Supporting Information

for

Synthesis and fluorescent properties of $\mathrm{N}(9)$-alkylated 2-amino-6-triazolylpurines and 7-deazapurines
 Andrejs Šišuļins, Jonas Bucevičius, Yu-Ting Tseng, Irina Novosjolova, Kaspars Traskovskis, Ērika Bizdēna, Huan-Tsung Chang, Sigitas Tumkevičius and Māris Turks

Beilstein J. Org. Chem. 2019, 15, 474-489. doi:10.3762/bjoc.15.41

Full experimental procedures, emission spectra, DSC data, and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Experimental part

General information

Reactions and purity of the synthesized compounds were monitored by TLC using Silica gel $60 \mathrm{~F}_{254}$ aluminum plates (Merck). Visualization was accomplished by UV light. Column chromatography was performed using Silica gel $60(0.040-0.063 \mathrm{~mm})$ (Merck). Yields of products refer to chromatographically and spectroscopically homogeneous materials. Anhydrous methylene chloride, dimethylformamide and acetonitrile were obtained by distillation over CaH_{2}, tetrahydrofuran was obtained by distillation over sodium. Commercial reagents were used as received.

NMR spectra were recorded on Bruker Avance 300 or Bruker Ascend 400 spectrometers (300 MHz , 400 MHz for ${ }^{1} \mathrm{H}$ and $75 \mathrm{MHz}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, respectively). The proton signals for residual nondeuterated solvents ($\delta 7.26 \mathrm{ppm}$ for $\mathrm{CDCl}_{3}, \delta 2.50 \mathrm{ppm}$ for DMSO- d_{6}) and carbon signals ($\delta 77.1 \mathrm{ppm}$ for $\mathrm{CDCl}_{3}, \delta 39.5 \mathrm{ppm}$ for DMSO- d_{6}) were used as an internal reference for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, respectively. Coupling constants are reported in Hz. Chemical shifts of signals are given in ppm and multiplicity assigned as follows: s - singlet, d - doublet, t - triplet, m - multiplet.

The infrared spectra were recorded on Perkin Elmer Spectrum BX. Wavelengths are given in cm^{-1}. The UV-vis absorption spectra of all compounds were acquired using Perkin-Elmer 35 UV-vis spectrometer. Emission spectra were measured on QuantaMaster 40 steady state spectrofluorometer (Photon Technology International, Inc.). Absolute photoluminescence quantum yields were determined using QuantaMaster 40 steady state spectrofluorometer (Photon Technology International, Inc.) equipped with 6 inch integrating sphere by LabSphere, using a florescence standard of quinine sulfate in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ as a reference. High resolution mass spectrometry (HRMS) analyses were carried out on a Dual-ESI Q-TOF 6520 (Agilent Technologies) mass spectrometer and Agilent 1290 Infinity series UPLC system equipped with column Extend C18 RRHD $2.1 \times 50 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$ connected to Agilent 6230 TOF LC/MS masspectrometer.

For HPLC analysis we used Agilent Technologies 1200 Series chromatograph equipped with Agilent XDB-C18 $(4.6 \times 50 \mathrm{~mm}, 1.8 \mu \mathrm{~m})$ column and Phenomenex Gemini NX $(4.6 \times 100 \mathrm{~mm}, 3 \mu \mathrm{~m})$ column. Eluent A: $0.01 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ solution with $6 \% \mathrm{v} / \mathrm{v} \mathrm{MeCN}$ added; eluent B: 0.1% TFA solution with 5% v/v MeCN added; eluent C-MeCN.

General procedures and product characterization.

2,6-Bistriazolyl derivative $\mathbf{4}$ was synthesized using previously reported procedure of $\mathrm{Cu}(\mathrm{I})$-catalyzed azide-alkyne cycloaddition reaction on 2,6-diazidopurine derivatives [1]. Synthesis of 7-deazapurine derivatives 3, 10a, 11a and their characterization are described in our preliminary communication [2].

Synthesis of 9-alkyl-2,6-diazido-9H-purine derivatives 2a-c

Alkylation

Method A: A solution of 2,6-dichloropurine $\mathbf{1 a}(1.0 \mathrm{~g}, 5.4 \mathrm{mmol}, 1.0$ equiv.) in anhydrous MeCN or anhydrous DMF (30 mL) was cooled to $0^{\circ} \mathrm{C}$ and 57% suspension of $\mathrm{NaH}(0.3 \mathrm{~g}, 7.0 \mathrm{mmol}, 1.3$ equiv) was added in small portions $(50 \mathrm{mg})$. The resulting reaction mixture was stirred for 30 min . After that, the corresponding 1-iodo-alkane or 1-bromo-alkane ($11 \mathrm{mmol}, 2.1$ equiv) was added and the reaction mixture was stirred for $1-3$ days at $20-55^{\circ} \mathrm{C}$. The excess of NaH was neutralized with MeOH or EtOH . The reaction mixture was evaporated under the reduced pressure and the residue was dissolved in DCM (30 mL), the organic phase was washed with brine $(2 \times 15 \mathrm{~mL})$ and subsequently dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Silica gel column chromatography (Hex/EtOAc 4:1) provided desired product.

Method B: A solution of 2,6-dichloropurine 1a ($5.0 \mathrm{~g}, 26.5 \mathrm{mmol}, 1.0$ equiv), corresponding alcohol ($31.7 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Ph}_{3} \mathrm{P}(9.2 \mathrm{~g}, 34.9 \mathrm{mmol}, 1.3$ equiv) in anhydrous THF (30 mL) was cooled to $0^{\circ} \mathrm{C}$. DIAD ($6.90 \mathrm{~mL}, 35.0 \mathrm{mmol}, 1.3$ equiv) was added dropwise, the mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$, controlled by HPLC, then evaporated to dryness. Subsequently, EtOH (20 mL) was added and
the resulting mixture was cooled to $-10^{\circ} \mathrm{C}$ to form precipitate of $\mathrm{Ph}_{3} \mathrm{PO}$, which was filtered as a byproduct and the filtrate was evaporated. The column chromatography (DCM/MeCN 10:1) provided the desired resulting product.

2,6-Dichloro-9-heptyl-9H-purine (1a-1): slightly yellow oil; reaction time (method A) - 1 h ; yield 5.0 $\mathrm{g}, 66 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2933,1802,1733 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8)), 4.23\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.88$ (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.36-1.13(\mathrm{~m}, 8 \mathrm{H}$, $\left.4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.82\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 153.3,152.9$, 151.7, 145.9, 130.8, 44.7, 31.6, 29.8, 28.6, 26.6, 22.5, 14.0. HRMS (ESI): calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4}+\mathrm{H}^{+}\right]$ 287.0825, found 287.0826.

