

Supporting Information

for

NHC-catalyzed enantioselective synthesis of β -trifluoromethyl- β -hydroxyamides

Alyn T. Davies, Mark D. Greenhalgh, Alexandra M. Z. Slawin and Andrew D. Smith

Beilstein J. Org. Chem. 2020, 16, 1572-1578. doi:10.3762/bjoc.16.129

Experimental procedures, product characterization data (mp, NMR, IR, HRMS, $[\alpha]_D$, HPLC), and spectra (1 H, 13 C, and 19 F NMR, HPLC)

General Experimental	S2
NHC-Catalyzed Formal [2+2] Cycloadditions	S4
NMR Traces	S13
GC and HPLC Traces	S46
References	S56

General Experimental

Reactions carried out under a nitrogen atmosphere were done so using standard vacuum line techniques. All reaction glassware was flame-dried and cooled under vacuum prior to use.

Anhydrous THF were obtained and purified by an alumina column (Mbraun SPS-800). Anhydrous methanol was obtained by distillation over calcium hydride. All commercial reagents were used as supplied without further purification.

Analytical thin layer chromatography was performed on pre-coated aluminium plates (Kieselgel 60 F_{254} silica). TLC visualisation was carried out with ultraviolet light (254 nm), followed by staining with a 1% aqueous KMnO₄ solution. Flash column chromatography was performed on Kieselgel 60 silica in the solvent system stated.

¹H, ¹³C and ¹⁹F nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker Avance II 400 (¹H 400 MHz; ¹³C 101 MHz; ¹⁹F 376 MHz), Bruker Avance 500 (¹H 500 MHz; ¹³C 126 MHz; ¹⁹F 471 MHz) or a Bruker Avance III 500 (¹H 500 MHz; ¹³C 126 MHz; ¹⁹F 471 MHz) spectrometer at ambient temperature in the deuterated solvent stated. All chemical shifts are quoted in parts per million (ppm) relative to the residual solvent. All coupling constants, *J*, are quoted in Hz and determined by analysis using MestReNova v9.0.1 software. Multiplicities are indicated by: s (singlet), d (doublet), t (triplet) and q (quartet), and combinations of these. The abbreviation Ar is used to denote aromatic.

Infrared spectra were recorded on a Shimadzu IRAffinity-1 Fourier transform IR spectrophotometer fitted with a Specac Quest ATR accessory (diamond puck). Spectra were recorded of either thin films or solids, with characteristic absorption wavenumbers (v_{max}) reported in cm⁻¹.

Melting points were recorded on an Electrothermal 9100 melting point apparatus and are uncorrected.

HPLC analyses were obtained on a Shimadzu HPLC consisting of a Shimadzu DGU-20A5 degasser, Shimadzu LC-20AT liquid chromatograph, Shimadzu SIL-20AT auto sampler, Shimadzu CBM-20A communications bus module, Shimadzu SPD-M20A diode array detector, Shimadzu CTO-20A column oven and a Shimadzu FRC-10A fraction collector. Analysis was performed using Shimadzu LabSolutions v5.42 software and separation was achieved using the column described.

GC analyses were obtained on a Shimadzu GC consisting of a Shimadzu AOC-20i auto injector and a Shimadzu GC-2025 gas chromatograph. Analysis was performed using Shimadzu GCsolution v2.41 software and separation was achieved using the column described.

Mass spectrometry (m/z) data were acquired by electrospray ionisation (ESI) or atmospheric pressure chemical ionisation (APCI) at the EPSRC UK National Mass Spectrometry Facility at Swansea University. Low resolution NSI MS was carried out on a Micromass Quattro II spectrometer and high resolution NSI MS on a Thermofisher LTQ Orbitrap XL spectrometer.

Optical rotations were measured on a PerkinElmer Precisely/Model-341 polarimeter operating at the sodium D line with a 100 mm path cell.

