Supporting Information

for

Tuning the stability of alkoxyisopropyl protection groups

Zehong Liang, Henna Koivikko, Mikko Oivanen and Petri Heinonen

Experimental details and analytical data
Table of Contents

1. General methods ... S1
2. Experimental details and analytical data ... S1
3. References ... S14
4. Appendix for SI: Calculation of first order rate constants by linear regression analysis of the chromatographic data ... S15

1. General methods

The NMR spectra were recorded on Varian INOVA 500 MHz, Varian Gemini 300 MHz, Bruker Avance Neo 500 MHz or Bruker Avance Neo 600 MHz NMR spectrometers. The chemical shifts are given in ppm using the solvent signal for calibration of the ppm scale. The high-resolution mass spectra were recorded on a Bruker Micro-TOF mass spectrometer with ESI-ionization or JEOL JMS-700 spectrometer with EI-ionization (compound 1e).

2. Experimental details and analytical data

Kinetic methods.

The composition of samples withdrawn from reaction solutions at appropriate intervals were determined by RP HPLC. The reaction vials were incubated in a water bath, temperature of which was maintained at 25.0 °C ± 0.1 °C. The buffer solutions of known pH and concentration of 50 mM were prepared from acetic acid and sodium acetate (pH 4.94), citric acid partially neutralized with KOH (pH 5.61) and potassium dihydrogen phosphate partially neutralized with KOH (pH 6.82). The ionic strength of the solutions was adjusted with KCl to 0.30 M. The kinetic measurement was started by mixing the substrate sample (200 μL in DMSO) into the pre-thermostated reaction
solution (5 mL). The initial substrate concentration in the reaction solutions was 0.15 mg/mL. The first sample was withdrawn immediately after the mixing. The hydrolysis reaction was quenched by pipetting the withdrawn sample onto 50 mM sodium bicarbonate solution kept in an ice bath. The RP HPLC analyses were performed using commercial ODS Hypersil (250 x 4 mm, 5μ) column eluted with an isocratic mixture of acetonitrile and 0.050 M phosphate buffer at pH 7.00. The acetonitrile percentage was adjusted for each studied compound so that the total HPLC analysis time of a sample was around 10 min.
Table SI-1. First-order rate constants for hydrolysis of the acetal derivatives of 2’-deoxythymidines 4a–e, 7a,c–e and the enol ether derivative 8b in pH region 4.92–6.82 at 25.0 °C. The ionic strength of the solutions was adjusted to 0.3 M with KCl.

<table>
<thead>
<tr>
<th>Compound</th>
<th>k_{obs}/s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 4.94</td>
</tr>
<tr>
<td>4a</td>
<td>$(1.89 \pm 0.01) \cdot 10^{-3}$</td>
</tr>
<tr>
<td>4b</td>
<td>$(1.20 \pm 0.02) \cdot 10^{-4}$</td>
</tr>
<tr>
<td>4c</td>
<td>$(1.45 \pm 0.02) \cdot 10^{-2}$</td>
</tr>
<tr>
<td>4d</td>
<td>$(1.40 \pm 0.02) \cdot 10^{-2}$</td>
</tr>
<tr>
<td>4e</td>
<td>$(6.03 \pm 0.17) \cdot 10^{-3}$</td>
</tr>
<tr>
<td>7a</td>
<td>$(8.38 \pm 0.17) \cdot 10^{-4}$</td>
</tr>
<tr>
<td>7c</td>
<td>$(1.22 \pm 0.03) \cdot 10^{-2}$</td>
</tr>
<tr>
<td>7d</td>
<td>$(8.45 \pm 0.08) \cdot 10^{-3}$</td>
</tr>
<tr>
<td>7e</td>
<td>$(3.23 \pm 0.10) \cdot 10^{-3}$</td>
</tr>
<tr>
<td>8b</td>
<td>$(7.51 \pm 0.10) \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>

Figure S1. pH–rate profiles for the acetal hydrolysis of 4a–e, 7a, and 7b–e. For conditions see Table S1.
Synthesis of compounds and analytical data.

Compound 1a was purchased from Sigma-Aldrich. Compounds 1b [1], and 1c and 1d [2] were prepared according to the published methods.

Synthesis of the protecting group 1e.

![Chemical Reaction Diagram]

Scheme S1. Synthesis of 2-trifluoroethoxypropene 1e. (i) CF₃CH₂ONa, THF; (ii) heating.

