

Supporting Information

for

Synthesis and fluorescent properties of N(9)-alkylated 2-amino-6-triazolylpurines and 7-deazapurines

Andrejs Šišuļins, Jonas Bucevičius, Yu-Ting Tseng, Irina Novosjolova, Kaspars Traskovskis, Ērika Bizdēna, Huan-Tsung Chang, Sigitas Tumkevičius and Māris Turks

Beilstein J. Org. Chem. 2019, 15, 474–489. doi:10.3762/bjoc.15.41

Full experimental procedures, emission spectra, DSC data, and copies of ¹H and ¹³C NMR spectra

Experimental part

General information

Reactions and purity of the synthesized compounds were monitored by TLC using Silica gel 60 F_{254} aluminum plates (Merck). Visualization was accomplished by UV light. Column chromatography was performed using Silica gel 60 (0.040-0.063 mm) (Merck). Yields of products refer to chromatographically and spectroscopically homogeneous materials. Anhydrous methylene chloride, dimethylformamide and acetonitrile were obtained by distillation over CaH₂, tetrahydrofuran was obtained by distillation over sodium. Commercial reagents were used as received. NMR spectra were recorded on Bruker Avance 300 or Bruker Ascend 400 spectrometers (300 MHz, 400 MHz for ¹H and 75 MHz, 100 MHz for ¹³C, respectively). The proton signals for residual nondeuterated solvents (δ 7.26 ppm for CDCl₃, δ 2.50 ppm for DMSO- d_6) and carbon signals (δ 77.1 ppm for CDCl₃, δ 39.5 ppm for DMSO- d_6) were used as an internal reference for ¹H NMR and ¹³C NMR spectra, respectively. Coupling constants are reported in Hz. Chemical shifts of signals are given in ppm and multiplicity assigned as follows: s - singlet, d - doublet, t - triplet, m - multiplet. The infrared spectra were recorded on Perkin Elmer Spectrum BX. Wavelengths are given in cm⁻¹. The UV-vis absorption spectra of all compounds were acquired using Perkin-Elmer 35 UV-vis spectrometer. Emission spectra were measured on QuantaMaster 40 steady state spectrofluorometer (Photon Technology International, Inc.). Absolute photoluminescence quantum yields were determined using QuantaMaster 40 steady state spectrofluorometer (Photon Technology International, Inc.) equipped with 6 inch integrating sphere by LabSphere, using a florescence standard of quinine sulfate in 0.1 M H₂SO₄ as a reference. High resolution mass spectrometry (HRMS) analyses were carried out on a Dual-ESI Q-TOF 6520 (Agilent Technologies) mass spectrometer and Agilent 1290 Infinity series UPLC system equipped with column Extend C18 RRHD 2.1×50 mm, 1.8 µm connected to Agilent 6230 TOF LC/MS masspectrometer.

For HPLC analysis we used Agilent Technologies 1200 Series chromatograph equipped with Agilent XDB-C18 (4.6×50 mm, 1.8μ m) column and Phenomenex Gemini NX (4.6×100 mm, 3μ m) column. Eluent A: 0.01 M KH₂PO₄ solution with 6% v/v MeCN added; eluent B: 0.1 % TFA solution with 5% v/v MeCN added; eluent C – MeCN.

General procedures and product characterization.

2,6-Bistriazolyl derivative **4** was synthesized using previously reported procedure of Cu(I)-catalyzed azide-alkyne cycloaddition reaction on 2,6-diazidopurine derivatives [1]. Synthesis of 7-deazapurine derivatives **3**, **10a**, **11a** and their characterization are described in our preliminary communication [2].

Synthesis of 9-alkyl-2,6-diazido-9H-purine derivatives 2a-c

<u>Alkylation</u>

<u>Method A</u>: A solution of 2,6-dichloropurine **1a** (1.0 g, 5.4 mmol, 1.0 equiv.) in anhydrous MeCN or anhydrous DMF (30 mL) was cooled to 0 °C and 57% suspension of NaH (0.3 g, 7.0 mmol, 1.3 equiv) was added in small portions (50 mg). The resulting reaction mixture was stirred for 30 min. After that, the corresponding 1-iodo-alkane or 1-bromo-alkane (11 mmol, 2.1 equiv) was added and the reaction mixture was stirred for 1–3 days at 20–55 °C. The excess of NaH was neutralized with MeOH or EtOH. The reaction mixture was evaporated under the reduced pressure and the residue was dissolved in DCM (30 mL), the organic phase was washed with brine (2 × 15 mL) and subsequently dried over anh. Na₂SO₄ and evaporated. Silica gel column chromatography (Hex/EtOAc 4:1) provided desired product.

<u>Method B</u>: A solution of 2,6-dichloropurine **1a** (5.0 g, 26.5 mmol, 1.0 equiv), corresponding alcohol (31.7 mmol, 1.2 equiv) and Ph_3P (9.2 g, 34.9 mmol, 1.3 equiv) in anhydrous THF (30 mL) was cooled to 0 °C. DIAD (6.90 mL, 35.0 mmol, 1.3 equiv) was added dropwise, the mixture was stirred for 1 h at 20 °C, controlled by HPLC, then evaporated to dryness. Subsequently, EtOH (20 mL) was added and

the resulting mixture was cooled to -10 °C to form precipitate of Ph₃PO, which was filtered as a byproduct and the filtrate was evaporated. The column chromatography (DCM/MeCN 10:1) provided the desired resulting product.

2,6-Dichloro-9-heptyl-9*H***-purine (1a-1)**: slightly yellow oil; reaction time (method A) – 1 h; yield 5.0 g, 66%. IR (KBr) v (cm⁻¹): 2933, 1802, 1733. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.09 (s, 1H, H-C(8)), 4.23 (t, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.88 (quintet, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.36–1.13 (m, 8H, 4×(-CH₂-)), 0.82 (t, 3H, ³*J* = 6.8 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 153.3, 152.9, 151.7, 145.9, 130.8, 44.7, 31.6, 29.8, 28.6, 26.6, 22.5, 14.0. HRMS (ESI): calcd for [C₁₂H₁₆Cl₂N₄+H⁺] 287.0825, found 287.0826.

2,6-Dichloro-9-nonyl-9*H***-purine (1a-2)**: colorless solid; reaction time (method B) – 24 h; mp 42–43 ^oC; yield 3.5 g, 52%. IR (KBr) v (cm⁻¹): 2963, 2923, 2852, 1811. ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 8.75 (s, 1H, H-C(8)), 4.24 (t, 2H, ³*J* = 7.1 Hz, (-CH₂-)), 1.83 (quintet, 2H, ³*J* = 7.1 Hz, (-CH₂-)), 1.36 – 1.10 (m, 12H, 6×(-CH₂-)), 0.83 (t, 3H, ³*J* = 7.1 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, DMSO-d₆) δ (ppm): 153.4, 150.8, 149.5, 148.4, 130.4, 43.9, 31.2, 28.8, 28.7, 28.5, 28.3, 25.9, 22.0, 13.8. HRMS (ESI): calcd for [C₁₄H₂₀Cl₂N₄+H⁺] 315.1138, found 315.1138.

2,6-Dichloro-9-dodecyl-9*H***-purine (1a-3)**: yellowish solid; reaction time (method B) – 72 h; mp 63– 65 °C; yield 4.5 g, 48%. IR (KBr) v (cm⁻¹): 2955, 2917, 2850, 1736. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.09 (s, 1H, H-C(8)), 4.25 (t, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.91 (quintet, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.39–1.17 (m, 18H, 9×(-CH₂-)), 0.87 (t, 3H, ³*J* = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 153.3, 153.0, 151.8, 145.9, 130.9, 44.8, 32.0, 29.9, 29.7 (2C)^{*}, 29.6, 29.5, 29.4, 29.0, 26.7, 22.8, 14.2. HRMS (ESI): calcd for [C₁₇H₂₆Cl₂N₄+Na⁺] 379.1432, found 379.139.