2,6-Dichloro-9-nonyl-9H-purine (1a-2): colorless solid; reaction time (method B) - $24 \mathrm{~h} ; \mathrm{mp} 42-43$ ${ }^{\circ} \mathrm{C}$; yield $3.5 \mathrm{~g}, 52 \%$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2963,2923,2852$, $1811 .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ (ppm): 8.75 (s, 1H, H-C(8)), $4.24\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right.$), 1.83 (quintet, $2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)$), $1.36-1.10\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.83\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ (ppm): 153.4, 150.8, 149.5, 148.4, 130.4, 43.9, 31.2, 28.8, 28.7, 28.5, 28.3, 25.9, 22.0, 13.8. HRMS (ESI): calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4}+\mathrm{H}^{+}\right]$315.1138, found 315.1138.

2,6-Dichloro-9-dodecyl-9H-purine (1a-3): yellowish solid; reaction time (method B) - 72 h ; mp 63$65{ }^{\circ} \mathrm{C}$; yield $4.5 \mathrm{~g}, 48 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2955,2917,2850,1736 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 8.09 (s, 1H, H-C(8)), $4.25\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.91$ (quintet, $2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)$), $1.39-1.17\left(\mathrm{~m}, 18 \mathrm{H}, 9 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.87\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 153.3, 153.0, 151.8, 145.9, 130.9, 44.8, 32.0, 29.9, 29.7 (2C) ${ }^{*}, 29.6,29.5,29.4,29.0,26.7,22.8$, 14.2. HRMS (ESI): calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4}+\mathrm{Na}^{+}\right]$379.1432, found 379.139.

[^0]
Azidation

$\mathrm{NaN}_{3}(5.88 \mathrm{~g}, 90.5 \mathrm{mmol}, 3.0$ equiv) was added to a solution of 9-alkyl-2,6-dichloro-9H-purine (30 mmol, 1.0 equiv) in acetone (50 mL) and stirred for 14 h at $50^{\circ} \mathrm{C}$, protected from the daylight. Then, the reaction mixture was evaporated and suspended in water $(30 \mathrm{~mL})$. The resulting precipitate was filtered and dried in vacuum.

2,6-Diazido-9-heptyl-9H-purine (2a): colorless solid; reaction time - 14 h ; yield $8.4 \mathrm{~g}, 93 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2932,2858,2170,2123 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 4.15(\mathrm{t}$, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2^{-}}\right)\right), 1.93-1.77\left(\mathrm{~m}, 2 \mathrm{H},\left(-\mathrm{CH}_{2^{-}}\right)\right), 1.39-1.15\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.84\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J=\right.$ $\left.6.8 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 155.9,154.1,153.7,143.7,121.5,44.2,31.6$, 29.8, 28.7, 26.6, 22.6, 14.1. HRMS (ESI): calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{10}+\mathrm{H}^{+}\right]$301.1632, found 301.1646.

2,6-Diazido-9-nonyl-9H-purine (2b): colorless solid, reaction time $-2 \mathrm{~h}, \mathrm{mp} 72-74{ }^{\circ} \mathrm{C}$; yield 1.5 g , 75%. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2922,2852,2166,2133 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}): 8.45(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(8)), 4.15\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.80\left(q u i n t e t, 2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.34-1.10(\mathrm{~m}, 12 \mathrm{H}$, $\left.6 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.83\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 154.4,153.8$, 152.3, 145.7, 121.0, 43.4, 31.2, 28.8, 28.7, 28.5, 28.3, 25.8, 22.0, 13.8. HRMS (ESI): calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{10}+\mathrm{H}^{+}\right]$329.1945, found 329.1948.

2,6-Diazido-9-dodecyl-9H-purine (2c): slightly yellow solid, reaction time - 1 h ; yield $10.2 \mathrm{~g}, 66 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2922,2849,2170,2124 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8))$, $4.15\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.85$ (quintet, $\left.2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.34-1.18(\mathrm{~m}, 18 \mathrm{H}, 9 \times(-$ $\left.\left.\mathrm{CH}_{2}-\right)\right), 0.85\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 155.9,154.1,153.7$, 143.7, 121.5, 44.2, 32.0, 29.8, $29.6(2 \mathrm{C})^{\dagger}, 29.5,29.4,29.3,29.0,26.6,22.7,14.2$ HRMS (ESI): calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{10}+\mathrm{H}^{+}\right]$371.2415, found 371.2436.

[^1]
Synthesis of 9-alkyl-6-amino-2-triazolylpurine derivative 5

Formation of 2,6-bis(triazolyl)purine derivative

2,6-Bis(4-phenyl-1H-1,2,3-triazol-1-yl)-9-heptyl-9H-purine (4). Phenylacetylene ($0.35 \mathrm{~mL}, 3.19$ mmol, 3.2 equiv) and 10% aqueous solution of $\mathrm{AcOH}(1 \mathrm{~mL})$ were added to a solution of diazide $\mathbf{2 a}$ ($0.30 \mathrm{~g}, 1.00 \mathrm{mmol}, 1.0$ equiv) in THF (15 mL). The flask was protected from the daylight and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.30 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and sodium ascorbate $(120 \mathrm{mg}, 0.61 \mathrm{mmol}, 60 \mathrm{~mol} \%)$ were added. The reaction mixture was stirred for 1.5 h at $50^{\circ} \mathrm{C}$. Then the mixture was evaporated under reduced pressure to dryness and the residue was suspended in 5% aqueous solution of EDTA (50 $\mathrm{mL})$. The resulting suspension was filtered and the solid on the filter was washed with water (10 mL). The obtained crude product was further purified by silica gel column chromatography (MeCN/DCM gradient $5 \% \rightarrow 10 \%)$ and yielded compound $\mathbf{4}(278 \mathrm{mg}, 55 \%)$ as a colorless solid. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right)$: 2929, 2857, 1617, 1587. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.31$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}($ triazole $)$), $8.94(\mathrm{~s}, 1 \mathrm{H}$, H-C(triazole)), 8.30 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)$), $8.07-7.97\left(2 \mathrm{~d}, 4 \mathrm{H},{ }^{3} J=8.2 \mathrm{~Hz}, \mathrm{Ar}\right), 7.55-7.45(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar})$, 7.45-7.35 (m, 2H, Ar), $4.45\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 2.04$ (quintet, $2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)$), $1.48-1.35\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 155.9, 148.7, 148.4, 148.2, 147.3, 145.4, 129.9, 129.6, 129.1, 129.0, $128.8(2 \mathrm{C})^{\ddagger}, 126.4,126.2$, 122.2, 119.6, 119.0, 44.9, 31.7, 29.9, 28.8, 26.7, 22.6, 14.1. HRMS (ESI): calcd for [$\left.\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{10}+\mathrm{Na}^{+}\right]$ 527.2396, found 527.2391.

