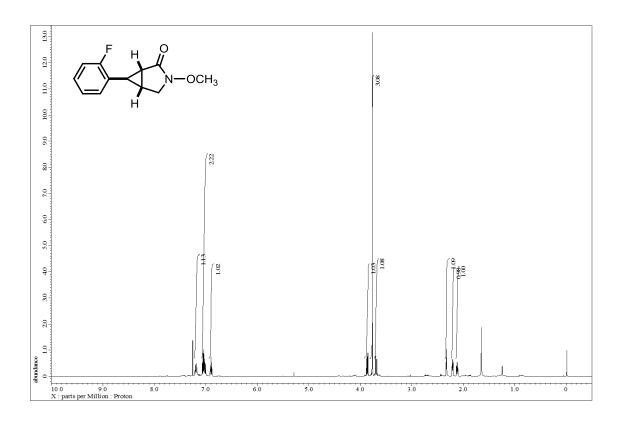


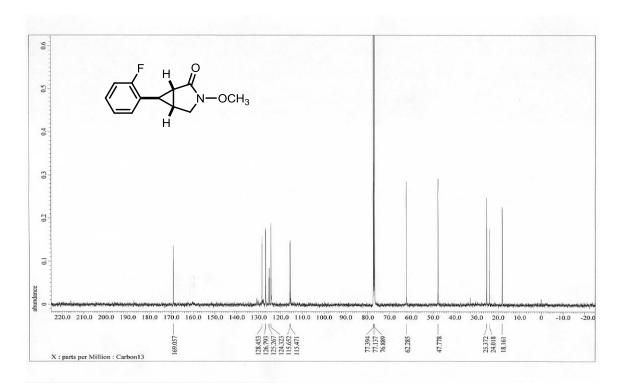


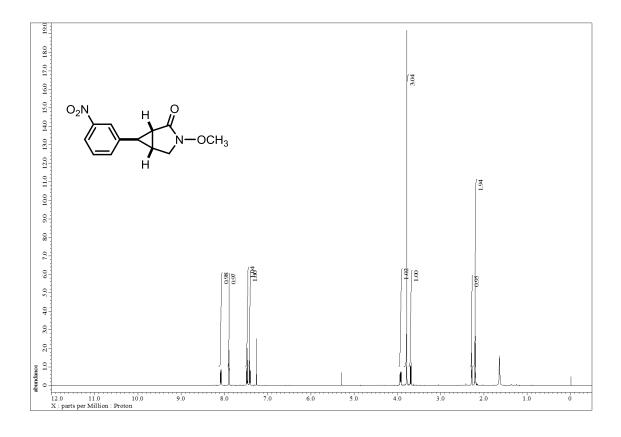


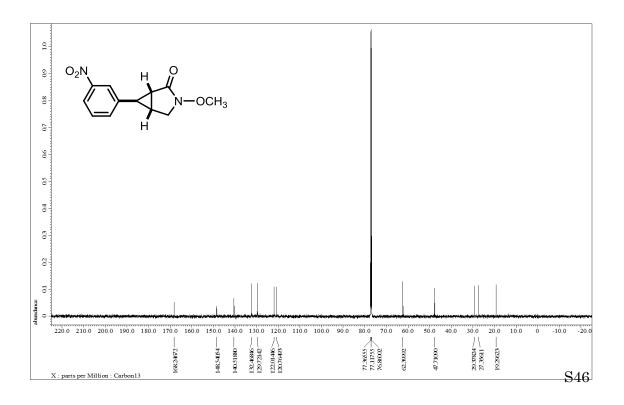


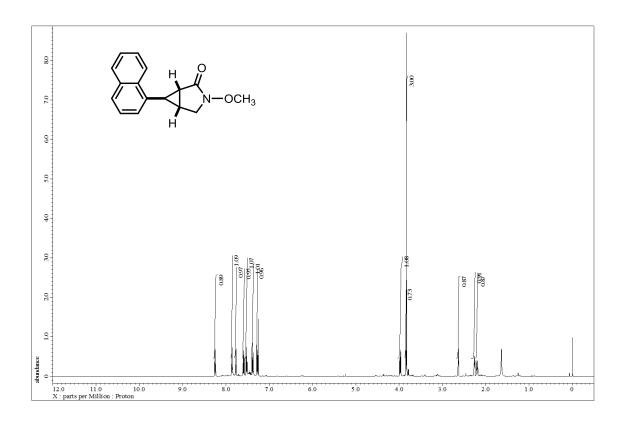


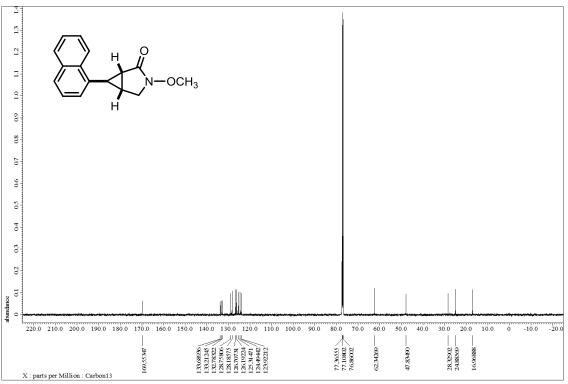


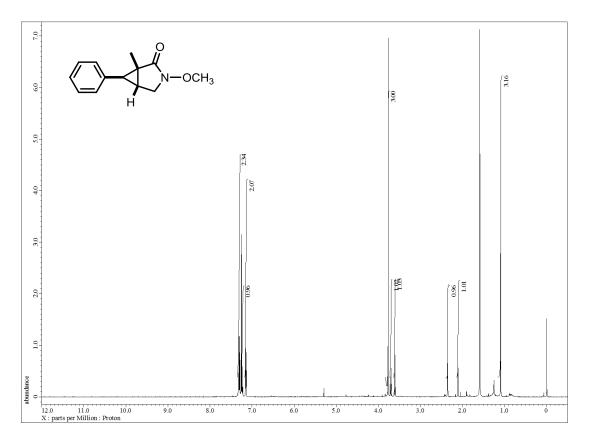


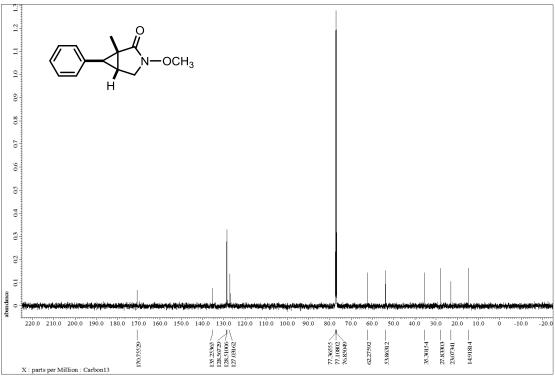


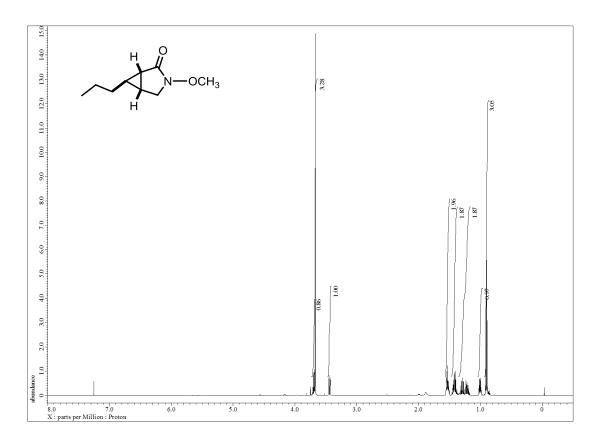


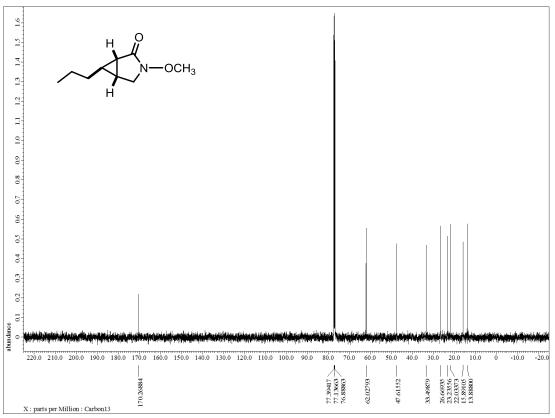


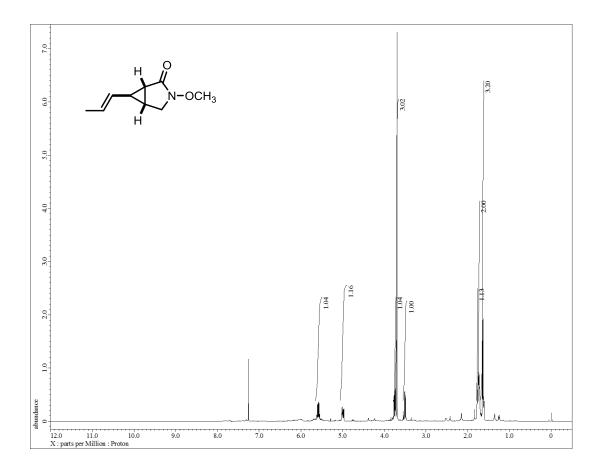


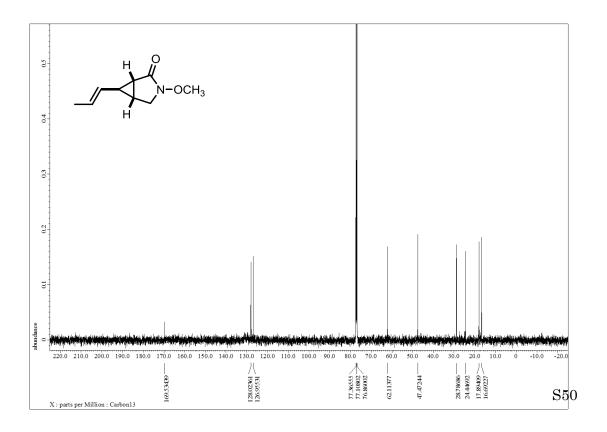


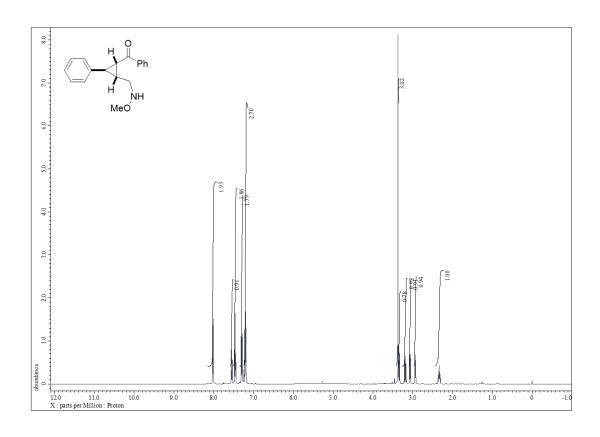


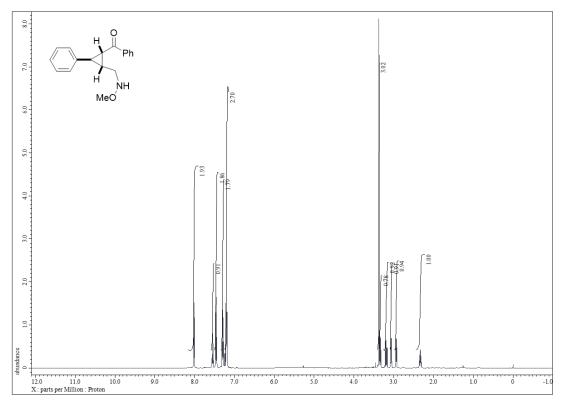


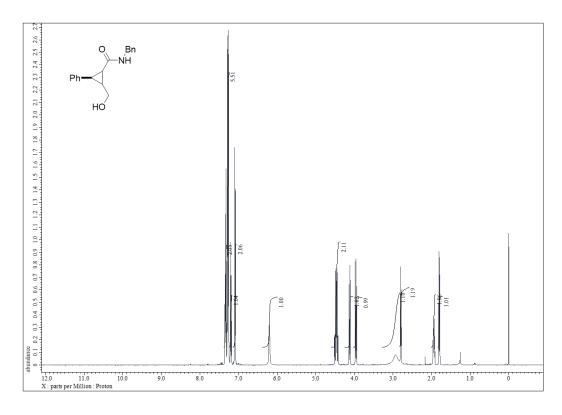


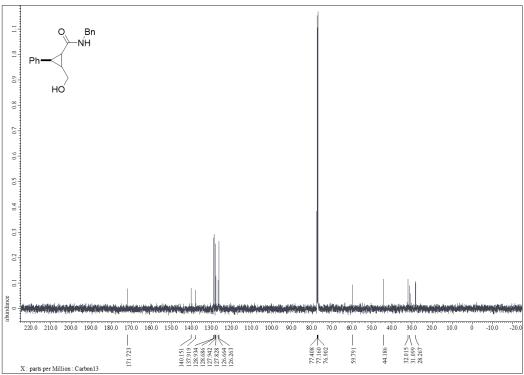


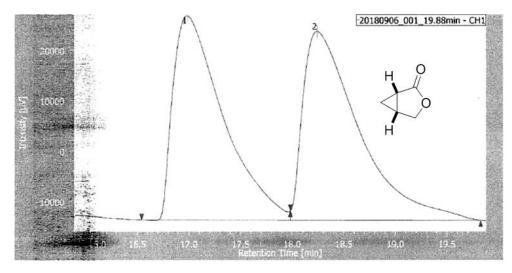


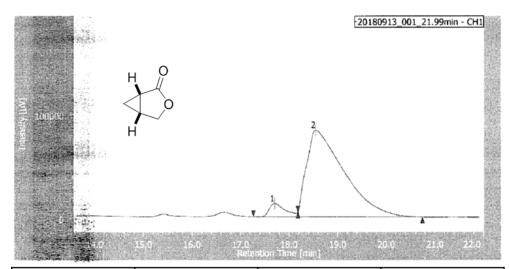


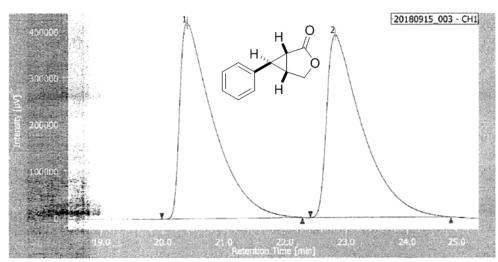


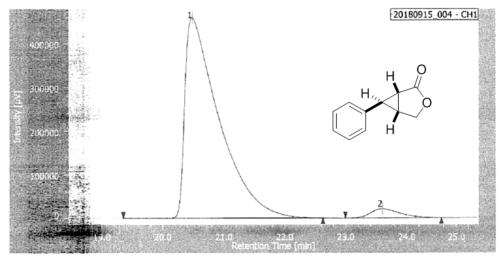


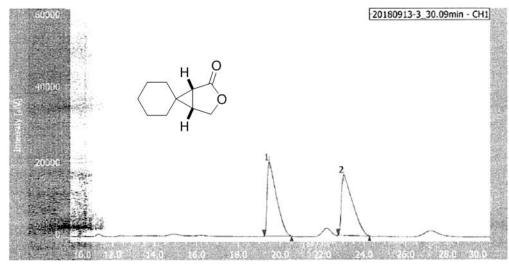


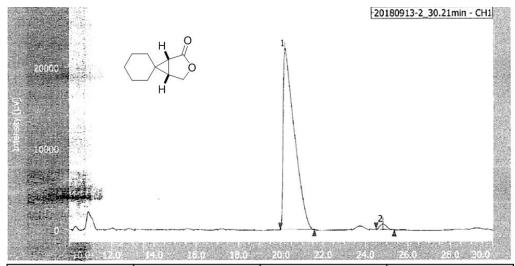


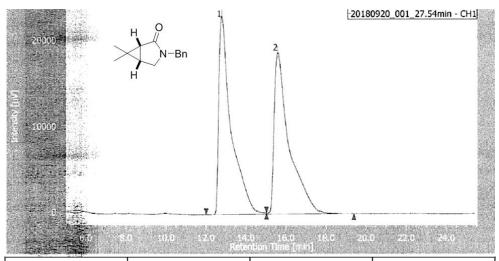


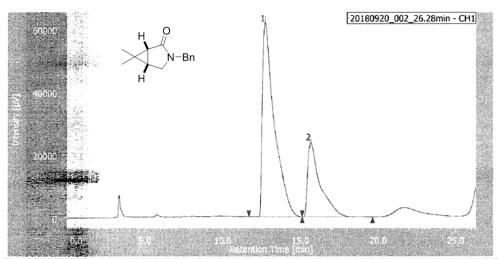