^{*}This signal was assigned from HSQC spectrum.

<u>Azidation</u>

 NaN_3 (5.88 g, 90.5 mmol, 3.0 equiv) was added to a solution of 9-alkyl-2,6-dichloro-9*H*-purine (30 mmol, 1.0 equiv) in acetone (50 mL) and stirred for 14 h at 50 °C, protected from the daylight. Then, the reaction mixture was evaporated and suspended in water (30 mL). The resulting precipitate was filtered and dried in vacuum.

2,6-Diazido-9-heptyl-9*H***-purine (2a)**: colorless solid; reaction time – 14 h; yield 8.4 g, 93%. IR (KBr) v (cm⁻¹): 2932, 2858, 2170, 2123. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.87 (s, 1H, H-C(8)), 4.15 (t, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.93–1.77 (m, 2H, (-CH₂-)), 1.39–1.15 (m, 8H, 4×(-CH₂-)), 0.84 (t, 3H, ³*J* = 6.8 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 155.9, 154.1, 153.7, 143.7, 121.5, 44.2, 31.6, 29.8, 28.7, 26.6, 22.6, 14.1. HRMS (ESI): calcd for [C₁₂H₁₆N₁₀+H⁺] 301.1632, found 301.1646.

2,6-Diazido-9-nonyl-9*H***-purine (2b)**: colorless solid, reaction time – 2 h, mp 72–74 °C; yield 1.5 g, 75%. IR (KBr) v (cm⁻¹): 2922, 2852, 2166, 2133. ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 8.45 (s, 1H, H-C(8)), 4.15 (t, 2H, ³*J* = 7.1 Hz, (-CH₂-)), 1.80 (quintet, 2H, ³*J* = 7.1 Hz, (-CH₂-)), 1.34–1.10 (m, 12H, 6×(-CH₂-)), 0.83 (t, 3H, ³*J* = 7.1 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, DMSO-d₆) δ (ppm): 154.4, 153.8, 152.3, 145.7, 121.0, 43.4, 31.2, 28.8, 28.7, 28.5, 28.3, 25.8, 22.0, 13.8. HRMS (ESI): calcd for [C₁₄H₂₀N₁₀+H⁺] 329.1945, found 329.1948.

2,6-Diazido-9-dodecyl-9*H***-purine (2c)**: slightly yellow solid, reaction time – 1 h; yield 10.2 g, 66%. IR (KBr) v (cm⁻¹): 2922, 2849, 2170, 2124. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.87 (s, 1H, H-C(8)), 4.15 (t, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.85 (quintet, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.34–1.18 (m, 18H, 9×(-CH₂-)), 0.85 (t, 3H, ³*J* = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 155.9, 154.1, 153.7, 143.7, 121.5, 44.2, 32.0, 29.8, 29.6 (2C)[†], 29.5, 29.4, 29.3, 29.0, 26.6, 22.7, 14.2. HRMS (ESI): calcd for [C₁₇H₂₆N₁₀+H⁺] 371.2415, found 371.2436.

[†] This signal was assigned from HSQC spectrum.

Synthesis of 9-alkyl-6-amino-2-triazolylpurine derivative 5

Formation of 2,6-bis(triazolyl)purine derivative

2,6-Bis(4-phenyl-1H-1,2,3-triazol-1-yl)-9-heptyl-9H-purine (4). Phenylacetylene (0.35 mL, 3.19 mmol, 3.2 equiv) and 10% aqueous solution of AcOH (1 mL) were added to a solution of diazide 2a (0.30 g, 1.00 mmol, 1.0 equiv) in THF (15 mL). The flask was protected from the daylight and $CuSO_4$ ·5H₂O (75 mg, 0.30 mmol, 30 mol %) and sodium ascorbate (120 mg, 0.61 mmol, 60 mol %) were added. The reaction mixture was stirred for 1.5 h at 50 °C. Then the mixture was evaporated under reduced pressure to dryness and the residue was suspended in 5% aqueous solution of EDTA (50 mL). The resulting suspension was filtered and the solid on the filter was washed with water (10 mL). The obtained crude product was further purified by silica gel column chromatography (MeCN/DCM gradient 5% \rightarrow 10%) and yielded compound 4 (278 mg, 55%) as a colorless solid. IR (KBr) v (cm⁻¹): 2929, 2857, 1617, 1587. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.31 (s, 1H, H-C(triazole)), 8.94 (s, 1H, H-C(triazole)), 8.30 (s, 1H, H-C(8)), 8.07–7.97 (2d, 4H, ${}^{3}J = 8.2$ Hz, Ar), 7.55 – 7.45 (m, 4H, Ar), 7.45–7.35 (m, 2H, Ar), 4.45 (t, 2H, ${}^{3}J$ = 7.2 Hz, (-CH₂-)), 2.04 (quintet, 2H, ${}^{3}J$ = 7.2 Hz, (-CH₂-)), 1.48–1.35 (m, 8H, 4×(-CH₂-)), 0.88 (t, 3H, ${}^{3}J$ = 6.9 Hz, (-CH₃)). ${}^{13}C$ NMR (75.5 MHz, CDCl₃) δ (ppm): 155.9, 148.7, 148.4, 148.2, 147.3, 145.4, 129.9, 129.6, 129.1, 129.0, 128.8 (2C)[‡], 126.4, 126.2, 122.2, 119.6, 119.0, 44.9, 31.7, 29.9, 28.8, 26.7, 22.6, 14.1. HRMS (ESI): calcd for [C₂₈H₂₈N₁₀+Na⁺] 527.2396, found 527.2391.

<u>C(6)-Selective S_NAr reaction on 2,6-bis(triazolyl)purine derivative</u>

9-Heptyl-2-(4-phenyl-1*H***-1,2,3-triazol-1-yl)-6-piperidino-9***H***-purine (5). Piperidine (0.10 mL, 1.01 mmol, 3.4 equiv) was added to a solution of 2,6-bis(triazolyl)derivative 4** (0.15 g, 0.30 mmol, 1.0 equiv) in DMF (5 mL) and the resulting reaction mixture was stirred for 1 h at 20 °C. Then it was evaporated to dryness, the residue was dissolved in DCM (20 mL) and the organic phase was washed

[‡] This signal was assigned from HSQC spectrum.

with brine $(3 \times 5 \text{ mL})$ and water (5 mL). The organic phase was dried over anh. Na₂SO₄, filtered and evaporated under reduced pressure. The obtained crude product was further purified by silica gel column chromatography (DCM/MeCN 20:1) and yielded compound **5** (101 mg, 72%) as a colorless solid. IR (KBr) v (cm⁻¹): 2931, 2855, 1597. ¹H NMR (300 MHz, 70 °C, DMSO-d₆) δ (ppm): 9.10 (s, 1H, H-C(triazole)), 8.19 (s, 1H, H-C(8)), 8.00 (d, 2H, ³*J* = 7.7 Hz, Ar), 7.47 (t, 2H, ³*J* = 7.7 Hz, Ar), 7.37 (t, 1H, ³*J* = 7.4 Hz, Ar), 4.38 – 4.25 (br s, 4H, 2×(-CH₂-)), 4.21 (t, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 1.88 (quintet, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 1.78–1.59 (m, 6H, 3×(-CH₂-)), 1.36–1.15 (m, 8H, 4×(-CH₂-)), 0.82 (t, 3H, ³*J* = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, 70 °C, DMSO-d₆) δ (ppm): 153.0, 151.0, 148.3, 146.0, 140.2, 130.0, 128.4, 127.7, 125.3, 119.3, 118.2, 45.6, 42.8, 30.7, 28.8, 27.6, 25.6, 25.3, 23.7, 21.5, 13.3. HRMS (ESI): calcd for [C₂₅H₃₂N₈+H⁺] 445.2823, found 445.2820, calcd for [C₂₅H₃₂N₈+Na⁺] 467.2648, found 467.2642.