C(6)-Selective $S_{N} \underline{A r}$ reaction on 2,6-bis(triazolyl)purine derivative

9-Heptyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-6-piperidino-9H-purine (5). Piperidine ($0.10 \mathrm{~mL}, 1.01$ mmol, 3.4 equiv) was added to a solution of 2,6-bis(triazolyl)derivative $4(0.15 \mathrm{~g}, 0.30 \mathrm{mmol}, 1.0$ equiv) in DMF (5 mL) and the resulting reaction mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$. Then it was evaporated to dryness, the residue was dissolved in DCM (20 mL) and the organic phase was washed

[^2]with brine $(3 \times 5 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The obtained crude product was further purified by silica gel column chromatography (DCM/MeCN 20:1) and yielded compound 5 ($101 \mathrm{mg}, 72 \%$) as a colorless solid. IR (KBr) v($\left.\mathrm{cm}^{-1}\right): 2931,2855,1597 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 70{ }^{\circ} \mathrm{C}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}): 9.10(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}($ triazole $)$), 8.19 (s, 1H, H-C(8)), $8.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, \mathrm{Ar}\right), 7.47\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, \mathrm{Ar}\right)$, $7.37\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{Ar}\right), 4.38-4.25\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 4.21\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.88$ (quintet, $\left.2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.78-1.59\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.36-1.15\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.82$ $\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.70^{\circ} \mathrm{C}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 153.0,151.0,148.3$, $146.0,140.2,130.0,128.4,127.7,125.3,119.3,118.2,45.6,42.8,30.7,28.8,27.6,25.6,25.3,23.7$, 21.5, 13.3. HRMS (ESI): calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{8}+\mathrm{H}^{+}\right] 445.2823$, found 445.2820 , calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{8}+\mathrm{Na}^{+}\right] 467.2648$, found 467.2642.

Synthesis of 9-alkyl-6-azido-2-pyrrolidino-9H-purine or 9-alkyl-6-azido-2- piperidino-9H-purine

derivatives 6a,b

9-Alkyl-2,6-diazido-9H-purine 2 ($8.3 \mathrm{mmol}, 1.0$ equiv) was dissolved in DMF (30 mL), pyrrolidine or piperidine ($11.7 \mathrm{mmol}, 1.4$ equiv) was added and the reaction mixture was stirred isolated from the daylight at $30^{\circ} \mathrm{C}$ for 5 h . After that, the mixture was evaporated and silica gel column chromatography (DCM/MeCN 50:1) was used to provide the desired product.

6-Azido-9-heptyl-2-pyrrolidino-9H-purine (6a): slightly brown solid, reaction time - 4 h; yield 0.88 $\mathrm{g}, 51 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3062,2927,2858,2148,2122,1570,1254 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $7.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 4.03\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.62-3.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 2.00-$ $1.92\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.83$ (quintet, $\left.2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.37-1.16\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.85$ $\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 157.4,154.8,152.4,140.3,117.0$,
$47.0(2 \mathrm{C})^{*}, 43.4,31.7,29.6,28.8,26.6,25.6(2 \mathrm{C})^{*}, 22.7,14.1$. HRMS (ESI): calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{8}+\mathrm{H}^{+}\right]$ 329.2197 , found 329.2195 .

6-Azido-9-heptyl-2-piperidino-9H-purine (6b): slightly brown solid, reaction time - 5 h ; yield 1.8 g , 62%. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2933,2856,2121,1621,1572 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.58(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 4.03\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.87-3.74\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.83$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=$ $\left.7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.74-1.55\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.39-1.16\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.86\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.8\right.$ $\left.\mathrm{Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 158.6,154.9,152.6,140.8,117.2,45.5,43.4,31.7$, 29.7, 28.8, 26.6, 25.8, 25.0, 22.7, 14.1. HRMS (ESI): calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{8}+\mathrm{H}^{+}\right] 343.2353$, found 343.2371 .

Synthesis of 9-alkyl-2-pyrrolidino-6-(1,2,3-triazol-1-yl)purine derivatives 7a-f

Alkyne (1.2 equiv) and 10% AcOH water solution (1 mL) were added to a solution of compound $\mathbf{6 a}$ ($200 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.0$ equiv) in THF (7 mL). The flask was isolated from daylight and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$) and sodium ascorbate ($20 \mathrm{~mol} \%$) were added. The reaction mixture was heated for 20 h at $50^{\circ} \mathrm{C}$. The reaction mixture was cooled to ambient temperature and the precipitated product (bright yellow/green in color) was filtered. The product on the filter was washed with water (5 mL) and MTBE $(3 \times 5 \mathrm{~mL})$. Then the product was transferred into a flask and dissolved in $\mathrm{CHCl}_{3}(7 \mathrm{~mL}) . \mathrm{H}_{2} \mathrm{~S}$ gas was bubbled through the latter solution until a dark brown/black suspension appeared. The resulting mixture was filtered through celite, the filtrate was evaporated under reduced pressure and dried in vacuo. Products can be further purified by silica gel column chromatography, if required.

9-Heptyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-pyrrolidino-9H-purine (7a): slightly yellow solid, yield $134 \mathrm{mg}, 51 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2952,2924,2857,1622,1540 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 70{ }^{\circ} \mathrm{C}$, DMSO- $\left._{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta(\mathrm{ppm}): 9.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\right.$ triazole $)$), $8.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 8.01\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right.$,

Ar), $7.50\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, \mathrm{Ar}\right), 7.40\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.2 \mathrm{~Hz}, \mathrm{Ar}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.71-$ $3.55\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 2.08-1.93\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.88$ (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.40-$ $1.16\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.84\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, 70{ }^{\circ} \mathrm{C}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}+\right.$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta(\mathrm{ppm}): 156.5,156.3,146.4,143.9,143.7,129.6,128.7,128.2,125.5,120.0,114.4,46.6,42.8$, 30.7, 28.4, 27.7, 25.6, 24.7, 21.6, 13.4. HRMS (ESI): calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{8}+\mathrm{Na}^{+}\right] 453.2478$, found 453.2477.

9-Heptyl-6-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)-2-pyrrolidino-9H-purine (7b): slightly yellow solid, yield $160 \mathrm{mg}, 57 \%$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2955,2927,2866,1621,1559,1544 .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.99$ (s, 1H, H-C(triazole)), $7.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, \mathrm{Ar}\right), 7.79$ (s, 1H, H$\mathrm{C}(8)), 7.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, \mathrm{Ar}\right), 4.13\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H},\left(-\mathrm{CH}_{3}\right)\right), 3.75-3.63$ $\left(\mathrm{m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 2.10-1.97\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.96-1.83\left(\mathrm{~m}, 2 \mathrm{H},\left(-\mathrm{CH}_{2}-\right)\right), 1.39-1.19(\mathrm{~m}, 8 \mathrm{H}$, $\left.4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.87\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 159.9,157.3$, $157.0,147.3,145.1,142.4,127.6,123.2,118.3,115.6,114.3,55.5,47.3,43.6,31.7,29.6,28.8,26.7$, 25.7, 22.7, 14.1. HRMS (ESI): calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}+\mathrm{Na}^{+}\right] 483.2571$, found 483.2589.