11. HPLC spectral data

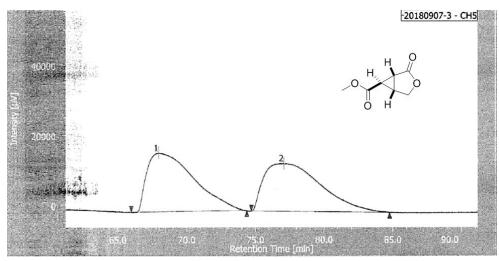

entry	RT [min]	area	area %
1	16.9	1370311	49.23
2	18.2	1413078	50.768

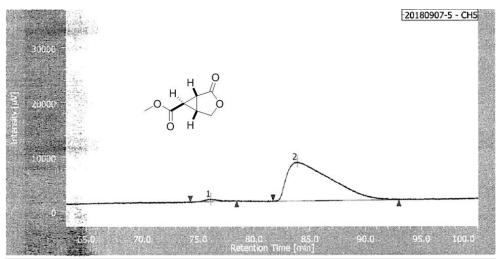

entry	RT [min]	area	area %
1	17.7	296341	6.18
2	18.5	4494087	93.81

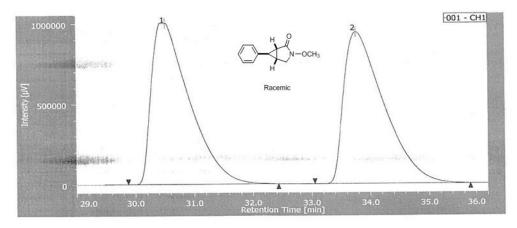

PEAK	RT [min]	area	area %
1	20.4	16209356	50.38
2	22.8	15964206	49.619

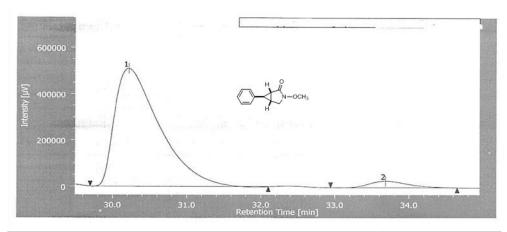

entry	RT [min]	area	area %
1	20.4	17907788	96.34
2	23.6	679258	3.654

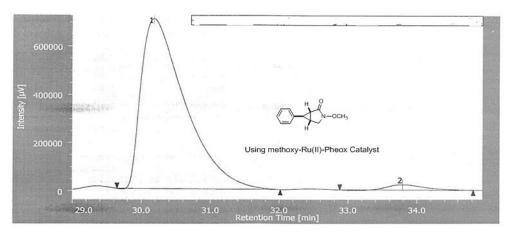

entry	RT [min]	area	area %
1	19.4	597989	50.42
2	23.0	587829	49.57

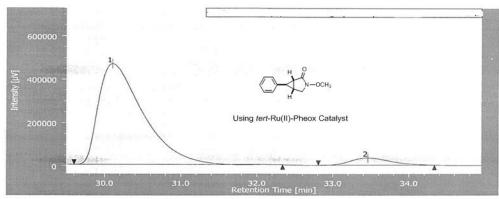

entry	RT [min]	area	area %
1	20.2	815328	98.33
2	24.8	13819	1.66

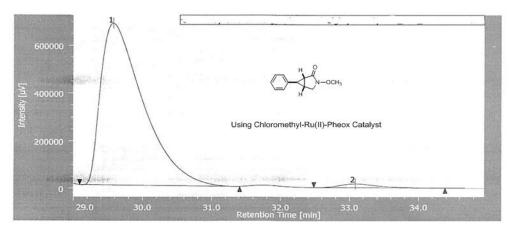

entry	RT [min]	area	area %
1	12.7	996097	50.14
2	15.6	990498	49.85

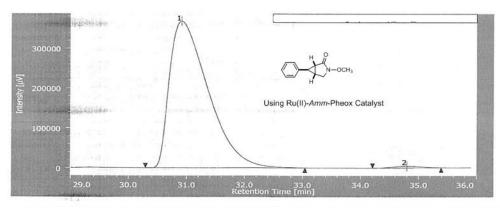

entry	RT [min]	area	area %
1	12.7	3332812	71.68
2	15.6	1316145	28.31

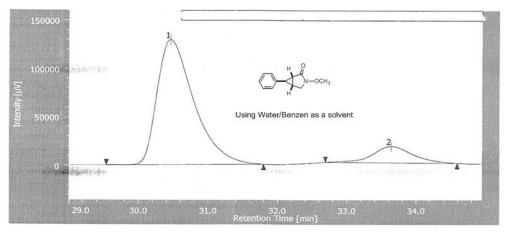

entry	RT [min]	area	area %
1	67.9	4019087	50.34
2	77.0	3963716	49.65

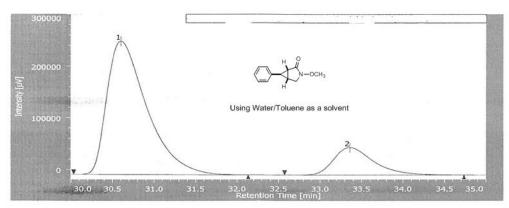