Synthesis of 9-alkyl-6-azido-2-pyrrolidino-9*H*-purine or 9-alkyl-6-azido-2- piperidino-9*H*-purine derivatives 6a,b

9-Alkyl-2,6-diazido-9*H*-purine **2** (8.3 mmol, 1.0 equiv) was dissolved in DMF (30 mL), pyrrolidine or piperidine (11.7 mmol, 1.4 equiv) was added and the reaction mixture was stirred isolated from the daylight at 30 °C for 5 h. After that, the mixture was evaporated and silica gel column chromatography (DCM/MeCN 50:1) was used to provide the desired product.

6-Azido-9-heptyl-2-pyrrolidino-9*H***-purine (6a**): slightly brown solid, reaction time – 4 h; yield 0.88 g, 51%. IR (KBr) v (cm⁻¹): 3062, 2927, 2858, 2148, 2122, 1570, 1254. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.56 (s, 1H, H-C(8)), 4.03 (t, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 3.62–3.54 (m, 4H, 2×(-CH₂-)), 2.00 – 1.92 (m, 4H, 2×(-CH₂-)), 1.83 (quintet, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 1.37–1.16 (m, 8H, 4×(-CH₂-)), 0.85 (t, 3H, ³*J* = 6.8 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 157.4, 154.8, 152.4, 140.3, 117.0,

47.0 (2C)^{*}, 43.4, 31.7, 29.6, 28.8, 26.6, 25.6 (2C)^{*}, 22.7, 14.1. HRMS (ESI): calcd for $[C_{16}H_{24}N_8+H^+]$ 329.2197, found 329.2195.

6-Azido-9-heptyl-2-piperidino-9*H***-purine (6b)**: slightly brown solid, reaction time – 5 h; yield 1.8 g, 62%. IR (KBr) v (cm⁻¹): 2933, 2856, 2121, 1621, 1572. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.58 (s, 1H, H-C(8)), 4.03 (t, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 3.87–3.74 (m, 4H, 2×(-CH₂-)), 1.83 (quintet, 2H, ³*J* = 7.1 Hz, (-CH₂-)), 1.74–1.55 (m, 6H, 3×(-CH₂-)), 1.39– 1.16 (m, 8H, 4×(-CH₂-)), 0.86 (t, 3H, ³*J* = 6.8 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 158.6, 154.9, 152.6, 140.8, 117.2, 45.5, 43.4, 31.7, 29.7, 28.8, 26.6, 25.8, 25.0, 22.7, 14.1. HRMS (ESI): calcd for [C₁₇H₂₆N₈+H⁺] 343.2353, found 343.2371.

Synthesis of 9-alkyl-2-pyrrolidino-6-(1,2,3-triazol-1-yl)purine derivatives 7a-f

Alkyne (1.2 equiv) and 10% AcOH water solution (1 mL) were added to a solution of compound **6a** (200 mg, 0.61 mmol, 1.0 equiv) in THF (7 mL). The flask was isolated from daylight and CuSO₄·5H₂O (10 mol %) and sodium ascorbate (20 mol %) were added. The reaction mixture was heated for 20 h at 50 °C. The reaction mixture was cooled to ambient temperature and the precipitated product (bright yellow/green in color) was filtered. The product on the filter was washed with water (5 mL) and MTBE (3×5 mL). Then the product was transferred into a flask and dissolved in CHCl₃ (7 mL). H₂S gas was bubbled through the latter solution until a dark brown/black suspension appeared. The resulting mixture was filtered through celite, the filtrate was evaporated under reduced pressure and dried in vacuo. Products can be further purified by silica gel column chromatography, if required.

9-Heptyl-6-(4-phenyl-1*H***-1,2,3-triazol-1-yl)-2-pyrrolidino-9***H***-purine (7a): slightly yellow solid, yield 134 mg, 51%. IR (KBr) v (cm⁻¹): 2952, 2924, 2857, 1622, 1540. ¹H NMR (300 MHz, 70 °C, DMSO-d₆ + D₂O) δ (ppm): 9.36 (s, 1H, H-C(triazole)), 8.29 (s, 1H, H-C(8)), 8.01 (d, 2H, ³***J* **= 7.2 Hz,**

Ar), 7.50 (t, 2H, ${}^{3}J$ = 7.2 Hz, Ar), 7.40 (t, 1H, ${}^{3}J$ = 7.2 Hz, Ar), 4.15 (t, 2H, ${}^{3}J$ = 7.0 Hz, (-CH₂-)), 3.71– 3.55 (m, 4H, 2×(-CH₂-)), 2.08–1.93 (m, 4H, 2×(-CH₂-)), 1.88 (quintet, 2H, ${}^{3}J$ = 7.0 Hz, (-CH₂-)), 1.40– 1.16 (m, 8H, 4×(-CH₂-)), 0.84 (t, 3H, ${}^{3}J$ = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, 70 °C, DMSO-d₆ + D₂O) δ (ppm): 156.5, 156.3, 146.4, 143.9, 143.7, 129.6, 128.7, 128.2, 125.5, 120.0, 114.4, 46.6, 42.8, 30.7, 28.4, 27.7, 25.6, 24.7, 21.6, 13.4. HRMS (ESI): calcd for [C₂₄H₃₀N₈+Na⁺] 453.2478, found 453.2477.

9-Heptyl-6-(4-(4-methoxyphenyl)-1*H***-1,2,3-triazol-1-yl)-2-pyrrolidino-9***H***-purine (7b)**: slightly yellow solid, yield 160 mg, 57%. IR (KBr) v (cm⁻¹): 2955, 2927, 2866, 1621, 1559, 1544. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.99 (s, 1H, H-C(triazole)), 7.92 (d, 2H, ³*J* = 8.7 Hz, Ar), 7.79 (s, 1H, H-C(8)), 7.00 (d, 2H, ³*J* = 8.7 Hz, Ar), 4.13 (t, 2H, ³*J* = 7.1 Hz, (-CH₂-)), 3.85 (s, 3H, (-CH₃)), 3.75–3.63 (m, 4H, 2×(-CH₂-)), 2.10–1.97 (m, 4H, 2×(-CH₂-)), 1.96–1.83 (m, 2H, (-CH₂-)), 1.39–1.19 (m, 8H, 4×(-CH₂-)), 0.87 (t, 3H, ³*J* = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 159.9, 157.3, 157.0, 147.3, 145.1, 142.4, 127.6, 123.2, 118.3, 115.6, 114.3, 55.5, 47.3, 43.6, 31.7, 29.6, 28.8, 26.7, 25.7, 22.7, 14.1. HRMS (ESI): calcd for [C₂₅H₃₂N₈O+Na⁺] 483.2571, found 483.2589.

9-Heptyl-6-(**4-**(**4-**(**dimethylamino**)**phenyl**)-**1***H*-**1**,**2**,**3-triazol-1-yl**)-**2-pyrrolidino**-**9***H*-**purine**(**7c**): yellow solid, yield 153 mg, 53%. IR (KBr) v (cm⁻¹): 2947, 2924, 2852, 1621, 1563, 1544. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.96 (s, 1H, H-C(triazole)), 7.90 (d, 2H, ³*J* = 8.6 Hz, Ar), 7.80 (s, 1H, H-C(8)), 6.93 (d, 2H, ³*J* = 8.6 Hz, Ar), 4.13 (t, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 3.76 – 3.64 (m, 4H, 2×(-CH₂-)), 3.02 (s, 6H, 2×(-CH₃)), 2.09–1.97 (m, 4H, 2×(-CH₂-)), 1.90 (quintet, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 1.41–1.19 (m, 8H, 4×(-CH₂-)), 0.87 (t, 3H, ³*J* = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 157.3, 156.9, 149.8, 147.7, 145.1, 142.4, 127.4, 120.2, 117.8, 115.6, 113.6, 47.3, 43.6, 41.3, 31.7, 29.7, 28.8, 26.7, 25.7, 22.7, 14.2. HRMS (ESI): calcd for [C₂₆H₃₅N₉+Na⁺] 496.2897, found 496.2901.