9-Heptyl-6-(4-(4-(dimethylamino)phenyl)-1H-1,2,3-triazol-1-yl)-2-pyrrolidino-9H-purine (7c):

 yellow solid, yield $153 \mathrm{mg}, 53 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2947,2924,2852,1621,1563,1544 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.96$ (s, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}($ triazole $)$), $7.90\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, \mathrm{Ar}\right), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8)), 6.93\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.6 \mathrm{~Hz}, \mathrm{Ar}\right), 4.13\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.76-3.64\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right)$, $3.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{3}\right)\right), 2.09-1.97\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.90$ (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.41-$ $1.19\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.87\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $157.3,156.9,149.8,147.7,145.1,142.4,127.4,120.2,117.8,115.6,113.6,47.3,43.6,41.3,31.7,29.7$, 28.8, 26.7, 25.7, 22.7, 14.2. HRMS (ESI): calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{9}+\mathrm{Na}^{+}\right]$496.2897, found 496.2901.6-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9H-purine (7d): slightly yellow solid, yield $174 \mathrm{mg}, 64 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 2957, 2927, 2858, 1625, 1559, 1540. ${ }^{1} \mathrm{H}$ NMR
(300 MHz, DMSO-d d_{6}) $\delta(\mathrm{ppm}): 9.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\right.$ triazole $)$), $8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 8.05\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.$ $\left.8.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{F}}=5.5 \mathrm{~Hz}, \mathrm{Ar}\right), 7.31\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}={ }^{3} J_{\mathrm{H}-\mathrm{F}}=8.6 \mathrm{~Hz}, \mathrm{Ar}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right)$, $3.64\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 2.06-1.95\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.89$ (quintet, $2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},(-$ $\left.\left.\mathrm{CH}_{2}-\right)\right), 1.40-1.18\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.85\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO$\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 161.9\left(\mathrm{D},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}\right), 156.4,156.3,145.3,143.9,143.7,127.5\left(\mathrm{D},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 126.2$ $\left(\mathrm{D},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 120.0,115.5\left(\mathrm{D},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 115.1,46.5,42.5,30.6,28.3,27.6,25.5,24.6,21.5$, 13.3. HRMS (ESI): calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{FN}_{8}+\mathrm{Na}^{+}\right] 471.2383$, found 471.2384.

6-(4-(4-(Trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9H-purine (7e):

 slightly yellow solid, yield $230 \mathrm{mg}, 76 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right):$ 2949, 2928, 2867, 1630, 1566, $1542 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.17$ (s, 1H, H-C(triazole)), $8.12\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.0 \mathrm{~Hz}, \mathrm{Ar}\right), 7.82(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.72\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{Ar}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.80-3.62(\mathrm{~m}, 4 \mathrm{H}, 2 \times(-$ $\left.\mathrm{CH}_{2}-\right)$), $2.12-1.98\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.91$ (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.42-1.18(\mathrm{~m}, 8 \mathrm{H}, 4 \times(-$ $\left.\left.\mathrm{CH}_{2}-\right)\right), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 157.2,157.1,146.1$, $144.8,142.7,133.9,130.1\left(\mathrm{~T},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=33 \mathrm{~Hz}\right), 126.4,125.9\left(\mathrm{Q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 124.3\left(\mathrm{D},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}\right)$, 120.1, 115.6, 47.3, 43.7, 31.7, 29.6, 28.8, 26.7, 25.7, 22.7, 14.2. HRMS (ESI): calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{8}+\mathrm{Na}^{+}\right]$521.2362, found 521.2357.6-(4-(4-Cyanophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9H-purine (7f): slightly yellow solid, yield $175 \mathrm{mg}, 63 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 2960, 2928, 2854, 2223, 1627, 1562, 1545. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\right.$ triazole $)$), $8.10\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.3 \mathrm{~Hz}, \mathrm{Ar}\right), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8))$, $7.73\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, \mathrm{Ar}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.77-3.60\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 2.12-$ $1.97\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.92$ (quintet, $\left.2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.44-1.18\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.87$ $\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 157.2,157.1,145.6,144.6,142.7$, $134.8,132.8,126.6,120.6,118.9,115.6,111.8,47.3,43.7,31.7,29.6,28.8,26.7,25.7,22.7,14.1$.

HRMS (ESI): calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{9}+\mathrm{Na}^{+}\right]$478.2446, found 478.2442.

Synthesis of 9-alkyl-2-piperidino-6-(1,2,3-triazol-1-yl)purine derivatives 8a-f

Alkyne ($0.88 \mathrm{mmol}, 1.2$ equiv) and $10 \% \mathrm{AcOH}$ water solution $(1 \mathrm{~mL})$ were added to a solution of compound $\mathbf{6 b}$ ($250 \mathrm{mg}, 0.73 \mathrm{mmol}, 1.0$ equiv) in THF (7 mL), flask was protected from the daylight and the catalyst $-\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ and sodium ascorbate $(20 \mathrm{~mol} \%)$ were added. The reaction was stirred for 8 h at $20^{\circ} \mathrm{C}$ and the precipitated product (bright yellow/green in color) was filtered. The product on the filter was washed with water $(5 \mathrm{~mL})$ and MTBE $(3 \times 5 \mathrm{~mL})$. Then the product was transferred into a flask and dissolved in $\mathrm{CHCl}_{3}(7 \mathrm{~mL}) . \mathrm{H}_{2} \mathrm{~S}$ gas was bubbled through the latter solution until dark brown/black suspension appeared. The resulting mixture was filtered through celite, the filtrate was evaporated under reduced pressure and dried in vacuo. Products can be further purified by silica gel column chromatography, if required.

9-Heptyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (8a): slightly yellow solid, reaction time -5 h ; yield $230 \mathrm{mg}, 71 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2928,2855,1629,1565,1539 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\right.$ triazole $)$), $8.01\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{Ar}\right), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8)), 7.46\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{Ar}\right), 7.36\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{Ar}\right), 4.13\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right)$, $3.96-3.88\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.90\left(\right.$ quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.76-1.60\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}{ }^{-}\right.\right.$)), $1.43-1.20\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 158.5, 157.0, 147.6, 145.1, 142.8, 130.4, 128.9, 128.5, 126.3, 119.4, 115.7, 45.7, 43.6, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.2. HRMS (ESI): calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{8}+\mathrm{Na}^{+}\right] 467.2648$, found 467.2647.