3-(2,2,2-Trifluoroethoxy)but-2-enoic acid (10). To the solution of 2,2,2-trifluoroethanol (14.0 ml, 0.140 mol) in dry THF (100 ml) was added NaH (7.0 g, 0.292 mol) in small portions. A mixture of (E/Z)-3-chlorobut-2-enoic acid (9) and 3,3-dichlorobutanoic acid (7.71 g, containing 5.94 g, 0.049 mol compound 9) [2] was added dissolved in dry THF. The reaction mixture was refluxed under argon for 18 h and the reaction was monitored by ¹⁹F NMR. Water (150 ml) was carefully added and the mixture was washed with ether. The aqueous phase was acidified with conc. aqueous HCl and the product extracted with ether (3 x 150 ml). The ethereal phases were combined, dried over MgSO₄ and the solvent removed by rotary evaporation. The white precipitate dried in high vacuum (9.06 g, 0.049 mol) was used without further purification. An analytical sample was recrystallized from methanol. Melting point 116.7 °C. ¹H-NMR (500 MHz, DMSO-d₆) δ 11.80 (s, 1H, COOH), 5.13 (s, 1H), 4.56 (q, J_F-H = 8.7 Hz, 2H, OCH₂CF₃), 2.22 (s, 3H, CH₃). ¹³C NMR (75 MHz, DMSO-d₆) δ 168.78, 167.79, 123.5 (q, J_C-F = 276 Hz), 94.04, 64.26 (q, J_C-F = 35 Hz), 17.78. HRMS (ESI -): [M-H⁺] calculated for C₆H₆F₃O₃ 183.0275, found 183.0279.
2-(2,2,2-Trifluoroethoxy)prop-1-ene (1e). Compound 10 (3.45 g, 18.7 mmol) was placed in a micro distillation apparatus connected to an argon flow. The distillation flask was heated with a heating gun (300 °C) and the product collected distilling at 149 °C. Yield 2.24 g, 16 mmol, 86 %. 1H-NMR (500 MHz, DMSO-d_6) δ 4.33 (q, J_{F-H} = 8.5 Hz, 2H, OCH$_2$CF$_3$), 4.05 (m, 2H, =CH$_2$), 1.80 (s, 3H, CH$_3$). 13C-NMR (125 MHz, DMSO-d_6) δ 157.7, 123.9 (q, J_{F-C} = 276 Hz), 84.0, 64.0 (q, J_{F-C} = 35 Hz), 19.8. 19F-NMR (282 MHz, DMSO-d_6): δ -73.7 (t, J_{F-H} = 8.5 Hz). HRMS (EI+): [M]$^+$ calculated for C$_5$H$_7$F$_3$O$^+$ 140.0449 found 140.0451.

Synthesis of the protected nucleosides.

3'-O-Benzoyl-5'-O-(2-methoxypropan-2-yl)-2'-deoxythymidine (3a). Compound 2 (0.50 g, 1.45 mmol) was dissolved in dry THF (10 ml) and 2-methoxypropene (Sigma-Aldrich, 0.97 ml, 10.2 mmol) was added. p-Toluenesulphonic acid monohydrate (0.5 mol %, 0.0073 ml, 0.1 M solution) was added dissolved in dry THF. The reaction was stopped after 4 min by addition of triethylamine (1 ml). The reaction mixture was diluted with dichloromethane (100 ml) and washed with aqueous NaHCO$_3$ (2 x 50 ml) and aqueous NaCl (50 ml). The combined aqueous phases were extracted with DCM (50 ml). The combined organic phases were dried over Na$_2$SO$_4$ and the solvent was removed by rotary evaporation. The silica gel chromatography (0–4% methanol in DCM containing 0.1% TEA) yielded 0.49 g (81%) of 3a as solid foam. 1H-NMR (300 MHz, CDCl$_3$): δ 8.13 (b, 1H, NH), 8.05 (m, 2H, Bz-o), 7.68 (m, 1H, H6), 7.61 (m, 1H, Bz-p), 7.48 (m, 2H, Bz-m), 6.50 (dd, J = 14.5 Hz, 3.3 Hz, 1H, H1´), 5.55 (td, J = 6.0 Hz, 3.3 Hz, 1H, H3´), 4.37 (m, 1H, H4´), 3.78 (m, 2H, H5’/5’’), 3.28 (s, 3H, MIP-OMe), 2.60-2.52 (m, 1H, H2´), 2.38-2.27 (m, 1H, H2´´), 1.96 (d, J = 1.2 Hz, 3H, dTMMe), 1.44 (s, 6H, 2*Me in ketal). 13C-NMR (125 MHz, CDCl$_3$) δ 166.4, 164.1, 150.8, 135.6, 133.9, 130.0, 129.4, 128.8, 111.5, 100.7, 85.0, 84.3, 76.3, 61.5, 49.2, 38.3, 24.8, 24.7, 12.8. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{21}$H$_{26}$N$_2$O$_7$Na$^+$ 441.1632 found 441.1619.
3'-O-Benzoyl-5'-O-(2-benzoxypolan-2-yl)-2'-deoxythymidine (3b). Was prepared from 2 and 1b (7 equiv) as described for 3a. Yield 70.3%. 1H-NMR (500 MHz, DMSO-d6) δ 11.4 (s, 1, NH), 8.00 (m, 2H, Bz-o), 7.69 (m, 1H, Bz-p), 7.63 (s, 1H, H6), 7.54 (m, 2H, Bz-m), 7.3-7.2 (m, 5H, Bn-o, Bn-p, Bn-m), 6.30 (m, 1H, H1’), 4.46 (s, 2H, Bn-CH2), 5.49 (m, 1H, H3’), 4.30 (m, 1H, H4’), 3.74 (m, 2H, H5’/H5’’), 2.50 (m, 2H, H2’/H2’’), 1.78 (s, 3H, dTMe), 1.42 (2s, 6H, 2*Me in ketal). 13C-NMR (125 MHz, DMSO-d6): δ 165.2, 163.6, 150.4, 138.5, 135.6, 133.6, 129.3, 128.7, 128.1, 127.5, 127.2, 109.7, 100.2, 83.9, 82.6, 75.3, 62.6, 61.1, 36.4, 24.7 (2 peaks), 12.1. HRMS (ESI +): [M+Na]+ calculated for C27H30N2O7Na+ 517.945 found 517.1952.