6-(4-(4-Fluorophenyl)-1*H***-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9***H***-purine (7d)**: slightly yellow solid, yield 174 mg, 64%. IR (KBr) v (cm⁻¹): 2957, 2927, 2858, 1625, 1559, 1540. ¹H NMR

(300 MHz, DMSO-d₆) δ (ppm): 9.37 (s, 1H, H-C(triazole)), 8.22 (s, 1H, H-C(8)), 8.05 (dd, 2H, ${}^{3}J_{\text{H-H}} = 8.6 \text{ Hz}$, ${}^{4}J_{\text{H-F}} = 5.5 \text{ Hz}$, Ar), 7.31 (t, 2H, ${}^{3}J_{\text{H-H}} = {}^{3}J_{\text{H-F}} = 8.6 \text{ Hz}$, Ar), 4.15 (t, 2H, ${}^{3}J = 7.0 \text{ Hz}$, (-CH₂-)), 3.64 (t, 4H, ${}^{3}J = 6.5 \text{ Hz}$, 2×(-CH₂-)), 2.06–1.95 (m, 4H, 2×(-CH₂-)), 1.89 (quintet, 2H, ${}^{3}J = 7.0 \text{ Hz}$, (-CH₂-)), 1.40–1.18 (m, 8H, 4×(-CH₂-)), 0.85 (t, 3H, ${}^{3}J = 7.0 \text{ Hz}$, (-CH₃)). 13 C NMR (75.5 MHz, DMSO-d₆) δ (ppm): 161.9 (D, ${}^{1}J_{\text{C-F}} = 245 \text{ Hz}$), 156.4, 156.3, 145.3, 143.9, 143.7, 127.5 (D, ${}^{3}J_{\text{C-F}} = 8 \text{ Hz}$), 126.2 (D, ${}^{4}J_{\text{C-F}} = 3 \text{ Hz}$), 120.0, 115.5 (D, ${}^{2}J_{\text{C-F}} = 21 \text{ Hz}$), 115.1, 46.5, 42.5, 30.6, 28.3, 27.6, 25.5, 24.6, 21.5, 13.3. HRMS (ESI): calcd for [C₂₄H₂₉FN₈+Na⁺] 471.2383, found 471.2384.

6-(**4**-(**4**-(**Trifluoromethyl**)**phenyl**)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9*H*-purine (7e): slightly yellow solid, yield 230 mg, 76%. IR (KBr) v (cm⁻¹): 2949, 2928, 2867, 1630, 1566, 1542. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.17 (s, 1H, H-C(triazole)), 8.12 (d, 2H, ³*J* = 8.0 Hz, Ar), 7.82 (s, 1H, H-C(8)), 7.72 (d, 2H, ³*J* = 8.0 Hz, Ar), 4.15 (t, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 3.80–3.62 (m, 4H, 2×(-CH₂-)), 2.12–1.98 (m, 4H, 2×(-CH₂-)), 1.91 (quintet, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 1.42–1.18 (m, 8H, 4×(-CH₂-)), 0.88 (t, 3H, ³*J* = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 157.2, 157.1, 146.1, 144.8, 142.7, 133.9, 130.1 (T, ²*J*_{C-F} = 33 Hz), 126.4, 125.9 (Q, ³*J*_{C-F} = 4 Hz), 124.3 (D, ¹*J*_{C-F} = 272 Hz), 120.1, 115.6, 47.3, 43.7, 31.7, 29.6, 28.8, 26.7, 25.7, 22.7, 14.2. HRMS (ESI): calcd for [C₂₅H₂₉F₃N₈+Na⁺] 521.2362, found 521.2357.

6-(**4**-(**4**-Cyanophenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9*H*-purine (**7**f): slightly yellow solid, yield 175 mg, 63%. IR (KBr) v (cm⁻¹): 2960, 2928, 2854, 2223, 1627, 1562, 1545. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.18 (s, 1H, H-C(triazole)), 8.10 (d, 2H, ³*J* = 8.3 Hz, Ar), 7.81 (s, 1H, H-C(8)), 7.73 (d, 2H, ³*J* = 8.3 Hz, Ar), 4.15 (t, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 3.77–3.60 (m, 4H, 2×(-CH₂-)), 2.12–1.97 (m, 4H, 2×(-CH₂-)), 1.92 (quintet, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 1.44–1.18 (m, 8H, 4×(-CH₂-)), 0.87 (t, 3H, ³*J* = 7.0 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 157.2, 157.1, 145.6, 144.6, 142.7, 134.8, 132.8, 126.6, 120.6, 118.9, 115.6, 111.8, 47.3, 43.7, 31.7, 29.6, 28.8, 26.7, 25.7, 22.7, 14.1. HRMS (ESI): calcd for [C₂₅H₂₉N₉+Na⁺] 478.2446, found 478.2442.

Synthesis of 9-alkyl-2-piperidino-6-(1,2,3-triazol-1-yl)purine derivatives 8a-f

Alkyne (0.88 mmol, 1.2 equiv) and 10% AcOH water solution (1 mL) were added to a solution of compound **6b** (250 mg, 0.73 mmol, 1.0 equiv) in THF (7 mL), flask was protected from the daylight and the catalyst – CuSO₄·5H₂O (10 mol %) and sodium ascorbate (20 mol %) were added. The reaction was stirred for 8 h at 20 °C and the precipitated product (bright yellow/green in color) was filtered. The product on the filter was washed with water (5 mL) and MTBE (3×5 mL). Then the product was transferred into a flask and dissolved in CHCl₃ (7 mL). H₂S gas was bubbled through the latter solution until dark brown/black suspension appeared. The resulting mixture was filtered through celite, the filtrate was evaporated under reduced pressure and dried in vacuo. Products can be further purified by silica gel column chromatography, if required.

9-Heptyl-6-(4-phenyl-1*H***-1,2,3-triazol-1-yl)-2-piperidino-9***H***-purine (8a)**: slightly yellow solid, reaction time – 5 h; yield 230 mg, 71%. IR (KBr) v (cm⁻¹): 2928, 2855, 1629, 1565, 1539. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.10 (s, 1H, H-C(triazole)), 8.01 (d, 2H, ³*J* = 7.4 Hz, Ar), 7.81 (s, 1H, H-C(8)), 7.46 (t, 2H, ³*J* = 7.4 Hz, Ar), 7.36 (t, 1H, ³*J* = 7.4 Hz, Ar), 4.13 (t, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 3.96 – 3.88 (m, 4H, 2×(-CH₂-)), 1.90 (quintet, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 1.76–1.60 (m, 6H, 3×(-CH₂-)), 1.43–1.20 (m, 8H, 4×(-CH₂-)), 0.88 (t, 3H, ³*J* = 6.8 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 158.5, 157.0, 147.6, 145.1, 142.8, 130.4, 128.9, 128.5, 126.3, 119.4, 115.7, 45.7, 43.6, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.2. HRMS (ESI): calcd for [C₂₅H₃₂N₈+Na⁺] 467.2648, found 467.2647.