9-Heptyl-6-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (8b): slightly yellow solid, reaction time -24 h ; yield $164 \mathrm{mg}, 60 \%$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2925,2857,1627,1562 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\right.$ triazole $)$), $7.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, \mathrm{Ar}\right), 7.80(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 6.99\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=8.6 \mathrm{~Hz}, \mathrm{Ar}\right), 4.12\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.95-3.86(\mathrm{~m}, 4 \mathrm{H}, 2 \times(-$ $\left.\mathrm{CH}_{2}-\right)$), $3.84\left(\mathrm{~s}, 3 \mathrm{H},\left(-\mathrm{CH}_{3}\right)\right), 1.88\left(q u i n t e t, 2 \mathrm{H},{ }^{3} J=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.76-1.58\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}-\right)\right)$,
$1.41-1.17\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.87\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 159.9, 158.5, 156.9, 147.4, 145.1, 142.8, 127.6, 123.1, 118.4, 115.6, 114.3, 55.5, 45.6, 43.5, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.1. HRMS (ESI): calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}+\mathrm{Na}+\right]$ 497.2753, found 497.2742.

9-Heptyl-6-(4-(4-(dimethylamino)phenyl)-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (8c):

 yellow solid, reaction time - 12 h ; yield $188 \mathrm{mg}, 53 \%$. IR $(\mathrm{KBr}) \vee\left(\mathrm{cm}^{-1}\right): 2930,2853,1622,1562 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\right.$ triazole $)$), $7.88\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, \mathrm{Ar}\right), 7.79(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 6.81\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, \mathrm{Ar}\right), 4.12\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.99-3.84(\mathrm{~m}, 4 \mathrm{H}, 2 \times(-$ $\left.\mathrm{CH}_{2}-\right)$), $3.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{3}\right)\right), 1.89$ (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.77-1.60\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}-\right)\right)$, $1.41-1.20\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 158.5, 156.9, 150.7, 148.1, 145.2, 142.6, 127.3, 118.6, 117.6, 115.7, 112.6, 45.7, 43.5, 40.6, 31.7, 29.7, 28.8, 26.7, 25.9, 25.0, 22.7, 14.2. HRMS (ESI): calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{9}+\mathrm{Na}^{+}\right] 510.3070$, found 510.3064.6-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9H-purine (8d): slightly yellow solid, reaction time -16 h ; yield $260 \mathrm{mg}, 74 \%$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2930,2856,1630,1566,1541 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\right.$ triazole $)$), $8.01-7.91\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{F}}\right.$ $=5.4 \mathrm{~Hz}, \mathrm{Ar}), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.14\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-F}={ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, \mathrm{Ar}\right), 4.13\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz},(-\right.$ $\left.\mathrm{CH}_{2}-\right)$), $3.97-3.84\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.90$ (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.78-1.60(\mathrm{~m}, 6 \mathrm{H}, 3 \times(-$ $\left.\mathrm{CH}_{2}-\right)$), $1.42-1.18\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl $\left.{ }_{3}\right)$ $\delta(\mathrm{ppm}): 163.1\left(\mathrm{D},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=247 \mathrm{~Hz}\right), 158.5,157.0,146.7,145.0,142.9,128.1\left(\mathrm{D},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 126.6$ $\left(\mathrm{D},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 119.1,115.9\left(\mathrm{D},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 115.7,45.7,43.6,31.7,29.7,28.8,26.7,25.9,25.0$, 22.7, 14.2. HRMS (ESI): calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{FN}_{8}+\mathrm{Na}^{+}\right] 485.2553$, found 485.2545 .

6-(4-(4-(Trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9H-purine (8e): yellow solid, reaction time - 12 h ; yield $313 \mathrm{mg}, 84 \%$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2930,2855,1631,1571$,
1539. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}($ triazole $)), 8.13\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{Ar}\right)$, $7.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.72\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{Ar}\right), 4.14\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 4.00-3.85(\mathrm{~m}$, $\left.4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.90$ (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.80-1.60\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.44-1.19(\mathrm{~m}$, $\left.8 \mathrm{H}, 4 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 158.5,157.1$, 146.3, 144.9, 143.0, 133.9, 130.4 (quartet, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=33 \mathrm{~Hz}, \mathrm{Ar}$), 126.5, 126.0 (quartet, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{Ar}$), $124.3\left(\mathrm{D},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz},\left(-\mathrm{CF}_{3}\right)\right), 120.3,115.7,45.7,43.7,31.7,29.7,28.8,26.7,25.9,25.0,22.7,14.1$. HRMS (ESI): calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{8}+\mathrm{H}^{+}\right] 513.2697$, found 513.2686.

6-(4-(4-Cyanophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9H-purine (8f): slightly yellow solid, reaction time -8 h ; yield $0.3 \mathrm{~g}, 86 \%$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2931,2856,2225,1630,1564,1541 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 9.18 (s, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}($ triazole $)$), $8.11\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, \mathrm{Ar}\right), 7.81(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.73\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, \mathrm{Ar}\right), 4.13\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.96-3.85(\mathrm{~m}, 4 \mathrm{H}, 2 \times(-$ $\left.\mathrm{CH}_{2}-\right)$), 1.89 (quintet, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.78-1.60\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.42-1.18(\mathrm{~m}, 8 \mathrm{H}, 4 \times(-$ $\left.\left.\mathrm{CH}_{2}-\right)\right), 0.87\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 158.4,157.1,145.7$, 144.7, 143.0, 134.8, 132.8, 126.6, 120.7, 118.9, 115.6, 111.8, 45.7, 43.6, 31.7, 29.7, 28.8, 26.7, 25.9, 24.9, 22.7, 14.1. HRMS (ESI): calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{9}+\mathrm{Na}^{+}\right] 492.2600$, found 492.2600.

Synthesis of 9-pentyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (9)