entry	RT [min]	area	area %
1	76.1	39197	1.98
2	83.8	1940744	98.02

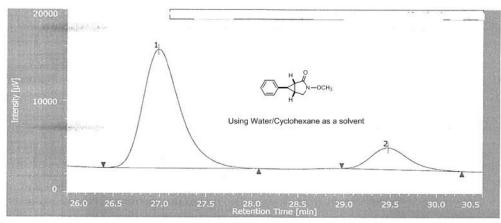

entry	tR[min]	area	area %
1	30.50	45256405	50.47
2	33.75	44404766	49.53

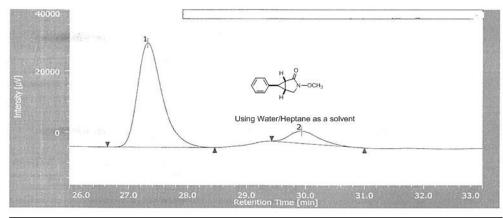

entry	tR[min]	area	area %
1	30.21	21412045	95.34
2	33.68	1044654	4.65

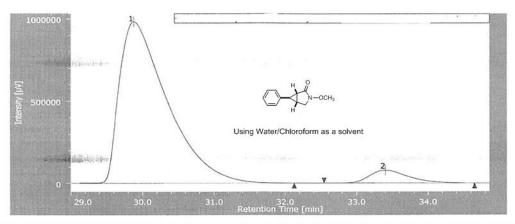

entry	tR[min]	area	area %
1	30.17	31355247	97.52
2	33.79	796566	2.48

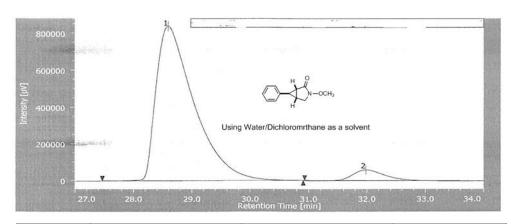

entry	tR[min]	area	area %
1	30.10	19008278	93.99
2	33.46	1215067	6.01

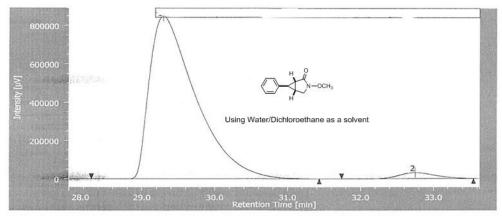

entry	tR[min]	area	area %
1	29.57	29252529	98.05
2	33.08	581720	1.95

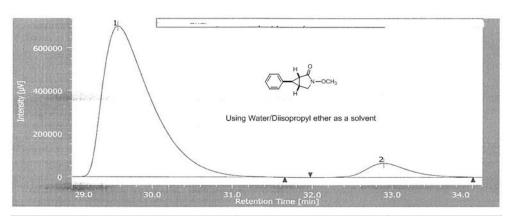

entry	tR[min]	area	area %
1	30.90	16956096	99.16
2	34.80	142997	0.84

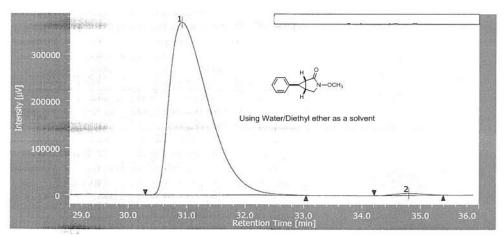

entry	tR[min]	area	area %
1	30.45	4737061	87.43
2	33.64	680996	12.57

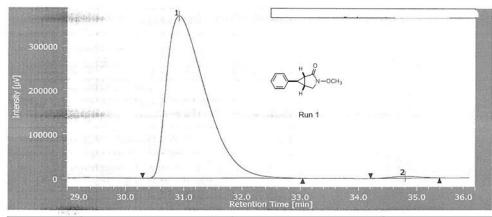

entry	tR[min]	area	area %
1	30.60	8643353	82.73
2	33.35	1803675	17.27

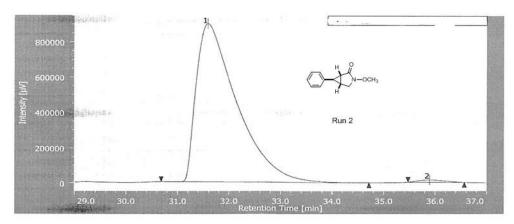

entry	tR[min]	area	area %