9-Heptyl-6-(4-(4-methoxyphenyl)-1*H***-1,2,3-triazol-1-yl)-2-piperidino-9***H***-purine (8**b): slightly yellow solid, reaction time – 24 h; yield 164 mg, 60%. IR (KBr) v (cm⁻¹): 2925, 2857, 1627, 1562. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.99 (s, 1H, H-C(triazole)), 7.92 (d, 2H, ³*J* = 8.6 Hz, Ar), 7.80 (s, 1H, H-C(8)), 6.99 (d, 2H, ³*J* = 8.6 Hz, Ar), 4.12 (t, 2H, ³*J* = 7.1 Hz, (-CH₂-)), 3.95–3.86 (m, 4H, 2×(-CH₂-)), 3.84 (s, 3H, (-CH₃)), 1.88 (quintet, 2H, ³*J* = 6.9 Hz, (-CH₂-)), 1.76–1.58 (m, 6H, 3×(-CH₂-)),

1.41–1.17 (m, 8H, 4×(-CH₂-)), 0.87 (t, 3H, ${}^{3}J$ = 6.9 Hz, (-CH₃)). ${}^{13}C$ NMR (75.5 MHz, CDCl₃) δ (ppm): 159.9, 158.5, 156.9, 147.4, 145.1, 142.8, 127.6, 123.1, 118.4, 115.6, 114.3, 55.5, 45.6, 43.5, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.1. HRMS (ESI): calcd for [C₂₆H₃₄N₈O+Na+] 497.2753, found 497.2742.

9-Heptyl-6-(4-(4-(dimethylamino)phenyl)-1*H***-1,2,3-triazol-1-yl)-2-piperidino-9***H***-purine (8c)**: yellow solid, reaction time – 12 h; yield 188 mg, 53%. IR (KBr) v (cm⁻¹): 2930, 2853, 1622, 1562. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.94 (s, 1H, H-C(triazole)), 7.88 (d, 2H, ³*J* = 8.7 Hz, Ar), 7.79 (s, 1H, H-C(8)), 6.81 (d, 2H, ³*J* = 8.7 Hz, Ar), 4.12 (t, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 3.99–3.84 (m, 4H, 2×(-CH₂-)), 3.00 (s, 6H, 2×(-CH₃)), 1.89 (quintet, 2H, ³*J* = 7.0 Hz, (-CH₂-)), 1.77–1.60 (m, 6H, 3×(-CH₂-)), 1.41–1.20 (m, 8H, 4×(-CH₂-)), 0.88 (t, 3H, ³*J* = 6.9 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 158.5, 156.9, 150.7, 148.1, 145.2, 142.6, 127.3, 118.6, 117.6, 115.7, 112.6, 45.7, 43.5, 40.6, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.2. HRMS (ESI): calcd for [C₂₇H₃₇N₉+Na⁺] 510.3070, found 510.3064.

6-(**4**-(**4**-Fluorophenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9*H*-purine (8d): slightly yellow solid, reaction time – 16 h; yield 260 mg, 74%. IR (KBr) v (cm⁻¹): 2930, 2856, 1630, 1566, 1541. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.05 (s, 1H, H-C(triazole)), 8.01–7.91 (dd, 2H, ${}^{3}J_{H-H}$ = 8.6 Hz, ${}^{4}J_{H-F}$ = 5.4 Hz, Ar), 7.81 (s, 1H, H-C(8)), 7.14 (t, 2H, ${}^{3}J_{H-F}$ = ${}^{3}J_{H-H}$ = 8.6 Hz, Ar), 4.13 (t, 2H, ${}^{3}J$ = 7.0 Hz, (-CH₂-)), 3.97–3.84 (m, 4H, 2×(-CH₂-)), 1.90 (quintet, 2H, ${}^{3}J$ = 7.0 Hz, (-CH₂-)), 1.78–1.60 (m, 6H, 3×(-CH₂-)), 1.42–1.18 (m, 8H, 4×(-CH₂-)), 0.88 (t, 3H, ${}^{3}J$ = 6.9 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 163.1 (D, ${}^{1}J_{C-F}$ = 247 Hz), 158.5, 157.0, 146.7, 145.0, 142.9, 128.1 (D, ${}^{3}J_{C-F}$ = 8 Hz), 126.6 (D, ${}^{4}J_{C-F}$ = 3 Hz), 119.1, 115.9 (D, ${}^{2}J_{C-F}$ = 22 Hz), 115.7, 45.7, 43.6, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.2. HRMS (ESI): calcd for [C₂₅H₃₁FN₈+Na⁺] 485.2553, found 485.2545.

6-(4-(4-(Trifluoromethyl)phenyl)-1*H***-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9***H***-purine (8e)**: yellow solid, reaction time – 12 h; yield 313 mg, 84%. IR (KBr) ν (cm⁻¹): 2930, 2855, 1631, 1571,

1539. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.18 (s, 1H, H-C(triazole)), 8.13 (d, 2H, ³*J* = 8.0 Hz, Ar), 7.82 (s, 1H, H-C(8)), 7.72 (d, 2H, ³*J* = 8.0 Hz, Ar), 4.14 (t, 2H, ³*J* = 6.9 Hz, (-CH₂-)), 4.00 – 3.85 (m, 4H, 2×(-CH₂-)), 1.90 (quintet, 2H, ³*J* = 6.9 Hz, (-CH₂-)), 1.80–1.60 (m, 6H, 3×(-CH₂-)), 1.44–1.19 (m, 8H, 4×(-CH₂-)), 0.88 (t, 3H, ³*J* = 6.9 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 158.5, 157.1, 146.3, 144.9, 143.0, 133.9, 130.4 (quartet, ²*J*_{C-F} = 33 Hz, Ar), 126.5, 126.0 (quartet, ³*J*_{C-F} = 4 Hz, Ar), 124.3 (D, ¹*J*_{C-F} = 272 Hz, (-CF₃)), 120.3, 115.7, 45.7, 43.7, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.1. HRMS (ESI): calcd for [C₂₆H₃₁F₃N₈+H⁺] 513.2697, found 513.2686.

6-(**4**-(**4**-Cyanophenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9*H*-purine (**8f**): slightly yellow solid, reaction time – 8 h; yield 0.3 g, 86%. IR (KBr) v (cm⁻¹): 2931, 2856, 2225, 1630, 1564, 1541. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.18 (s, 1H, H-C(triazole)), 8.11 (d, 2H, ³*J* = 8.4 Hz, Ar), 7.81 (s, 1H, H-C(8)), 7.73 (d, 2H, ³*J* = 8.4 Hz, Ar), 4.13 (t, 2H, ³*J* = 7.2 Hz, (-CH₂-)), 3.96–3.85 (m, 4H, 2×(-CH₂-)), 1.89 (quintet, 2H, ³*J* = 6.9 Hz, (-CH₂-)), 1.78–1.60 (m, 6H, 3×(-CH₂-)), 1.42–1.18 (m, 8H, 4×(-CH₂-)), 0.87 (t, 3H, ³*J* = 6.9 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 158.4, 157.1, 145.7, 144.7, 143.0, 134.8, 132.8, 126.6, 120.7, 118.9, 115.6, 111.8, 45.7, 43.6, 31.7, 29.7, 28.8, 26.7, 25.9, 24.9, 22.7, 14.1. HRMS (ESI): calcd for [C₂₆H₃₁N₉+Na⁺] 492.2600, found 492.2600.