Starting Materials

NHC precatalyst $3^{[1]}$ and α -aroyloxyaldehydes 4, S1 and $S2^{[2]}$ were synthesised as previously reported. Trifluoromethylketones 5 and S3–S7 were purchased from the suppliers stated below.

NHC Catalyzed Formal [2+2] Cycloadditions

General procedure A: NHC Catalyzed Formal [2+2] Cycloadditions with trifluoromethylketones, followed by Amine Ring Opening

Following a similar procedure to that described previously, $^{[3]}$ α -aroyloxyaldehyde (1.5 eq.), trifluoromethylketone (1.0 eq.) and precatalyst **3** (0.1 eq.) were dissolved in anh. THF (0.05 M) in a flame-dried flask containing molecular sieves (4Å) under an N₂ atmosphere at room temperature. Caesium carbonate (1.1 eq.) was added and the reaction was allowed to stir for 24 h. The mixture was diluted with Et₂O, washed with sat. aq. NH₄Cl and sat. aq. NaHCO₃. The organic layer was dried (Na₂SO₄), filtered and concentrated *in vacuo* to give a residue which was dissolved in anh. THF (0.1 M). The specified amine nucleophile (5.0 eq.) and NEt₃ (1.1 eq.) were added and the solution was allowed to stir for 24 h. The mixture was diluted with Et₂O, washed with sat. aq. NH₄Cl and brine. The organic layer was dried (Na₂SO₄), filtered and concentrated *in vacuo* to leave the crude product, which was purified by column chromatography on silica.

Racemic samples of all products were synthesised by the same method using a racemic sample of precatalyst 3.

(2S,3S)-N-Allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-phenylbutanamide (7)

The preparation, characterization data and chiral GC analysis, along with the corresponding NMR and GC traces, for compound **7** can be found in our previous publication.^[3]

(2S,3S)-N-Benzyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-phenylbutanamide (8)

Following general procedure **A**, 1-oxopropan-2-yl 4-nitrobenzoate **4** (335 mg, 1.50 mmol), trifluoroacetophenone **5** (140 μ L, 1.00 mmol), precatalyst **3** (37 mg, 0.10 mmol), caesium carbonate (358 mg, 1.10 mmol) and THF (20 mL) for 24h; followed by benzylamine (0.55 mL, 5.0 mmol), NEt₃ (139 μ L, 1.00 mmol) and THF (10 mL) for a further 24 h gave the crude product (75:25 dr), which

was purified by column chromatography on silica (20% Et_2O in hexane) to give (2*S*,3*S*)-*N*-benzyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-phenylbutanamide **8** as a pale yellow solid (single diastereoisomer, 161 mg, 0.477 mmol, 48%).

mp 102–104 °C; [α]_D²⁰ +38.0 (c 0.5, CHCl₃); Chiral HPLC analysis; Chiralcel OD-H (95:5 hexane : 2-propanol, flow rate 1 mLmin⁻¹, 211 nm, 30 °C) t_R minor (2R,3R): 23.0 min, t_R major (2S,3S): 24.8 min, 96:4 er; ¹H NMR (400 MHz, CDCl₃) δ_H: 1.00 (3H, d, J 7.0, CH₃CH), 2.96 (1H, q, J 7.0, CH₃CH), 4.33–4.66 (2H, m, NHCH₂), 6.37 (1H, t, J 5.7, NH), 6.74 (1H, s, OH), 7.27–7.44 (8H, m, ArH), 7.56 (1H, d, J 7.3, C(3)ArC(2,6)H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ_C: 13.9 (CH₃CH), 41.8 (CH₃CH), 43.7 (NHCH₂), 78.4 (q, J 27.4, CCF₃), 125.8 (q, J 288.4, CF₃), 126.0 (C(3)ArC(2,6)), 127.9 (CH₂ArC(2,6)H), 127.9 (ArCH), 128.4 (2 × ArCH), 128.5 (ArCH), 128.9 (2 × ArCH), 136.0 (C(3)ArC(1)), 137.1 (CH₂ArC(1)), 175.8 (C=O); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ_F: –76.7 (CF₃); IR v_{max} (film)/cm⁻¹: 3397 (O–H), 1647 (C=O); HRMS (APCI⁺) C₁₈H₁₉F₃O₂N ([M+H]⁺), found 338.1362, requires 338.1362 (–0.1 ppm).