3'-O-Benzoyl-5'-O-(2-cyclohexyloxypolan-2-yl)-2'-deoxythymidine (3c). Was prepared from 2 and 1c (7 equiv) as described for 3a. Yield 78%. 1H-NMR (500 MHz, Acetone-d6): δ 9.99 (bs, 1H, NH), 8.09 (m, 2H, Bz-o), 7.73 (m, 1H, H6), 7.67 (m, 1H, Bz-p), 7.54 (m, 2H, Bz-m), 6.45 (m, 1H, H1’), 5.58 (m, 1H, H3’), 4.38 (m, 1H, H4’), 3.82-3.92 (m, 2H, H5’/H5’’), 3.76 (m, 1H, Chx), 2.54 (m, 2H, H2’/H2’’), 1.89 (m, 5H, dTMe and Chx), 1.68 (m, 2H, Chx), 1.44-1.51 (m, 7H, 2*Me in ketal and Chx), 1.10-1.35 (m, 5H, Chx). 13C-NMR (125 MHz, Acetone-d6): δ 165.7, 163.5, 150.6, 135.7, 130.2, 129.7, 128.8, 110.3, 100.7, 84.6, 84.0, 76.1, 69.5, 61.5, 37.6, 34.7, 34.7, 25.8, 25.7, 25.6, 24.5, 24.4. 12.1. HRMS (ESI +): [M+Na]⁺ calculated for C26H34N2O7Na⁺ 509.2258 found 509.2239.

3'-O-Benzoyl-5'-O-(2-isopropyloxypolan-2-yl)-2'-deoxythymidine (3d). The compound was prepared from 2 and 1d (7 equiv) as described for 3a. Yield 74%. 1H-NMR (500 MHz, DMSO-d6) δ 11.37 (s, 1H, NH), 8.02 (m, 2H, o-Bz), 7.70 (m, 1H, p-Bz), 7.62 (m, 1H, H6), 7.55 (m, 2H, m-Bz), 6.29 (m, 1H, H1’), 5.45 (m, 1H, H3’), 4.28 (m, 1H, H4’), 3.97 (m, 1H, CHMe2), 3.71 (m, 2H, H5’), 2.44 – 2.51 (m, 2H, H2’, overlapping with DMSO signal), 1.80 (m, 3H, dTMe), 1.34 (2s,
6H, 2*Me), 1.08 (m, 6H, CH(CH₃)₂).

13C-NMR (125 MHz, DMSO-d_6) δ 165.2, 163.6, 150.4, 135.6, 133.6, 129.4, 129.3, 129.2, 128.8, 109.6, 100.1, 83.9, 82.9, 75.4, 62.8, 61.2, 36.5, 25.6, 25.5, 24.2, 12.2. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{23}$H$_{30}$N$_2$O$_7$Na$^+$ 469.1945 found 469.1943.

3'-O-Benzoyl-5'-O-(2-(2,2,2-trifluoroethoxy)propan-2-yl)-2'-deoxythymidine (3e). The compound was prepared from 2 and 1e (7 equiv) as described for 3a except the reaction time was over night. Yield 35%.

1H-NMR (500 MHz, DMSO-d_6): δ 11.36 (s, 1H, NH), 8.9 (m, 2H, Bz-o), 7.68 (m, 1H, Bz-p), (7.55, m, 3H, Bz-m and H6), 6.27 (dd, $J = 8.1$, 6.3 Hz, 1H, H1'), 5.45 (m, 1H, H3'), 4.26 (m, 1H, H4'), 3.99 (m, 2H, CF$_3$CH$_2$O), 3.72 (m, 2H, H5'/H5''), 2.41–2.56 (m, 2H, H2'/H2''), 1.80 (s, 3H, dTMe), 1.38 (s, 6H, 2*Me in ketal).