Synthesis of 9-pentyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-2-piperidino-9*H*-purine (9)

A solution of 2,6-dichloropurine (**1a**, 1.9 g, 10.0 mmol, 1.0 equiv) in anhydrous MeCN was cooled to 0 $^{\circ}$ C, 57% suspension of NaH (0.44 g, 11.0 mmol, 1.1 equiv) was added in small portions (50 mg) and the mixture was stirred for 30 min. 1-Bromopentane (1.24 mL, 10.0 mmol, 1.0 equiv) was added and the resulting mixture was stirred at 50 °C for 2 h. The excess of NaH was neutralized with MeOH. The mixture was filtered and evaporated under reduced pressure. The residue was dissolved in EtOAc (30 mL), the organic phase was washed with water (1 × 15 mL) and brine (2 × 15 mL) and subsequently dried over anh. Na₂SO₄ and evaporated. Silica gel column chromatography (1–10 % EtOH in DCM)

provided desired 2,6-dichloro-9-pentyl-9H-purine in 56% yield (1.4 g). Then 2,6-dichloro-9-pentyl-9Hpurine (0.6 g, 2.3 mmol, 1.0 equiv) was dissolved in EtOH (20 mL), solution of NaN₃ (0.6 g, 9.2 mmol, 4.0 equiv) in water (5 mL) was added and the resulting reaction mixture was stirred at 70 °C for 1 h. Then it was evaporated and the residue was crystalized from water, giving 2,6-diazido-9-pentyl-9Hpurine (2d) in 80% yield (0.5 g). Obtained 2,6-diazido derivative (0.5 g, 1.8 mmol, 1.0 equiv) was dissolved in DMF (5 mL), piperidine (0.34 mL, 2.7 mmol, 1.5 equiv) was added and the mixture was stirred at room temperature for 2.5 h. Then the mixture was poured in water (5 mL) and extracted with EtOAc (1 \times 20 mL). The EtOAc layer was washed with brine (3 \times 15 mL), subsequently dried over anh. Na₂SO₄ and evaporated. Silica gel column chromatography (toluene/EtOAc 2:1) provided desired 6-azido-9-pentyl-2-piperidino-9*H*-purine (**6c**) in 70 % yield (0.4 g) which was used in the following "click" reaction. Phenylacetylene (0.21 mL, 2.0 mmol, 2.0 equiv) and 10% AcOH water solution (1 mL) were added to a solution of 6-azido-9-pentyl-2-piperidino-9H-purine (0.3 g, 1.0 mmol, 1.0 equiv) in DMF (3 mL), flask was protected from the daylight and the catalyst – $CuSO_4$ ·5H₂O (10 mol %) and sodium ascorbate (20 mol %) were added. The reaction was stirred for 7 h at 90 °C and then the mixture was poured to ice-water (50 mL) and left to precipitate for 12 h in refrigerator. The resulting precipitate was filtered and re-crystalized from EtOH, giving 9-pentyl-6-(4-phenyl-1H-1,2,3-triazol-1yl)-2-piperidino-9*H*-purine (9) as a colorless solid, mp = 161-162 °C; yield 306 mg, 75%. IR (KBr) v (cm⁻¹): 3140, 2936, 2852, 1753, 1628. ¹H NMR (300 MHz, 70 °C, DMSO-d₆) δ (ppm): 9.41 (s, 1H, H-C(triazole)), 8.26 (s, 1H, H-C(8)), 8.03 (d, 2H, ${}^{3}J = 7.4$ Hz, Ar), 7.51 (t, 2H, ${}^{3}J = 7.4$ Hz, Ar), 7.41 (t, 1H, ${}^{3}J = 7.4$ Hz, Ar), 4.16 (t, 2H, ${}^{3}J = 7.1$ Hz, (-CH₂-)), 3.95–3.80 (m, 4H, 2×(-CH₂-)), 1.89 (quintet, 2H, ${}^{3}J = 7.1$ Hz, (-CH₂-)), 1.75–1.56 (m, 6H, 3×(-CH₂-)), 1.44–1.23 (m, 4H, 2×(-CH₂-)), 0.88 (t, 3H, ${}^{3}J$ = 7.1 Hz, (-CH₃)). ¹³C NMR (75.5 MHz, 70 °C, DMSO-d₆) δ (ppm): 157.5, 156.4, 146.3, 144.1, 144.0, 129.6, 128.5, 128.0, 125.4, 120.1, 115.1, 44.7, 42.5, 28.1, 27.8, 24.9, 23.9, 21.0, 13.2. HRMS (ESI):

calcd for $[C_{23}H_{28}N_8+H^+]$ 417.2510, found 417.2488 (5.2 ppm), calcd for $[C_{23}H_{28}N_8+Na^+]$ 439.2329, found 439.2310.

Synthesis of 2-dialkylamino-9-methyl-6-[4-(4-substituted phenyl)-1,2,3-triazol-1-yl]-7deazapurines 10a–f, 11a–f (Analogous as described in [2])

A mixture of azide **3** (86 mg, 0.4 mmol) and secondary amine (1.2 mmol) in CH₃CN (2 mL) was protected from daylight and stirred for 8–24 h at 40 °C. After completion of the S_NAr reaction (TLC control), the reaction mixture was cooled to rt and corresponding alkyne (0.52 mmol), DIPEA (70 μ L, 0.4 mmol), AcOH (23 μ L, 0.4 mmol) and CuI (15 mg, 0.08 mmol) were added. The reaction mixture was stirred under argon atmosphere at rt for 8–10 h (TLC control). Then the reaction mixture was poured into aqueous 10% ammonia solution (25 mL), stirred for 10 minutes and extracted with CHCl₃ (3 × 20 mL). The combined organic layers were washed with water (2 × 30 mL), dried over anhyd Na₂SO₄ and filtered. After removal of the solvent in vacuum, the crude products were purified by silica gel column chromatography (CHCl₃ – EtOAc, 6:1) to afford compounds **10a–f**, **11a–f**.

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10b): yellow solid, mp 258 °C dec, yield 99 mg, 66%. ¹H NMR (400 MHz, CDCl₃): δ 2.01-2.11 (4H, m, piperidine 2xCH₂), 3.65-3.72 (4H, m, piepridine 2xCH₂), 3.74 (3H, s, CH₃), 3.88 (3H, s, OCH₃), 6.88 (1H, d, *J* = 3.6 Hz, 6-H), 7.02 (2H, d, *J* = 8.8 Hz, ArH), 7.08 (1H, d, *J* = 3.6 Hz, 5-H), 7.92 (2H, d, *J* = 8.8 Hz, ArH), 8.79 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 25.6, 30.7, 46.9, 55.3, 99.5, 101.6, 114.3, 116.2, 123.1, 126.7, 127.3, 146.7, 147.0, 156.6, 156.8, 159.8. HRMS (ESI): *m/z* [M+H]⁺ calculated for C₂₀H₂₂N₇O: 376.1880; found 376.1887.

9-Methyl-6-[4-(4-(dimethylamino)phenyl)-1,2,3-triazol-1-yl]-2-pyrrolidino-7-deazapurine (10c): yellow solid, mp 256 °C dec, yield 106 mg, 68%. ¹H NMR (400 MHz, CDCl₃): δ 2.05 (4H, m, pyrolidine 2xCH₂), 3.03 (6H, s, N(CH₃)₂), 3.70 (4H, m, pyrolidine 2xCH₂), 3.74 (3H, s, CH₃), 6.84 (2H, d, J = 8.8 Hz, ArH), 6.86 (1H, d, J = 3.6 Hz, 6-H), 7.08 (1H, d, J = 3.6 Hz, 5-H), 7.86 (2H, d, J = 8.8 Hz, ArH), 8.73 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 25.6, 30.7, 40.5, 46.9, 99.5, 101.7, 112.5, 115.4, 118.6, 126.5, 126.9, 147.1, 147.3, 150.5, 156.6, 156.9. HRMS (ESI): m/z [M+H]⁺ calculated for C₂₁H₂₅N₈: 389.2197; found 389.2202.