1	26.98	367747	84.38
2	29.47	68039	15.62

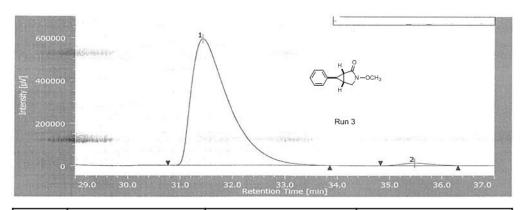

entry	tR[min]	area	area %
1	27.31	985736	87.57
2	29.93	139961	12.43

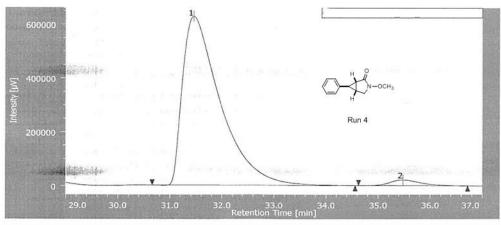

entry	tR[min]	area	area %
1	29.87	45848193	93.925
2	33.40	2965173	6.075

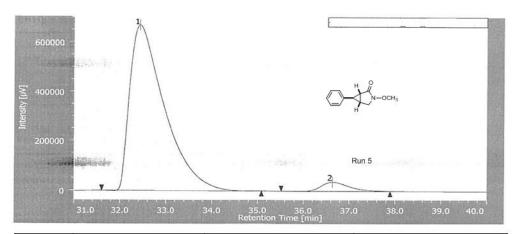

entry	tR[min]	area	area %
1	28.59	38042337	94.68
2	31.98	2137036	5.31

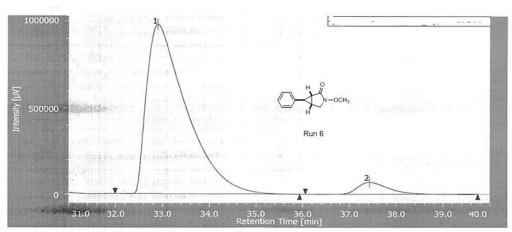

entry	tR[min]	area	area %
1	29.29	37492806	97.21
2	32.75	1075112	2.79

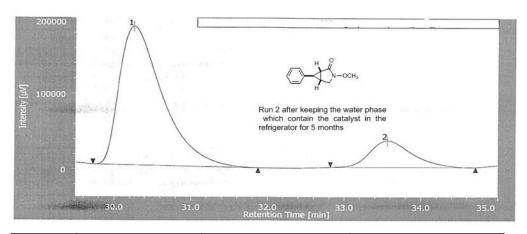

entry	tR[min]	area	area %
1	29.56	29761003	92.53
2	32.89	2401935	7.47

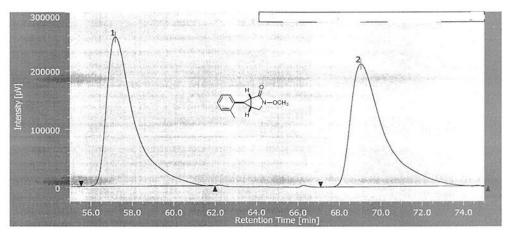

entry	tR[min]	area	area %
1	30.90	16956096	99.17
2	34.80	142997	0.83

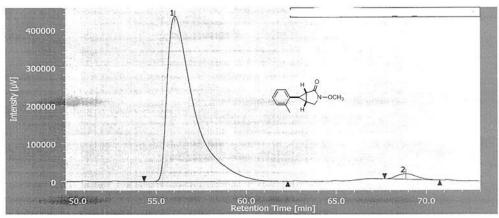

entry	tR[min]	area	area %
1	30.90	16956096	99.17
2	34.80	142997	0.83

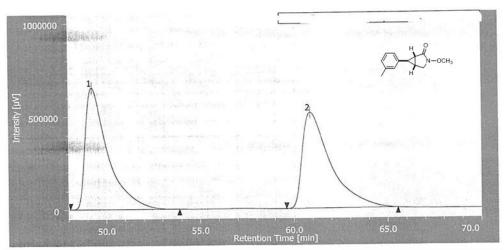

entry	tR[min]	area	area %
1	31.58	49236765	99.61
2	35.89	456987	0.39

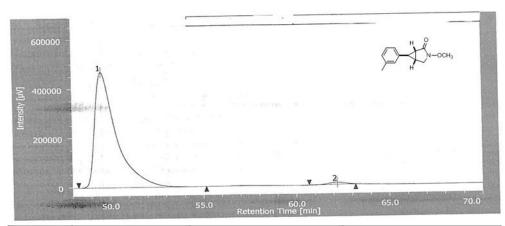

entr	tR[min]	area	area %
у			
1	31.42	29461318	98.50