A solution of 2,6-dichloropurine ($\mathbf{1 a}, 1.9 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous MeCN was cooled to 0 ${ }^{\circ} \mathrm{C}, 57 \%$ suspension of $\mathrm{NaH}(0.44 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.1$ equiv) was added in small portions (50 mg) and the mixture was stirred for 30 min . 1-Bromopentane ($1.24 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) was added and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The excess of NaH was neutralized with MeOH . The mixture was filtered and evaporated under reduced pressure. The residue was dissolved in EtOAc (30 $\mathrm{mL})$, the organic phase was washed with water $(1 \times 15 \mathrm{~mL})$ and brine $(2 \times 15 \mathrm{~mL})$ and subsequently dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Silica gel column chromatography ($1-10 \% \mathrm{EtOH}$ in DCM)
provided desired 2,6-dichloro-9-pentyl-9 H -purine in 56% yield (1.4 g). Then 2,6-dichloro-9-pentyl-9 H purine ($0.6 \mathrm{~g}, 2.3 \mathrm{mmol}$, 1.0 equiv) was dissolved in $\mathrm{EtOH}(20 \mathrm{~mL})$, solution of $\mathrm{NaN}_{3}(0.6 \mathrm{~g}, 9.2 \mathrm{mmol}$, 4.0 equiv) in water (5 mL) was added and the resulting reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 1 h . Then it was evaporated and the residue was crystalized from water, giving 2,6-diazido-9-pentyl-9Hpurine ($\mathbf{2 d}$) in 80% yield (0.5 g). Obtained 2,6-diazido derivative ($0.5 \mathrm{~g}, 1.8 \mathrm{mmol}, 1.0$ equiv) was dissolved in DMF (5 mL), piperidine ($0.34 \mathrm{~mL}, 2.7 \mathrm{mmol}, 1.5$ equiv) was added and the mixture was stirred at room temperature for 2.5 h . Then the mixture was poured in water (5 mL) and extracted with EtOAc $(1 \times 20 \mathrm{~mL})$. The EtOAc layer was washed with brine $(3 \times 15 \mathrm{~mL})$, subsequently dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Silica gel column chromatography (toluene/EtOAc 2:1) provided desired 6-azido-9-pentyl-2-piperidino-9H-purine ($6 \mathbf{c}$) in 70% yield $(0.4 \mathrm{~g})$ which was used in the following "click" reaction. Phenylacetylene ($0.21 \mathrm{~mL}, 2.0 \mathrm{mmol}, 2.0$ equiv) and $10 \% \mathrm{AcOH}$ water solution (1 mL) were added to a solution of 6-azido-9-pentyl-2-piperidino-9H-purine ($0.3 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0$ equiv) in DMF (3 mL), flask was protected from the daylight and the catalyst $-\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ and sodium ascorbate ($20 \mathrm{~mol} \%$) were added. The reaction was stirred for 7 h at $90^{\circ} \mathrm{C}$ and then the mixture was poured to ice-water (50 mL) and left to precipitate for 12 h in refrigerator. The resulting precipitate was filtered and re-crystalized from EtOH, giving 9-pentyl-6-(4-phenyl-1 H -1,2,3-triazol-1-yl)-2-piperidino- $9 H$-purine (9) as a colorless solid, $\mathrm{mp}=161-162{ }^{\circ} \mathrm{C}$; yield $306 \mathrm{mg}, 75 \%$. $\mathrm{IR}(\mathrm{KBr}) v$ $\left(\mathrm{cm}^{-1}\right): 3140,2936,2852,1753,1628 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 70^{\circ} \mathrm{C}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$) $\delta(\mathrm{ppm}): 9.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}($ triazole $)$), 8.26 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 8.03\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{Ar}\right), 7.51\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{Ar}\right), 7.41(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{Ar}\right), 4.16\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 3.95-3.80\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.89$ (quintet, $\left.2 \mathrm{H},{ }^{3} J=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{2}-\right)\right), 1.75-1.56\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times\left(-\mathrm{CH}_{2}-\right)\right), 1.44-1.23\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{2}-\right)\right), 0.88\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J\right.$ $\left.=7.1 \mathrm{~Hz},\left(-\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, 70^{\circ} \mathrm{C}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 157.5,156.4,146.3,144.1,144.0$, 129.6, 128.5, 128.0, 125.4, 120.1, 115.1, 44.7, 42.5, 28.1, 27.8, 24.9, 23.9, 21.0, 13.2. HRMS (ESI):
calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{8}+\mathrm{H}^{+}\right] 417.2510$, found 417.2488 (5.2 ppm), calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{8}+\mathrm{Na}^{+}\right] 439.2329$, found 439.2310 .

Synthesis of 2-dialkylamino-9-methyl-6-[4-(4-substituted phenyl)-1,2,3-triazol-1-yl]-7-

 deazapurines 10a-f, 11a-f (Analogous as described in [2])A mixture of azide $\mathbf{3}(86 \mathrm{mg}, 0.4 \mathrm{mmol})$ and secondary amine (1.2 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was protected from daylight and stirred for $8-24 \mathrm{~h}$ at $40^{\circ} \mathrm{C}$. After completion of the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction (TLC control), the reaction mixture was cooled to rt and corresponding alkyne (0.52 mmol), DIPEA ($70 \mu \mathrm{~L}$, $0.4 \mathrm{mmol})$, $\mathrm{AcOH}(23 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ and $\mathrm{CuI}(15 \mathrm{mg}, 0.08 \mathrm{mmol})$ were added. The reaction mixture was stirred under argon atmosphere at rt for $8-10 \mathrm{~h}$ (TLC control). Then the reaction mixture was poured into aqueous 10% ammonia solution $(25 \mathrm{~mL})$, stirred for 10 minutes and extracted with CHCl_{3} $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 30 \mathrm{~mL})$, dried over anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After removal of the solvent in vacuum, the crude products were purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{EtOAc}, 6: 1\right)$ to afford compounds 10a-f, 11a-f.

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10b): yellow solid, mp $258{ }^{\circ} \mathrm{C}$ dec, yield $99 \mathrm{mg}, 66 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.01-2.11(4 \mathrm{H}, \mathrm{m}$, piperidine $\left.2 \mathrm{xCH}_{2}\right), 3.65-3.72\left(4 \mathrm{H}, \mathrm{m}\right.$, piepridine $\left.2 \mathrm{xCH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.88(1 \mathrm{H}, \mathrm{d}, J=$ $3.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.02(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.08(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.92(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, ArH), $8.79\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole-H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.6,30.7,46.9,55.3,99.5,101.6$, 114.3, 116.2, 123.1, 126.7, 127.3, 146.7, 147.0, 156.6, 156.8, 159.8. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{O}: 376.1880$; found 376.1887.

9-Methyl-6-[4-(4-(dimethylamino)phenyl)-1,2,3-triazol-1-yl]-2-pyrrolidino-7-deazapurine (10c):

 yellow solid, $\mathrm{mp} 256{ }^{\circ} \mathrm{C}$ dec, yield $106 \mathrm{mg}, 68 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.05(4 \mathrm{H}, \mathrm{m}$, pyrolidine $\left.2 \mathrm{xCH}_{2}\right), 3.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.70\left(4 \mathrm{H}, \mathrm{m}\right.$, pyrolidine $\left.2 \mathrm{xCH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.84$$(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.86(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.86(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.73\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole-H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.6,30.7,40.5,46.9,99.5$, 101.7, 112.5, 115.4, 118.6, 126.5, 126.9, 147.1, 147.3, 150.5, 156.6, 156.9. HRMS (ESI): $m / z[M+H]^{+}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{8}$: 389.2197; found 389.2202.