6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (**10d**): yellow solid, mp 197 °C dec, yield 116 mg, 80%. ¹H NMR (400 MHz, CDCl₃): δ 2.06 (4H, m, pyrolidine 2xCH₂), 3.70 (4H, m, pyrolidine 2xCH₂), 3.75 (3H, s, CH₃), 6.89 (1H, d, *J* = 3.6 Hz, 6-H), 7.06 (1H, d, *J* = 3.6 Hz, 5-H), 7.17 (2H, dd, ³*J* = 8.8 Hz, ³*J*_{H-F} = 8.8 Hz, ArH), 7.96 (2H, dd, ³*J* = 8.8 Hz, ⁴*J*_{H-F} = 5.2 Hz, ArH), 8.83 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 25.5, 30.7, 46.9, 99.5, 101.5, 115.8 (d, ²*J*_{C-F} = 22 Hz), 116.8, 126.6 (d, ⁴*J*_{C-F} = 3 Hz), 126.8, 127.7 (d, ³*J*_{C-F} = 8 Hz), 145.9, 146.8, 156.7, 156.8, 162.8 (d, ¹*J*_{C-F} = 246 Hz). HRMS (ESI): *m*/*z* [M+H]⁺ calculated for C₁₉H₁₉FN₇: 364.1680; found 364.1681.

6-{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl}-9-methyl-2-pyrrolidino-7-deazapurine (10e): yellow solid, mp 246 °C dec, yield 125 mg, 76%. ¹H NMR (400 MHz, CDCl₃): δ 2.05-2.08 (4H, m, pyrollidine 2xCH₂), 3.68-3.73 (4H, m, pyrollidine 2xCH₂), 3.76 (3H, s, CH₃), 6.89 (1H, d, *J* = 3.6 Hz, 6-H), 7.06 (1H, d, *J* = 3.6 Hz, 5-H), 7.73 (2H, d, *J* = 8.0 Hz, ArH), 8.09 (2H, d, *J* = 8.0 Hz), 8.93 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 25.5, 30.9, 47.0, 99.5, 101.5, 117.9, 124.1 (q, ¹*J*_{C-F} = 270 Hz), 125.8 (q, ³*J*_{C-F} = 4 Hz), 126.0, 127.0, 130.2(q, ²*J*_{C-F} = 32 Hz), 133.7, 145.4, 146.7, 156.4, 156.6. HRMS (ESI): *m/z* [M+H]⁺ calculated for C₂₀H₁₉FN₇: 414.1649; found 414.1649.

6-[4-(4-Cyanophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (**10f**): yellow solid, mp 259 °C dec, yield 117 mg, 79%. ¹H NMR (400 MHz, CDCl₃): δ 2.01-2.09 (4H, m, pyrolidine 2xCH₂), 3.63-3.71 (4H, m, pyrolidine 2xCH₂), 3.75 (3H, s, CH₃), 6.89 (1H, d, *J* = 3.6 Hz, 6-H), 7.03 (1H, d, *J* = 3.6 Hz, 5-H), 7.73 (2H, d, *J* = 8.4 Hz, ArH), 8.06 (2H, d, *J* = 8.4 Hz, ArH), 8.93 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 25.5, 30.8, 46.9, 99.5, 101.4, 111.6, 118.3, 118.7, 126.2, S15 127.1, 132.7, 134.7, 144.9, 146.5, 156.74, 156.76. HRMS (ESI): *m*/*z* [M+H]⁺ calculated for C₂₀H₁₉N₈: 371.1727; found 371.1726.

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11b): yellow solid, mp 206 °C dec, yield 93 mg, 60%. ¹H NMR (400 MHz, CDCl₃): δ 1.63-1.78 (6H, m, piperidine 3xCH₂), 3.74 (3H, s, CH₃), 3.88 (3H, s, OCH₃), 3.91 (4H, m, piperidine 2xCH₂), 6.91 (1H, d, *J* = 3.6 Hz, 6-H), 7.02 (2H, d, *J* = 9.2 Hz, ArH) 7.07 (1H, d, *J* = 3.6 Hz, 5-H), 7.93 (2H, d, *J* = 9.2 Hz, ArH), 8.76 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 25.7, 30.7, 45.5, 55.3, 99.8, 101.7, 114.3, 116.2, 123.0, 127.1, 127.3, 146.7, 147.1, 156.5, 158.1, 159.8. HRMS (ESI): *m*/*z* [M+H]⁺ calculated for C₂₁H₂₄N₇O: 390.2037; found 390.2049.

9-Methyl-6-[4-(4-(dimethylamino)phenyl)-1,2,3-triazol-1-yl]-2-piperidino-7-deazapurine (11c): yellow solid, mp 230 °C dec, yield 93 mg, 58%. ¹H NMR (400 MHZ, CDCl₃): δ 1.65-1.77 (6H, m, piperidine 3xCH₂), 3.03 (6H, s, N(CH₃)₂) 3.75 (3H, s, CH₃), 3.91 (4H, m, piperidine 2xNCH₂), 6.84 (d, J = 8.8 Hz, ArH), 6.90 (1H, d, J = 3.6 Hz, 6-H), 7.08 (1H, d, J = 3.6 Hz, 5-H), 7.87 (2H, d, J = 8.8 Hz, ArH), 8.72 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 25.0, 25.8, 30.8, 40.5, 45.53, 99.8, 101.9, 112.5, 115.4, 118.5, 126.9, 127.1, 147.30, 147.35, 150.5, 156.5. 158.1. HRMS (ESI): *m/z* [M+H]⁺ calculated for C₂₂H₂₇N₈: 403.2353; found 403.2349.

6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (**11d**): yellow solid, mp 191-193 °C, yield 102 mg, 68%. ¹H NMR (400 MHz, CDCl₃): δ 1.64-1.75 (6H, m, piperidine 3xCH₂), 3.74 (3H, s, CH₃), 3.90 (4H, m, piperidine 2xCH₂), 6.91 (1H, d, *J* = 3.6 Hz, 6-H), 7.06 (1H, d, *J* = 3.6 Hz, 5-H), 7.17 (2H, dd, ³*J* = 8.8 Hz, ³*J*_{H-F} = 8.8 Hz, ArH), 7.96 (2H, dd, ³*J* = 8.8 Hz, ⁴*J*_{H-F} = 5.2 Hz, ArH), 8.81 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 25.7, 30.8, 45.5, 99.8, 101.6, 115.8 (d, ²*J*_{C-F} = 22 Hz), 116.8, 126.5 (d, ⁴*J*_{C-F} = 3 Hz), 127.3, 127.7 (d, ³*J*_{C-F} = 9 Hz), 146.0, 147.0, 156.6, 158.1, 162.8 (d, ¹*J*_{C-F} = 246 Hz). HRMS (ESI): *m*/*z* [M+H]⁺ calculated for C₂₀H₂₁FN₇: 378.1837; found 378.1836. **6-{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl}-9-methyl-2-piperidino-7-deazapurine (11e)**: yellow solid, mp 228 °C dec, yield 107 mg, 63%. ¹H NMR (400 MHz, CDCl₃): δ 1.66-1.78 (6H, m, piperidine 3xCH₂), 3.75 (3H, s, CH₃), 3.91 (4H, m, piperidine 2xCH₂), 6.92 (1H, d, *J* = 3.6 Hz, 6-H), 7.05 (1H, d, *J* = 3.6 Hz, 5-H), 7.74 (2H, d, *J* = 8.4 Hz, ArH), 8.11 (2H, d, *J* = 8.4 Hz, ArH), 8.92 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 25.7, 30.8, 45.5, 99.8, 101.5, 117.9, 124.1 (q, ¹*J*_{C-F} = 270 Hz), 125.8 (q, ³*J*_{C-F} = 4 Hz), 126.1, 127.5, 130.2 (q, ²*J*_{C-F} = 32 Hz), 133.8, 145.4, 146.8, 156.6, 158.0. HRMS (ESI): *m/z* [M+H]⁺ calculated for C₂₁H₂₁F₃N₇: 428.1805; found 428.1806

6-[4-(4-Cyanophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (**11f**): orange solid, mp 254 °C dec, yield 115 mg, 75%. ¹H NMR (400 MHZ, CDCl₃): δ 1.66-1.78 (6H, m, piperidine 3xCH₂), 3.76 (3H, s, CH₃), 3.91 (4H, m, piperidine 2xCH₂), 6.93 (1H, d, *J* = 3.6 Hz, 6-H), 7.04 (1H, d, *J* = 3.6 Hz, 5-H), 7.77 (2H, d, *J* = 8.4 Hz, ArH), 8.11 (2H, d, *J* = 8.4 Hz, ArH), 8.95 (1H, s, triazole-H). ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 27.8, 30.8, 45.5, 99.8, 101.5, 111.7, 118.3, 118.7, 126.3, 127.6, 132.7, 134.7, 145.1, 146.7, 156.7, 158.0. HRMS (ESI): *m*/*z* [M+H]⁺ calculated for C₂₁H₂₁N₈: 385.1884; found 385.1891.