(2S,3S)-4,4,4-Trifluoro-3-hydroxy-2-methyl-3-phenyl-1-(pyrrolidin-1-yl)butan-1-one (9)

Following general procedure **A**, 1-oxopropan-2-yl 4-nitrobenzoate **4** (335 mg, 1.50 mmol), trifluoroacetophenone **5** (140 μ L, 1.00 mmol), precatalyst **3** (37 mg, 0.10 mmol), caesium carbonate (358 mg, 1.10 mmol) and THF (20 mL) for 24h; followed by pyrrolidine (0.42 mL, 5.0 mmol), NEt₃ (139 μ L, 1.00 mmol) and THF (10 mL) for a further 24 h gave the crude product (75:25 dr), which was purified by column chromatography on silica (30% Et₂O in hexane) to give (2*S*,3*S*)-4,4,4-trifluoro-3-hydroxy-2-methyl-3-phenyl-1-(pyrrolidin-1-yl)butan-1-one **9** as a colourless crystalline solid (single diastereoisomer, 166 mg, 0.551 mmol, 55%).

mp 122–125 °C; [α]_D²⁰ +45.1 (c 0.5, CHCl₃); Chiral HPLC analysis; Chiralcel OD-H (90:10 hexane : 2-propanol, flow rate 1 mLmin⁻¹, 211 nm, 30 °C) t_R minor (2R,3R): 5.3 min, t_R major (2R,3R): 5.9 min, 96:4 er; ¹H NMR (500 MHz, CDCl₃) δ_H: 0.92 (3H, d, R, 7.0, CH₃CH), 1.88–1.97 (2H, m, NCH₂CH₂), 1.97–2.12 (2H, m, NCH₂CH₂), 3.29 (1H, q, R, 7.0, CH₃CH), 3.46–3.62 (3H, m, NCH₂ and NCH_aH_b), 3.68 (1H, dt, R, 9.8, 7.0, NCH_aH_b), 7.33–7.44 (4H, m, ArC(2,3,5,6)H), 7.54–7.64 (2H, m, ArC(4)H and OH); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ_C: 13.2 (R, 24.3 (NCH₂CH₂), 26.0 (NCH₂CH₂), 38.0 (CH₃CH), 46.0 (NCH₂), 46.8 (NCH₂), 78.2 (q, R, 27.2, R, CCF₃), 126.0 (q, R, 288.7, CF₃), 126.2 (ArC(2,6)H), 128.28 (ArC(3,5)H), 128.34 (ArC(4)H), 136.5 (ArC(1)), 174.3 (R)

¹⁹**F**{¹**H**} **NMR** (471 MHz, CDCl₃) δ_F : -77.1 (C F_3); **IR** ν_{max} (film)/cm⁻¹: 3063 (O–H), 1617 (C=O); **HRMS** (APCI⁺) C₁₅H₁₉F₃O₂N ([M+H]⁺), found 302.1362, requires 302.1362 (-0.1 ppm).

(2S,3S)-4,4,4-Trifluoro-3-hydroxy-2-methyl-3-phenylbutanamide (10)

Following general procedure **A**, 1-oxopropan-2-yl 4-nitrobenzoate **4** (335 mg, 1.50 mmol), trifluoroacetophenone **5** (140 μ L, 1.00 mmol), precatalyst **3** (37 mg, 0.10 mmol), caesium carbonate (358 mg, 1.10 mmol) and THF (20 mL) for 24h; followed by ammonia (7 M in MeOH, 0.71 mL, 5.00 mmol), NEt₃ (139 μ L, 1.00 mmol) and THF (10 mL) for a further 24 h gave the crude product (75:25 dr), which was purified by column chromatography on silica (40% Et₂O in hexane) to give (2*S*,3*S*)-4,4,4-trifluoro-3-hydroxy-2-methyl-3-phenylbutanamide **10** as a colourless solid (single diastereoisomer, 104 mg, 0.419 mmol, 42%).