2	35.47	447790	1.50

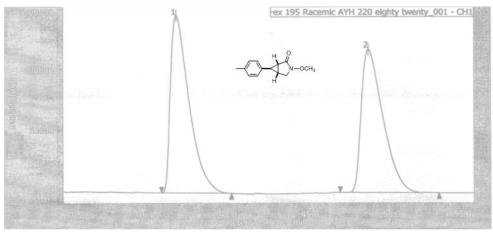

entry	tR[min]	area	area %
1	31.45	31761845	97.40
2	35.47	846789	2.60

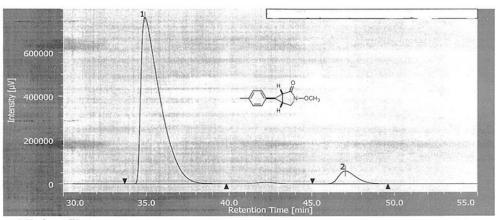

entry	tR[min]	area	area %
1	32.42	35202200	95.76
2	36.63	1557696	4.23

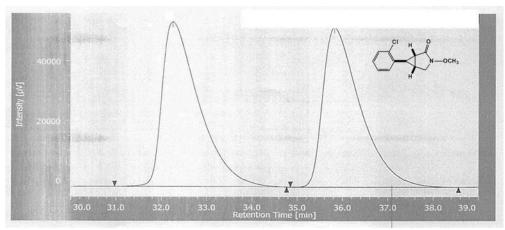

entry	tR[min]	area	area %
1	32.89	58005665	94.79
2	37.42	3191079	5.21

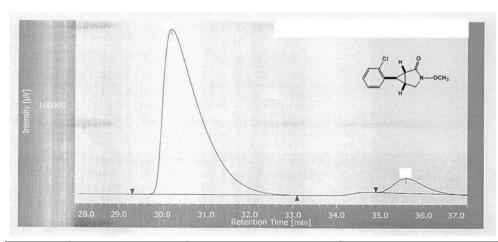

entry	tR[min]	area	area %
1	30.25	7184688	84.18
2	33.56	1349575	15.82

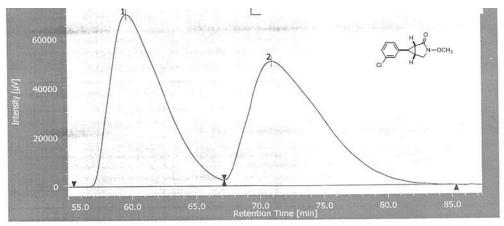

entry	tR[min]	area	area %
1	57.18	23931962	50.39
2	69.03	23559879	49.61

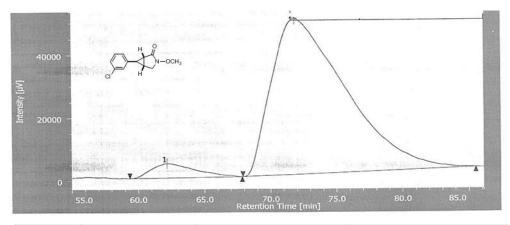

entry	tR[min]	area	area %
1	56.05	44528683	97.61
2	68.85	1089492	2.39

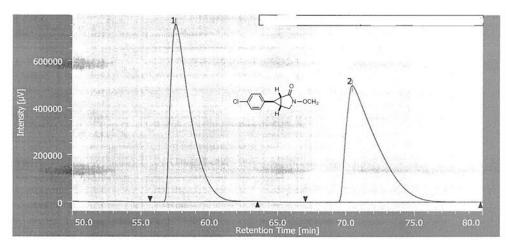

entry	tR[min]	area	area %
1	49.24	54674636	50.45
2	60.87	53699095	49.55

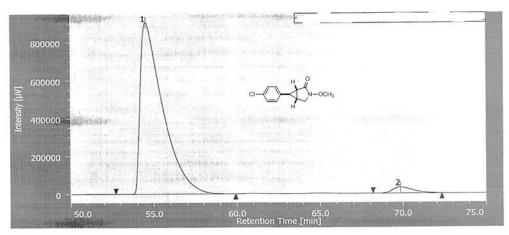

entry	tR[min]	area	area %
1	49.55	37895724	98.65
2	62.19	515166	1.34

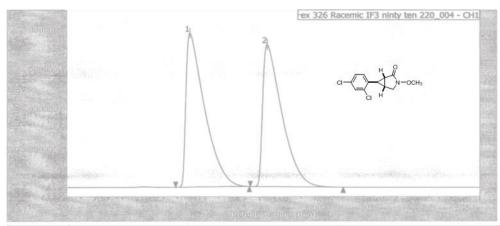

entry	tR[min]	area	area %
1	36.85	11709831	50.26
2	48.56	11584762	49.74