13C-NMR (125 MHz, DMSO-d_6): δ 165.2, 163.6, 150.4, 135.6, 133.6, 129.3, 128.7, 124.6 (q, $J_{C-F} = 278$ Hz), 109.7, 101.0, 83.8, 82.2, 74.9, 61.4, 58.7 (q, $J_{C-F} = 32$ Hz), 36.1, 24.3, 24.2, 12.1. 19F-NMR (282 MHz, DMSO-d_6): δ -73.0 (t, $J_{F-H} = 9.3$ Hz).

HRMS (ESI +): [M+H]$^+$ calculated for C$_{22}$H$_{25}$N$_2$O$_7$H$^+$ 487.1687 found 487.1697.

5'-O-(2-Methoxypropan-2-yl)-2'-deoxythymidine (4a). 3a (2.7 g, 6.45 mmol) was dissolved in methanol (100 ml) and concentrated aqueous ammonia (100 ml) was added. The reaction mixture was stirred overnight, concentrated and evaporated several times with ethanol and toluene to remove ammonia and water. Purification by silica gel chromatography (3–5% methanol in DCM containing 0.1% TEA) yielded 1.68 g (83%) of 4a as a solid foam. 1H-NMR (500 MHz, DMSO-d_6): δ 11.28 (s, 1H, NH), 7.54 (m, 1H, H5), 6.17 (m, 1H, H1), 5.28 (d, $J = 4.3$ Hz, 1H, 3’OH), 4.24 – 4.17 (m, 1H, H3’), 3.86 (m, 1H, H4’), 3.50 (m, 2H, H5'/H5'’), 3.09 (s, 3H, MeO), 2.17 – 2.02 (m, 2H, H2’/H2’’), 1.77 (d, $J = 1.2$ Hz, 3H, dTMe), 1.28 (s, 6H, 2*Me).

13C-NMR (125 MHz, DMSO-d_6): δ 163.6, 150.4, 135.7, 109.3, 99.6, 85.4, 83.7, 70.7, 60.8, 47.9, 24.2, 24.2, 12.1. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{14}$H$_{22}$N$_2$O$_6$Na$^+$ 337.1370 found 337.1365. Spectroscopic data of the compound match with the data reported earlier. [3]
5'-O-(2-Benzylxylopropan-2-yl)-2'-deoxythymidine (4b). The compound was prepared from 3b as described for 4a. Yield 98%. 1H-NMR (500 MHz, DMSO-d_6): δ 11.28 (s, 1H, NH), 7.53 (m, 1H, H6), 7.31 (m, 2H, Bn-o), 7.31 (m, 1H, Bn-p), 7.24 (m, 2H, Bn-m), 6.18 (m 1H, H1’), 5.30 (d, J=5.0 Hz, 1H, 3'-OH), 4.43 (s, 2H, Bn-CH2), 4.26 (m, 1H, H3’), 3.89 (m, 1H, H4’), 3.62 (m, 2H, H5'/5’’), 2.13 (m, 2H, H2'/2’’), 1.76 (s, 3H, dTMe), 1.39 (2*s, 6H, 2*Me). 13C-NMR (125 MHz, DMSO-d_6): δ 163.6, 150.4, 138.6, 135.8, 128.1, 127.4, 127.1, 109.5, 100.0, 85.2, 83.6, 70.5, 62.4, 61.0, 39.2, 24.8, 24.7, 12.1. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{20}$H$_{26}$N$_2$O$_6$Na$^+$ 413.1683 found 413.1696.

5'-O-(2-Cyclohexyloxypropan-2-yl)-2'-deoxythymidine (4c). Was prepared from 3c as described for 4a. Yield: quantitative. 1H-NMR (500 MHz, DMSO-d_6): δ 11.27 (s, 1H, NH), 7.49 (s, 1H, H6), 6.16 (m, 1H, H1’), 5.27 (d, J=5.0 Hz, 1H, 3’-OH), 4.21 (m, 1H, H3’), 3.81 (m, 1H, H4’), 3.63–3.50 (m, 3H, H5'/5’’ and Chx), 2.14 (m, 2H, H2'/2’’), 1.79 (m, 5H, dTMe and Chx), 1.6 (m, 2H, Chx), 1.45 (m, 1H, Chx), 1.31 (s, 6H, 2*Me), 1.19–1.09 (m, 5H, Chx). 13C-NMR (75 MHz, DMSO-d_6): δ 163.6, 150.4, 135.9, 109.3, 99.9, 85.2, 83.4, 70.3, 68.7, 60.9, 34.2, 25.7, 25.6, 25.1, 24.1, 12.2. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{19}$H$_{30}$N$_2$O$_6$Na$^+$ 405.1996 found 405.1994.