6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10d): yellow solid, $\mathrm{mp} 197{ }^{\circ} \mathrm{C}$ dec, yield $116 \mathrm{mg}, 80 \% .^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.06(4 \mathrm{H}, \mathrm{m}$, pyrolidine $\left.2 \mathrm{xCH}_{2}\right), 3.70\left(4 \mathrm{H}, \mathrm{m}\right.$, pyrolidine $\left.2 \mathrm{xCH}_{2}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.89(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}$, $J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.17\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=8.8 \mathrm{~Hz}, \mathrm{ArH}\right), 7.96\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{F}}=5.2\right.$ $\mathrm{Hz}, \mathrm{ArH}), 8.83\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole-H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.5,30.7,46.9,99.5,101.5,115.8$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 116.8,126.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 126.8,127.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 145.9,146.8,156.7$, 156.8, $162.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right) . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{7}: 364.1680$; found 364.1681 .

6-\{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl\}-9-methyl-2-pyrrolidino-7-deazapurine (10e):

 yellow solid, $\mathrm{mp} 246{ }^{\circ} \mathrm{C}$ dec, yield $125 \mathrm{mg}, 76 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.05-2.08(4 \mathrm{H}, \mathrm{m}$, pyrollidine $2 \mathrm{xCH}_{2}$), $3.68-3.73\left(4 \mathrm{H}, \mathrm{m}\right.$, pyrollidine $\left.2 \mathrm{xCH}_{2}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.89(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$, $6-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.09(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.93(1 \mathrm{H}$, s, triazole-H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 25.5,30.9,47.0,99.5,101.5,117.9,124.1\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270\right.$ $\mathrm{Hz}), 125.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 126.0,127.0,130.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right), 133.7,145.4,146.7,156.4,156.6$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FN}_{7}$: 414.1649; found 414.1649.6-[4-(4-Cyanophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10f): yellow solid, $\mathrm{mp} 259{ }^{\circ} \mathrm{C}$ dec, yield $117 \mathrm{mg}, 79 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.01-2.09(4 \mathrm{H}, \mathrm{m}$, pyrolidine $\left.2 \mathrm{xCH}_{2}\right)$, 3.63-3.71 ($4 \mathrm{H}, \mathrm{m}$, pyrolidine $2 \mathrm{xCH}_{2}$), $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.89(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.03$ $(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.06(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.93(1 \mathrm{H}, \mathrm{s}$, triazole-H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 25.5,30.8,46.9,99.5,101.4,111.6,118.3,118.7,126.2$,
127.1, 132.7, 134.7, 144.9, 146.5, 156.74, 156.76. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{8}$: 371.1727; found 371.1726 .

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11b): yellow solid, $\mathrm{mp} 206{ }^{\circ} \mathrm{C}$ dec, yield $93 \mathrm{mg}, 60 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.63-1.78(6 \mathrm{H}, \mathrm{m}$, piperidine $\left.3 \mathrm{xCH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.2 \mathrm{xCH}_{2}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J=3.6$ $\mathrm{Hz}, 6-\mathrm{H}), 7.02(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{ArH}) 7.07(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.93(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{ArH})$, $8.76\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole-H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.9,25.7,30.7,45.5,55.3,99.8,101.7$, $114.3,116.2,123.0,127.1,127.3,146.7,147.1,156.5,158.1,159.8$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}: 390.2037$; found 390.2049.

9-Methyl-6-[4-(4-(dimethylamino)phenyl)-1,2,3-triazol-1-yl]-2-piperidino-7-deazapurine (11c):

 yellow solid, $\mathrm{mp} 230{ }^{\circ} \mathrm{C} \mathrm{dec}$, yield $93 \mathrm{mg}, 58 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $\delta 1.65-1.77(6 \mathrm{H}, \mathrm{m}$, piperidine $3 \mathrm{xCH}_{2}$), $3.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.91\left(4 \mathrm{H}\right.$, m, piperidine $\left.2 \mathrm{xNCH}_{2}\right), 6.84(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.90(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, ArH), $8.72\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole-H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.0,25.8,30.8,40.5,45.53,99.8$, $101.9,112.5,115.4,118.5,126.9,127.1,147.30,147.35,150.5,156.5 .158 .1$. HRMS (ESI): m / z $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{8}$: 403.2353; found 403.2349.6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11d): yellow solid, $\mathrm{mp} 191-193{ }^{\circ} \mathrm{C}$, yield $102 \mathrm{mg}, 68 \% .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.64-1.75(6 \mathrm{H}, \mathrm{m}$, piperidine $\left.3 \mathrm{xCH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.90\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.2 \mathrm{xCH}_{2}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}$, $J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.17\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=8.8 \mathrm{~Hz}, \mathrm{ArH}\right), 7.96\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{F}}=5.2\right.$ $\mathrm{Hz}, \mathrm{ArH}), 8.81\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole-H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.9,25.7,30.8,45.5,99.8$, 101.6, $115.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 116.8,126.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 127.3,127.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 146.0,147.0$, 156.6, 158.1, $162.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right)$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FN}_{7}: 378.1837$; found 378.1836.

6-\{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl\}-9-methyl-2-piperidino-7-deazapurine (11e):

 yellow solid, $\mathrm{mp} 228{ }^{\circ} \mathrm{C}$ dec, yield $107 \mathrm{mg}, 63 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.66-1.78(6 \mathrm{H}, \mathrm{m}$, piperidine $\left.3 \mathrm{xCH}_{2}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.91\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.2 \mathrm{xCH}_{2}\right), 6.92(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H})$, $7.05(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.74(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.11(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.92(1 \mathrm{H}$, s, triazole-H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.9,25.7,30.8,45.5,99.8,101.5,117.9,124.1\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}\right.$ $=270 \mathrm{~Hz}), 125.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 126.1,127.5,130.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right), 133.8,145.4,146.8,156.6$, 158.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{7}$: 428.1805; found 428.18066-[4-(4-Cyanophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11f): orange solid, mp $254{ }^{\circ} \mathrm{C}$ dec, yield $115 \mathrm{mg}, 75 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $\delta 1.66-1.78(6 \mathrm{H}, \mathrm{m}$, piperidine $\left.3 \mathrm{xCH}_{2}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.91\left(4 \mathrm{H}, \mathrm{m}\right.$, piperidine $\left.2 \mathrm{xCH}_{2}\right), 6.93(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{d}$, $J=3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.77(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.11(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.95(1 \mathrm{H}, \mathrm{s}$, triazole-H$)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.9,27.8,30.8,45.5,99.8,101.5,111.7,118.3,118.7,126.3,127.6$, 132.7, 134.7, 145.1, 146.7, 156.7, 158.0. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{8}$: 385.1884; found 385.1891.

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{6 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$ in different temperatures (300 MHz).

Table S1: The ratio of tetrazole form in different temperatures for compound $\mathbf{6 b}, \%$.

Figure S2: Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{8 a}$ and $\mathbf{5}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, full spectra.

Figure S3: Emission spectra for 7-deazacompouds $\left(c=10^{-4} \mathrm{M}, c=0.5 \times 10^{-4} \mathrm{M}\right.$ for compound $\mathbf{1 0 c}$; solvent - MeCN).