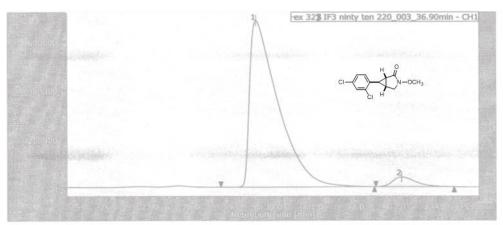

entry	tR[min]	area	area %
1	34.91	61559416	93.53
2	47.02	4254625	6.47

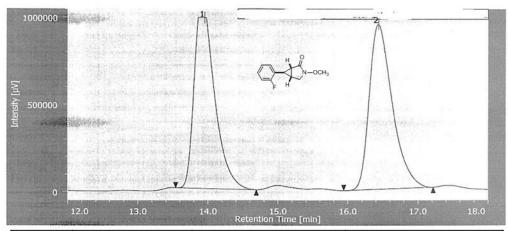

entry	tR[min]	area	area %
1	32.25	3138136	50.36
2	35.81	3093540	49.64

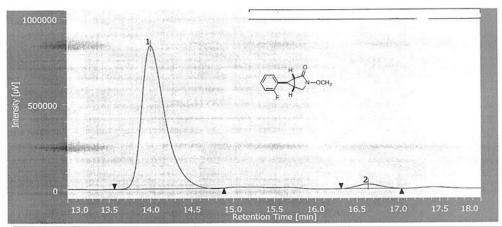

entry	tR[min]	area	area %
1	30.94	10590639	93.16
2	35.35	777500	6.83

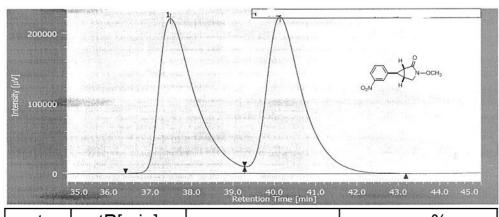

entry	tR[min]	area	area %
1	59.61	20018088	49.68
2	70.94	20273120	50.32

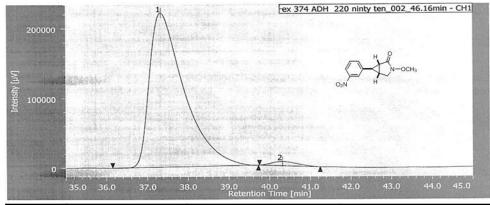

entry	tR[min]	area	area %
1	62.16	1071692	5.24
2	71.85	19381762	94.76

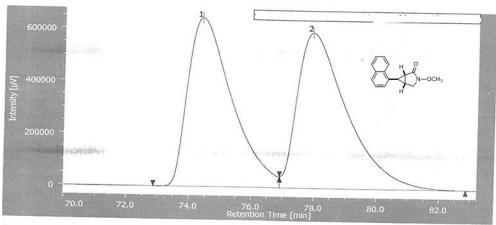

entry	tR[min]	area	area %
1	57.53	76070646	49.94
2	70.45	76242002	50.06


entry	tR[min]	area	area %
1	54.52	85496013	96.95
2	69.84	2686559	3.04

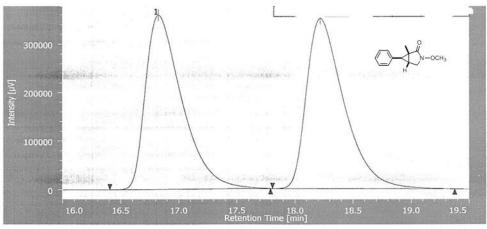

entry	tR[min]	area	area %
1	29.46	36252165	51.23
2	32.27	34515533	48.77

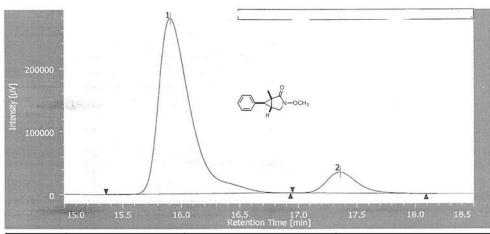

entry	tR[min]	area	area %
1	29.57	32849913	95.53
2	33.12	1535069	4.47

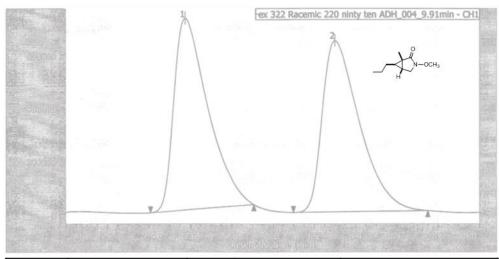

entry	tR[min]	area	area %