5'-O-(2-Isopropyloxypropan-2-yl)-2'-deoxythymidine (4d). The compound was prepared from 3d as described for 4a. Yield 89%. 1H-NMR (600 MHz, DMSO-d_6) δ 11.29 (s, 1H, NH), 7.51 (m, 1H, H6), 6.15 (m, 1H, H1’), 5.30 (d, J=4.4 Hz, 1H, 3’OH) 4.21 (m, 1H, H3’), 3.93 (m, 1H, CHMe$_2$), 3.83 (m, 1H, H4’), 3.50 – 3.60 (m, 2H, H5’), 2.05 – 2.15 (m, 2H, H2’), 1.78 (m, 3H, dTMe), 1.30 (s, 6H, 2*Me), 1.08 (m, 6H, CH(CH$_3$)$_2$). 13C-NMR (150 MHz, DMSO-d_6): δ 163.6, 150.4, 135.8, 109.3, 99.9, 85.4, 83.6, 70.6, 62.6, 61.1, 39.3*, 25.6, 25.6, 24.3, 24.2, 12.1. *C2’ (39.3 ppm) under
the DMSO-d$_6$ signal verified by HSQC-spectrum. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{16}$H$_{26}$N$_2$O$_6$Na$^+$ 365.1683 found 365.1697.

5'-O-(2-(2,2,2-Trifluoroethoxy)propan-2-yl)-2'-deoxythymidine (4e). The compound was prepared from 3e as described for 4a. Yield 67%. 1H-NMR (500 MHz, DMSO-d$_6$): δ 11.28 (s, 1H, NH), 7.45 (m, 1H, H6), 6.16 (m, 1H, H1), 5.30 (d, $J = 4.5$ Hz, 1H, 3’OH), 4.24 – 4.19 (m, 1H, H3’), 3.98 – 3.90 (m, 2H, CF$_3$CH$_2$O), 3.84 - 3.80 (m, 1H, H4’), 3.63-3.50 (m, 2H, H5’/H5’’), 2.20 – 2.05 (m, 2H, H2’/H2’’), 1.77 (d, $J = 1.2$ Hz, 3H, Me), 1.36 (s, 6H, 2*Me). 13C-NMR (125 MHz, DMSO-d$_6$): δ 163.6, 150.4, 135.8, 124.7 (q, $J_{C-F} = 276$ Hz), 109.5, 100.7, 84.8, 84.5, 70.3, 61.4, 58.6 (q, $J_{C-F} = 34$ Hz), 38.9, 24.3, 24.2, 12.1. 19F-NMR (282 MHz, DMSO-d$_6$): δ -72.9 (t, $J_{F-H} = 9.4$ Hz). HRMS (ESI +): [M+Na]$^+$ calculated for C$_{15}$H$_{21}$F$_3$N$_2$O$_6$Na$^+$ 405.1244 found 405.1226.

3'-O-(2-Methoxypropan-2-yl)-5'-O-tert-butylmethylsilyl-2'-deoxythymidine (6a). 5'-O-tert-Butylmethylsilyl-2'-deoxythymidine, (5, 200 mg, 0.56 mmol) was dissolved in dry THF (2 mL). Then 2-methoxypropene (Sigma-Aldrich, 0.376 ml, 3.9 mmol, 7 equiv) was added, followed by p-toluenesulphonic acid monohydrate (28 μL, 0.1 M solution in dry THF, 2.8 μmol, 0.5 mol %). The reaction was monitored by TLC and when completed, triethylamine (0.2 ml) and dichloromethane (50 ml) were added. The mixture was washed with aqueous NaHCO$_3$ (2 x 25 ml) and brine (25 ml). The combined aqueous phases were extracted with DCM (25 ml). The combined organic phases were dried over Na$_2$SO$_4$ and the solvent was removed by rotary evaporation. The silica gel chromatography (20% EtOAc to 50% EtOAc in hexane containing 0.1% TEA) yielded 233 mg (97%) of 6a as solid foam. 1H-NMR (500 MHz, DMSO-d$_6$): δ 11.32 (s, 1H, NH), 7.42 (m, 1H, H6), 6.12 (m, 1H, H1’), 4.33 (m, 1H, H3’), 3.91 (m, 1H, H4’), 3.70-3.79 (m, 2H, H5’/H5’’), 3.10 (s, 3H, MeO), 2.12-2.15 (m, 2H, H2’/H2’’), 1.77 (d, $J = 1.2$ Hz, 3H, Me), 1.28 (s, 6H, 2*Me), 0.88 (s, 9H, Me).
TBS), 0.07 (2*s, 6H, TBS). 13C-NMR (125 MHz, DMSO-d_6): δ 163.5, 150.3, 135.3, 109.5, 85.3, 83.9, 70.1, 63.0, 48.2, 38.1, 25.7, 25.0, 24.9, 17.9, 12.2, -5.6, -5.6. [M+Na]$^+$ calculated for C$_{26}$H$_{36}$N$_2$O$_6$SiNa$^+$. 451.2235 found 451.2248.