Figure S4: Measurements of fluorescence decay times of compounds 8a, 8c and 11c in $\mathrm{MeCN}(c=$ $\left.10^{-4} \mathrm{M}\right)$.

Figure S5: DSC data for compound 2a.

Figure S6: DSC data for compound $\mathbf{2 b}$.

Figure S7: DSC data for compound 2c.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

2,6-Dichloro-9-heptyl-9H-purine (1a-1)

[\iint^{1}

Figure S8: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S9: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

2,6-Dichloro-9-nonyl-9H-purine (1a-2)

Figure S10: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) spectrum.

Figure S11: ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO- d_{6}) spectrum.

2,6-Dichloro-9-dodecyl-9H-purine (1a-3)

Figure S12: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S13: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

2,6-Diazido-9-heptyl-9H-purine (2a)

Figure S14: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S15: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

2,6-Diazido-9-nonyl-9H-purine (2b)

Figure S16: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) spectrum.

Figure S17: ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}) spectrum.

2,6-Diazido-9-dodecyl-9H-purine (2c)

Figure S18: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S19: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

2,6-Bis(4-phenyl-1H-1,2,3-triazol-1-yl)-9-heptyl-9H-purine (4)

Figure S20: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	-10

Figure S21: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Heptyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-6-piperidino-9H-purine (5)

Figure S22: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 70^{\circ} \mathrm{C}$, DMSO- d_{6}) spectrum.

Figure S23: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, 70^{\circ} \mathrm{C}$, DMSO- d_{6}) spectrum.

6-Azido-9-heptyl-2-pyrrolidino-9H-purine (6a)

Figure S24: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

$$
\begin{aligned}
& \stackrel{0}{\stackrel{1}{1}}
\end{aligned}
$$

Figure S25: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-Azido-9-heptyl-2-piperidino-9H-purine (6b)

Figure S26: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.
ハ

Figure S27: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Heptyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-pyrrolidino-9H-purine (7a)

Figure S28: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 70^{\circ} \mathrm{C}$, $\mathrm{DMSO}-d_{6}+\mathrm{D}_{2} \mathrm{O}$) spectrum.

Figure S29: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, 70^{\circ} \mathrm{C}$, DMSO- $d_{6}+\mathrm{D}_{2} \mathrm{O}$) spectrum.

9-Heptyl-6-(4-(4-metoxyphenyl)-1H-1,2,3-triazol-1-yl)-2-pyrrolidino-9H-purine (7b)

Figure S30: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S31: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Heptyl-6-(4-(4-dimethylaminophenyl)-1H-1,2,3-triazol-1-yl)-2-pyrrolidino-9H-purine (7c)

Figure S32: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S33: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9H-purine (7d)

Figure S34: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) spectrum.

Figure S35: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, 70^{\circ} \mathrm{C}$, DMSO- d_{6}) spectrum.

6-(4-(4-Trifluoromethylphenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9H-purine (7e)

Figure S36: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

$\stackrel{m}{\gamma} \underset{\sim}{\sim} \dot{\sim}$

Figure S37: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-(4-(4-Cianophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-pyrrolidino-9H-purine (7f)

Figure S38: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

서숭

Figure S39: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Heptyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (8a)

Figure S40: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S41: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Heptyl-6-(4-(4-metoxyphenyl)-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (8b)

Figure S42: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S43: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Heptyl-6-(4-(4-dimethylaminophenyl)-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (8c)

Figure S44: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S45: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9H-purine (8d)

S $\underbrace{}_{7.22}$

	'ơ			'סָּ		্ָত			రino		
10.5	9.5	8.5	7.5	6.5	5.5	4.5	3.5	2.5	1.5	0.5	-0.5

Figure S46: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S47: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S48: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S49: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-(4-(4-Cianophenyl)-1H-1,2,3-triazol-1-yl)-9-heptyl-2-piperidino-9H-purine (8f)

Figure S50: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S51: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Pentyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-piperidino-9H-purine (9)

Figure S52: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 70^{\circ} \mathrm{C}$, DMSO- d_{6}) spectrum.

Figure S53: ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, 70^{\circ} \mathrm{C}$, DMSO- d_{6}) spectrum.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 -deazapurines (10a-f, 11a-f)

Figure S54: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S55: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10b)

Figure S56: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S57: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

9-Methyl-6-[4-(4-dimethylaminophenyl)-1,2,3-triazol-1-yl]-2-pyrrolidino-7-deazapurine (10c)

Figure S58: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S59: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10d)

Figure S60: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S61: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum.

6-\{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl\}-9-methyl-2-pyrrolidino-7-deazapurine (10e)

Figure S62: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S63: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-[4-(4-Cyanophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-pyrrolidino-7-deazapurine (10f)

Figure S64: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S65: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum.

Figure S66: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S67: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S68: COSY spectrum of compound 11a.

Figure S69: ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}-\mathrm{HSQC}$ spectrum of compound 11a.

6-[4-(4-Methoxyphenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11b)

Figure S70: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S71: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum.

Figure S72: COSY spectrum of compound 11b.

9-Methyl-6-[4-(4-dimethylaminophenyl)-1,2,3-triazol-1-yl]-2-piperidino-7-deazapurine (11c)

Figure S73: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S74: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum.

6-[4-(4-Fluorophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11d)

Figure S75: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S76: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

6-\{4-[4-(Trifluoromethyl)phenyl]-1,2,3-triazol-1-yl\}-9-methyl-2-piperidino-7-deazapurine (11e)

Figure S77: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S78: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum.

6-[4-(4-Cyanophenyl)-1,2,3-triazol-1-yl]-9-methyl-2-piperidino-7-deazapurine (11f)

Figure S79: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Figure S80: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum.

Toxicity and cell imaging data

Figure S81: Cytotoxicity effects of the studied compounds to MCF7, MDAMB231 and MCF-10A cell lines.

Compound 11a

Compound 8c

Figure S82: Cell imaging using compounds 11a, 11b and 8c (Material: $100 \mu \mathrm{M}$ (DMSO 5%), 1 h , cell: MCF10A Exposure: passed separately through filter ($365 \pm 20 \mathrm{~nm}$); em >420 nm.

References

[1] Kovaļovs, A.; Novosjolova, I.; Bizdēna, Ē.; Bižāne, I.; Skardziute, L.; Kazlauskas, K.; Jursenas, S.; Turks, M. Tetrahedron Lett. 2013, 54, 850-853. doi:10.1016/j.tetlet.2012.11.095
[2] Bucevicius, J.; Turks, M.; Tumkevicius, S. Synlett 2018, 29, 525-529. doi:10.1055/s-0036-159094

[^0]: *This signal was assigned from HSQC spectrum.

[^1]: ${ }^{\dagger}$ This signal was assigned from HSQC spectrum.

[^2]: ${ }^{\ddagger}$ This signal was assigned from HSQC spectrum.