Azido form

Figure S1: ¹H NMR spectra of compound **6b** in CD₃CN in different temperatures (300 MHz).

Temperature, °C	Ratio of tetrazole (7.92 ppm), %	
	12.5 mg/mL	25.0 mg/mL
30	17	16
35	16	15
40	15	14
45	14	12
50	12	10
55	11	8
60	8	6

Table S1: The ratio of tetrazole form in different temperatures for compound 6b, %.

Figure S2: Comparison of ¹H NMR spectra of compounds 8a and 5 (300 MHz, CDCl₃), full spectra.

Figure S3: Emission spectra for 7-deazacompouds ($c = 10^{-4}$ M, $c = 0.5 \times 10^{-4}$ M for compound 10c; solvent – MeCN).

Figure S4: Measurements of fluorescence decay times of compounds **8a**, **8c** and **11c** in MeCN ($c = 10^{-4}$ M).

Figure S5: DSC data for compound 2a.

Figure S6: DSC data for compound 2b.

Figure S7: DSC data for compound 2c.

Copies of ¹H and ¹³C NMR spectra

2,6-Dichloro-9-heptyl-9H-purine (1a-1)

Figure S9: ¹³C NMR (75.5 MHz, CDCl₃) spectrum.

2,6-Dichloro-9-nonyl-9*H*-purine (1a-2)

Figure S11: ¹³C NMR (75.5 MHz, DMSO-*d*₆) spectrum.

2,6-Dichloro-9-dodecyl-9H-purine (1a-3)

2,6-Diazido-9-nonyl-9*H*-purine (2b)

Figure S17: 13 C NMR (75.5 MHz, DMSO- d_6) spectrum.

2,6-Diazido-9-dodecyl-9*H*-purine (2c)

2,6-Bis(4-phenyl-1*H*-1,2,3-triazol-1-yl)-9-heptyl-9*H*-purine (4)

6-Azido-9-heptyl-2-pyrrolidino-9H-purine (6a)

Figure S25: ¹³C NMR (75.5 MHz, CDCl₃) spectrum.

6-Azido-9-heptyl-2-piperidino-9*H*-purine (6b)

9-Heptyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-2-pyrrolidino-9*H*-purine (7a)

9-Heptyl-6-(4-(4-metoxyphenyl)-1*H*-1,2,3-triazol-1-yl)-2-pyrrolidino-9*H*-purine (7b)

⁹⁻Heptyl-6-(4-(4-dimethylaminophenyl)-1*H*-1,2,3-triazol-1-yl)-2-pyrrolidino-9*H*-purine (7c)

6-(4-(4-Fluorophenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9*H*-purine (7d)

Figure S35: ¹³C NMR (75.5 MHz, 70 °C, DMSO-*d*₆) spectrum.

6-(4-(4-Trifluoromethylphenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9*H*-purine (7e)

Figure S37: ¹³C NMR (75.5 MHz, CDCl₃) spectrum.

6-(4-(4-Cianophenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9*H*-purine (7f)

Figure S39: ¹³C NMR (75.5 MHz, CDCl₃) spectrum.

9-Heptyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-2-piperidino-9*H*-purine (8a)

Figure S41: ¹³C NMR (75.5 MHz, CDCl₃) spectrum.

9-Heptyl-6-(4-(4-metoxyphenyl)-1*H*-1,2,3-triazol-1-yl)-2-piperidino-9*H*-purine (8b)

9-Heptyl-6-(4-(4-dimethylaminophenyl)-1*H*-1,2,3-triazol-1-yl)-2-piperidino-9*H*-purine (8c)

Figure S45: ¹³C NMR (75.5 MHz, CDCl₃) spectrum.

6-(4-(4-Fluorophenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9*H*-purine (8d)

6-(4-(4-Trifluoromethylphenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9*H*-purine (8e)

Figure S49: ¹³C NMR (75.5 MHz, CDCl₃) spectrum.

6-(4-(4-Cianophenyl)-1*H*-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9*H*-purine (8f)

S45

9-Pentyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-2-piperidino-9*H*-purine (9)

Figure S53: ¹³C NMR (75.5 MHz, 70 °C, DMSO-*d*₆) spectrum.

Copies of ¹H and ¹³C NMR spectra of 7-deazapurines (**10a–f**, **11a–f**)

Figure S55: ¹³C NMR (100 MHz, CDCl₃) spectrum.

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10b)

Figure S57: ¹³C NMR (100 MHz, CDCl₃) spectrum.

9-Methyl-6-[4-(4-dimethylaminophenyl)-1,2,3-triazol-1-yl]-2-pyrrolidino-7-deazapurine (10c)

Figure S58: ¹H NMR (400 MHz, CDCl₃) spectrum.

Figure S59: ¹³C NMR (100 MHz, CDCl₃) spectrum.

6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10d)

Figure S60: ¹H NMR (400 MHz, CDCl₃) spectrum.

Figure S61: ¹³C NMR (100 MHz, CDCl₃) spectrum.

6-{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl}-9-methyl-2-pyrrolidino-7-deazapurine (10e)

Figure S63: ¹³C NMR (100 MHz, CDCl₃) spectrum.

Figure S65: ¹³C NMR (100 MHz, CDCl₃) spectrum.

6-(4-Phenyl-1,2,3-triazol-1-yl)-9-methyl-2-piperidino-7-deazapurine (11a)

Figure S67: ¹³C NMR (100 MHz, CDCl₃) spectrum.

Figure S69: ¹H-¹³C-HSQC spectrum of compound 11a.

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11b)

Figure S71: ¹³C NMR (100 MHz, CDCl₃) spectrum.

Figure S72: COSY spectrum of compound 11b.

9-Methyl-6-[4-(4-dimethylaminophenyl)-1,2,3-triazol-1-yl]-2-piperidino-7-deazapurine (11c)

Figure S74: ¹³C NMR (100 MHz, CDCl₃) spectrum.

6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11d)

Figure S76: ¹³C NMR (100 MHz, CDCl₃) spectrum.

6-{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl}-9-methyl-2-piperidino-7-deazapurine (11e)

Figure S78: ¹³C NMR (100 MHz, CDCl₃) spectrum.

6-[4-(4-Cyanophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11f)

Figure S80: ¹³C NMR (100 MHz, CDCl₃) spectrum.

Toxicity and cell imaging data

Figure S81: Cytotoxicity effects of the studied compounds to MCF7, MDAMB231 and MCF-10A cell lines.

Compound 11a

Compound 11b

Compound 8c

Figure S82: Cell imaging using compounds **11a**, **11b** and **8c** (Material: 100 μ M (DMSO 5 %), 1 h, cell: MCF10A Exposure: passed separately through filter (365 \pm 20 nm); em >420 nm.

References

[1] Kovaļovs, A.; Novosjolova, I.; Bizdēna, Ē.; Bižāne, I.; Skardziute, L.; Kazlauskas, K.; Jursenas, S.; Turks, M. *Tetrahedron Lett.* **2013**, *54*, 850–853. doi:10.1016/j.tetlet.2012.11.095

[2] Bucevicius, J.; Turks, M.; Tumkevicius, S. Synlett 2018, 29, 525–529. doi:10.1055/s-0036-159094