3′-O-(2-Cyclohexyloxypropan-2-yl)-5′-O-tert-butyldimethylsilyl-2′-deoxythymidine (6c). The compound was prepared from 5 and 1c as described for 6a, yield 88%. 1H-NMR (500 MHz, DMSO-d_6): δ 11.33 (s, 1H, NH), 7.45 (m, 1H, H6), 6.12 (dd, J = 9.1, 5.6 Hz, 1H, H1′), 4.42 (m, 1H, H3′), 3.96 (m, 1H, H4′), 3.71-3.79 (m, 2H, H5′/H5′′), 3.61 (m, 1H, Chx), 2.04-2.16 (m, 2H, H2′/H2′′), 1.61-1.76 (m, 7H, dTMe and Chx), 1.45 (m, 1H, Chx), 1.10-1.30 (m, 11H, 2*Me and Chx), 0.88 (s, 9H, TBS), 0.08 (2*s, 6H, TBS). 13C-NMR (125 MHz, DMSO-d_6): δ 163.6, 150.4, 135.2, 109.5, 100.7, 85.9, 84.1, 70.7, 68.4, 63.2, 38.4, 34.3, 34.0, 26.6, 26.2, 25.7, 25.1, 24.0, 23.9, 18.0, 12.2, -5.5, -5.6. [M+Na]$^+$ calculated for C$_{25}$H$_{44}$N$_2$O$_6$SiNa$^+$ 519.2861 found 519.2860.

3′-O-(2-Isopropyloxypropan-2-yl)-5′-O-tert-butyldimethylsilyl-2′-deoxythymidine (6d). The compound was prepared from 5 and 1d as described for 6a. Yield 74%.

1H-NMR (500 MHz, CDCl$_3$) δ 8.48 (bs, 1H, NH), 7.54 (m, 1H, H6), 6.35 (m, 1H, H1′), 4.50 (m, 1H, H3′), 4.07 (m, 1H, H4′), 4.00 (hept, J = 6.2 Hz, 1H, CHMe$_2$), 3.84 (m, 2H, H5′), 2.27 (m, 1H, H2′), 2.01 (m, 1H, H2′′), 1.91 (m, 3H, dTMe), 1.34 (2*s, 6H, 2*Me), 1.13 (2*d, J = 6.1 Hz, 6H, CH(CH$_3$)$_2$), 0.92 (s, 9H, SiC(CH$_3$)$_3$), 0.12 (2*s, 6H, Si(CH$_3$)$_2$). 13C-NMR (125 MHz, CDCl$_3$) δ 163.8, 150.5, 135.7, 111.0, 101.1, 87.3, 85.5, 71.5, 63.7, 63.4, 40.6, 27.1, 26.6, 26.1, 24.7, 24.5, 18.6, 12.7, -5.2, -5.3. HRMS (ESI +): [M+H]$^+$ calculated for C$_{22}$H$_{41}$N$_2$O$_6$Si$^+$ 457.2728 found 457.2741.
3'-O-(2-(2,2,2-Trifluoroethoxy)propan-2-yl)-5'-O-tert-butyldimethylsilyl-2'-deoxythymidine (6e).

The compound was prepared from 5 and 1e as described for 6a except that the reaction time was 18h, yield 33%.

1H-NMR (600 MHz, DMSO-d6): δ 11.3 (bs, 1H, NH), 7.45 (m, 1H, H6), 6.12 (m, 1H, H1’), 4.38 (m, 1H, CH2CF3 and H4’), 3.70 – 3.78 (m, 2H, H5’/H5’’), 2.12 – 2.20 (m, 2H, H2’/H2’’), 1.77 (m, 3H, dTMe), 1.36 (s, 6H, 2*Me), 0.87 (s, 9H, SiC(CH3)3), 0.07 (2*s, 6H, Si(CH3)2). 13C-NMR (150 MHz, DMSO-d6): δ 164.1, 150.9, 135.8, 125.1 (q, JCF = 277.5 Hz), 110.1, 102.0, 85.7, 84.4, 71.8, 63.5, 59.4 (q, JCF = 33.4 Hz), 26.2, 25.5, 25.5, 18.4, 12.7, -5.1, -5.2. HRMS (ESI +): [M+H]⁺ calculated for C21H36F3N2O6Si⁺ 497.2289 found 497.2306.