1	13.95	21116277	49.34
2	16.43	21679616	50.65

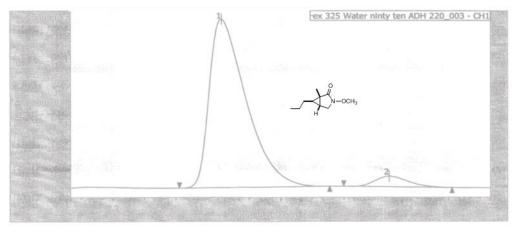

entry	tR[min]	area	area %
1	14.00	16537511	96.98
2	16.63	513845	3.02

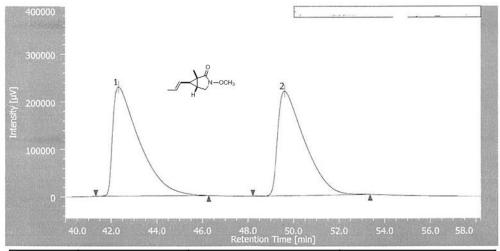
entry	tR[min]	area	area %
1	37.50	13316778	49.35
2	40.15	13669404	50.65

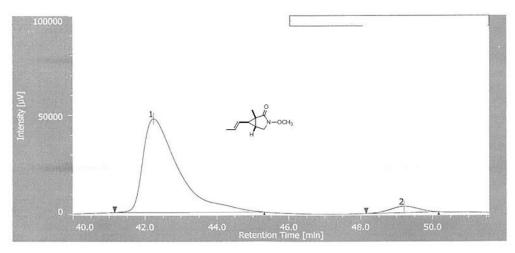

entry	tR[min]	area	area %
1	37.33	13151247	97.98
2	40.31	270389	2.02

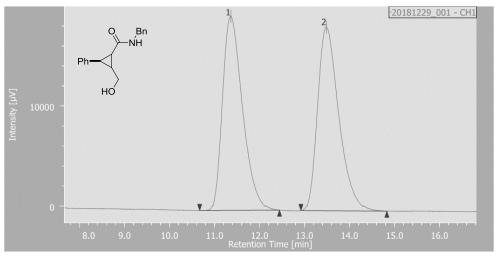

entry	tR[min]	area	area %
1	74.37	63405199	49.15
2	77.91	65598546	50.85

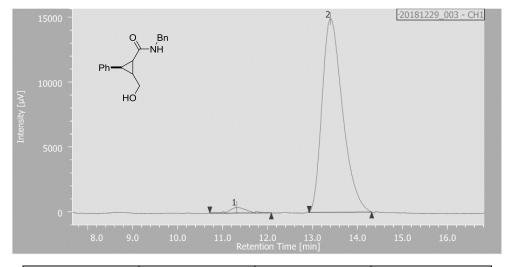

entry	tR[min]	area	area %
1	73.25	1243073	2.40
2	76.13	50644713	97.60

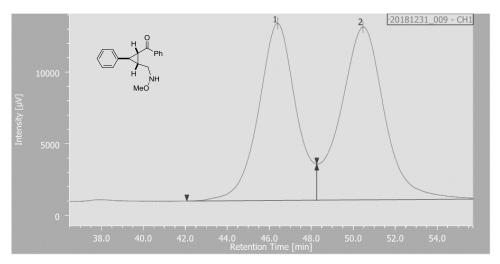

entry	tR[min]	area	area %
1	16.82	7849172	50.60
2	18.22	7885385	49.40

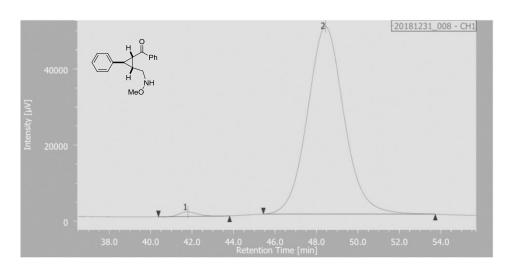

entry	tR[min]	area	area %
1	15.90	5221816	89.54
2	17.36	610287	10.46


entry	tR[min]	area	area %
1	7.57	8296203	50.73
2	8.30	8058874	49.27


entry	tR[min]	area	area %
1	7.71	12038739	94.77
2	8.51	664794	5.23


entry	tR[min]	area	area %
1	42.32	18562087	50.88