3'-O-(2-Methoxypropan-2-yl)-2'-deoxythymidine (7a). Compound 6a (0.377 g, 0.88 mmol) was dissolved in dry THF (20 mL) and TBAF (0.53 g, 2.0 mmol) was added. The reaction was monitored by TLC and when completed (1.5 h), dichloromethane (150 ml) was added. The mixture was washed with aqueous NaHCO3 (2 x 50 ml) and aqueous NaCl (50 ml). The combined aqueous phases were extracted with DCM (100 ml). The combined organic phases were dried over Na2SO4 and solvent was removed by rotary evaporation. The silica gel chromatography (from 1:1 EtOAc/hexane to EtOA containing 0.1% TEA) yielded 0.20 g (72%) of 7a as solid foam. 1H-NMR (500 MHz, DMSO-d6): δ 11.27 (bs, 1H, NH), 7.67 (m, 1H, H6), 6.12 (m, 1H, H1’), 5.07 (t, J = 5.2 Hz, 1H, 5’OH), 4.37 (m, 1H, H3’), 43.86 (m, 1H, H4’), 3.53 – 3.87 (m, 2H, H5’/H5’’), 3.09 (s, 3H, MeO), 2.08 – 2.20 (m, 2H, H2’/H2’’), 1.77 (s, 3H, dTMe), 1.28 (s, 6H, 2*Me). 13C-NMR (125 MHz, DMSO-d6): 164.4, 151.2, 136.6, 110.1, 101.1, 86.6, 84.5, 70.9, 61.9, 48.9, 39.1, 25.8, 25.6, 12.9. HRMS (ESI +): [M+Na]⁺ calculated for C14H30N2O6Na⁺ 337.1370 found 337.1366.
3'-O-(2-Cyclohexyloxypropan-2-yl)-2'-deoxythymidine (7c). The compound was prepared from 6c as described for 7a. Yield 75%. 1H-NMR (500 MHz, Acetone-d_6): δ 9.95 (bs, 1H, NH), 7.79 (m, 1H, H6), 6.29 (dd, J = 8.9, 5.7 Hz, 1H, H1’), 4.62 (m, 1H, H3’), 4.33 (t, J = 4.9, 1H, 5’-OH), 4.02 (m, 1H, H4’), 3.80 (m, 2H, H5’/H5”), 3.70 (m, 1H, Chx), 2.15-2.31 (m, 2H, H2’/H2”), 1.81 (m, 5H, dTMe and Chx), 1.70 (m, 2H, Chx), 1.50 (m, 1H, Chx), 1.27-136 (m, 10H, 2*Me and Chx), 1.20 (m, 1H, Chx). 13C-NMR (125 MHz, Acetone-d_6): δ 164.3, 151.5, 137.0, 110.8, 101.7, 87.9, 85.9, 72.2, 69.8, 62.9, 40.2, 35.5, 35.4, 27.2, 27.0, 26.4, 25.2, 25.1, 12.6. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{19}$H$_{30}$N$_2$O$_6$Na$^+$ 405.1996 found 405.1993.

3'-O-(2-Isopropoxypropan-2-yl)-2'-deoxythymidine (7d). The compound was prepared from 6d as described for 7a. Yield 85%. 1H-NMR (500 MHz, Acetone-d_6) δ 10.0 (bs, 1H, NH), 7.82 (m, 1H, H6), 6.30 (m, 1H, H1’), 4.62 (m, 1H, H3’), 4.06 (m, 1H, CHMe$_2$) 4.04 (m, 1H, H4’), 3.82 (m, 2H, H5’/H5”), 2.19 – 2.33 (m, 2H, H2’/H2”), 1.82 (m, 3H, dTMe), 1.36 (2*s, 6H, 2*Me), 1.14 (m, 6H, CH(CH$_3$)$_2$). 13C-NMR (125 MHz, Acetone-d_6) δ 163.4, 150.6, 136.1, 109.9, 100.7, 87.0, 85.0, 71.3, 62.8, 62.0, 39.4, 26.2, 26.0, 24.0, 23.9, 11.7. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{16}$H$_{26}$N$_2$O$_6$Na$^+$ 365.1683 found 365.1671