2	49.61	17921631	49.12


entry	tR[min]	area	area %
1	42.23	3234054	94.86
2	49.20	175230	5.14


entry	tR [min]	area	area %
1	11.35	601642	50.06
2	13.48	600040	49.58

entry	tR [min]	area	area %
1	11.31	10074	2.08
2	13.40	474020	97.91

entry	tR [min]	area	area %
1	46.40	1527824	46.60
2	50.45	1750380	53.39

entry	tR [min]	area	area %
1	41.80	72701	1.18
2	48.43	6060994	98.85

12. References

- [1] Bolsønes, M.; Bonge-Hansen, T. H.; Bonge-Hansen, T. Synlett, 2014, 25, 221–224.
- [2] Abu-Elfotoh, A.-M.; Phomkeona, K.; Shibatomi, K.; Iwasa, S. *Angew. Chem. Int. Ed.* 2010, 49, 8439–8443.
- [3] Abu-Elfotoh, A. -M.; Nguyen, D. P. T.; Chanthamath, S.; Phomkeona, K.; Shibatomi, K.; Iwasa, S., *Adv. Synth.* Catal. 2012, 354, 3435–3439.
- [4] Nakagawa, Y.; Chanthamath, S.; Shibatomi, K.; Iwasa, S. *Org. Lett.* 2015, 17, 2792–2795.
- [5] Mandour, H. S. A.; Chanthamath, S.; Shibatomi, K.; Iwasa, S. Adv. Synth. Catal. 2017, 359, 1742–1746.
- [6] This part is partially taken from Dr. Mandour's Ph.D. theses (Toyohashi University of Technology, 2017).