3'-O-(2-(2,2,2-Trifluoroethoxy)propan-2-yl)-2'-deoxythymidine (7e). The compound was prepared from 6e as described for 7a. Yield 88%. 1H-NMR (500 MHz, Acetone-d_6) δ 9.92 (bs, 1H, NH), 7.77 (m, 1H, H6), 6.28 (m, 1H, H1’), 4.63 (m, 1H, H3’), 4.36 (t, J = 5.0 Hz, 1H, 5’OH), 3.97 – 4.07 (m, 3H, OCH$_2$CF$_3$ and H4’), 3.78 – 3.81 (m, 2H, H5’/H5”), 2.24 – 2.35 (m, 2H, H2’/H2”), 1.81 (m, 3H, dTMe), 1.45 (2*s, 6H, 2*Me). 13C NMR (125 MHz, Acetone-d_6) δ 164.2, 164.1, 151.4, 151.3, 136.8, 125.7 (q, J_{CF} = 276.9 Hz), 110.8, 102.7, 87.3, 87.2, 85.6, 85.6, 72.8, 62.7, 62.6, 60.2 (q, J_{CF} = 34.1 Hz), 39.8, 25.6, 25.6, 12.6. 19F NMR (470 MHz, Acetone-d_6): δ -74.5. HRMS (ESI +): [M+Na]$^+$ calculated for C$_{15}$H$_{21}$F$_3$N$_2$O$_6$Na$^+$ 405.1244 found 405.1244.
3'-O-Propan-2-yl-5′-O-tert-butyl(dimethyl)silyl-2′-deoxythymidine (8a). The reaction of 5′-tert-butyl(dimethyl)silyl-2′-deoxythymidine (5, 1.85 g, 5.2 mmol) in dry THF (15 mL) and 2-methoxypropene (3.5 ml, 36 mmol, 7 equiv) catalysed by p-toluenesulphonic acid monohydrate (364 μL, 1.0 M solution in dry THF, 0.36 mmol, 7.0 mol %) gives nearly a 1:1 mixture of 8a and 6a. The silica gel chromatography (60% EtOAc in hexane containing 0.1% TEA) yielded 1.0 g (48% from theoretical yield) of 8a and 0.84 g (38%) of 6a. Analytic data of 8a: 1H-NMR (600 MHz, DMSO-d6): δ 11.35 (s, 1H, NH), 7.49 (m, 1H, H6), 6.12 (m, 1H, H1′), 4.55 (m, 1H, H3′), 4.04 (m, 1H, H4′), 3.97 (m, 1H, =CH2), 3.90 (m, 1H, =CH2), 3.76-3.83 (m, 2H, H5'/H5′′), 2.25-2.28 (m, 2H, H2'/H2′′), 1.77 (m, 6H, dTMe and CH3 enol ether), 0.87 (s, 9H, TBS), 0.08 (2*s, 6H, TBS). 13C-NMR (150 MHz, DMSO-d6): δ 164.1, 157.5, 150.8, 135.8, 110.1, 84.5, 84.3, 84.0, 76.9, 63.7, 36.5, 26.2, 21.3, 18.4, 12.7, -5.0, -5.1. HRMS (ESI +): [M+H]+ calculated for C19H33N2O6Si+ 397.2153 found 397.2155.

3'-O-Propan-2-yl-2′-deoxythymidine (8b). The compound was prepared from 8a as described for 7a. Yield 81%. 1H-NMR (600 MHz, DMSO-d6) δ 11.3 (bs, 1H, NH), 7.69 (m, 1H, H6), 6.13 (m, 1H, H1′), 5.18 (t, J= 5.2 Hz, 1H, 5′-OH), 4.62 (m, 1H, H3′), 3.96 (m, 1H, H4′), 3.96 (m, 1H, =CH2), 3.92 (m, 1H, =CH2), 3.58-3.65 (m, 2H, H5'/H5′′), 2.19-2.30 (m, 2H, H2'/H2′′), 1.72 (m, 6H, dTMe and CH3 enol ether), 13C-NMR (151 MHz, DMSO-d6) δ 163.7, 157.0, 150.5, 135.8, 109.6, 84.1, 83.9, 83.8, 76.6, 61.5, 36.0, 20.8, 12.2. HRMS (ESI +): [M+H]+ calculated for C13H39N2O5+ 283.1288 found 283.1293.
Table S2. Isolated yields of the protected 2’-deoxythymidines at the consecutive steps of the synthesis procedure. For notation, see Scheme 1.

<table>
<thead>
<tr>
<th>Compound / Yield %</th>
<th>3 (protection)</th>
<th>6 (protection)</th>
<th>4 (ammonolysis)</th>
<th>7 (desilylation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>81</td>
<td>97</td>
<td>83</td>
<td>72</td>
</tr>
<tr>
<td>b</td>
<td>70</td>
<td>-</td>
<td>98</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>78</td>
<td>88</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>d</td>
<td>74</td>
<td>74</td>
<td>89</td>
<td>80</td>
</tr>
<tr>
<td>e</td>
<td>35</td>
<td>33</td>
<td>67</td>
<td>88</td>
</tr>
</tbody>
</table>

3. References

4. Appendix for SI: Calculation of first order rate constants by linear regression analysis of the chromatographic data