mp 149–151 °C; [α]_D²⁰ +17.4 (c 0.5, CHCl₃); Chiral GC analysis Restek Rt®bDEXcst (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μm), carrier gas: He, linear velocity: 60 cm/sec, temperature: 160 °C, t_R minor (2R,3R) 44.0 min, t_R major (2S,3S) 45.6 min, > 99:1 er; ¹H NMR (400 MHz, CDCl₃) δ_H : 1.00 (3H, d, J7.0, CH₃CH), 3.01 (1H q, J7.0, CH₃CH), 5.96 (1H, s, NH), 6.14 (1H, s, NH), 6.53 (1H, s, OH), 7.32–7.46 (3H, m, ArC(3,4,5)H), 7.56 (2H, dd, J 7.3, 1.8, ArC(2,6)H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ_C : 13.8 (CH₃CH), 40.9 (CH₃CH), 78.3 (q, J 27.4, CCF₃), 125.7 (q, J 288.2, CF₃), 126.0 (ArC(2,6)H), 128.4 (ArC(3,5)H), 128.5 (ArC(4)H), 135.9 (ArC(1)), 178.7 (C=O); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ_F : –76.9 (CF₃); IR v_{max} (film)/cm⁻¹: 3200 (O–H), 1668 (C=O); HRMS (APCl⁺) C₁₁H₁₃F₃O₂N ([M+H]⁺), found 248.0893, requires 248.0893 (+0.0 ppm).

(2*R*,3*S*)-4,4,4-Trifluoro-2-methyl-3-phenylbutane-1,3-diol (11)

Following a *modification of general procedure A*, 1-oxopropan-2-yl 4-nitrobenzoate **4** (335 mg, 1.50 mmol), trifluoroacetophenone **5** (140 μ L, 1.00 mmol), precatalyst **3** (37 mg, 0.10 mmol), caesium carbonate (358 mg, 1.10 mmol) and THF (20 mL) for 24h. The crude product was then dissolved in MeOH (10 mL), DMAP (24 mg, 0.20 mmol) was added, and the reaction allowed to stir for 24 h. The solvent was removed *in vacuo* and the crude product was treated with lithium aluminium hydride (2 M

in PhMe, 2 mL, 4.00 mmol) under a N_2 atmosphere, and allowed to stir for a further 24 h. The reaction was quenched by slow addition of 1 m KOH, and the mixture extracted using EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried (Na_2SO_4), filtered and concentrated *in vacuo* to give the crude product (75:25 dr), which was purified by column chromatography on silica (15% Et₂O in hexane) to give (2R,3S)-4,4,4-trifluoro-2-methyl-3-phenylbutane-1,3-diol **11** as an orange oil (single diastereoisomer, 113 mg, 0.483 mmol, 48%).

[α]_D²⁰ –39.4 (c 0.5, CHCl₃); **Chiral GC analysis** Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μm), carrier gas: He, linear velocity: 30 cm/sec, temperature: 135 °C, t_R minor (2S,3R) 50.8 min, t_R major (2R,3S) 51.8 min, 96:4 er; ¹**H NMR** (400 MHz, CDCl₃) δ_H: 0.90 (3H, d, J 7.2, CH₃CH), 2.11 (1H, s, CH₂OH), 2.35–2.53 (1H, m, CH₃CH), 3.83 (1H, dt, J 10.8, 1.8, CH_aH_bOH), 4.41 (1H, d, J 10.7, CH_aH_bOH), 5.20 (1H, s, F₃CCOH), 7.31–7.43 (3H, m, ArC(3,4,5)H), 7.55 (2H, d, J 7.7, ArC(2,6)H); ¹³C{¹**H**} NMR (101 MHz, CDCl₃) δ_C: 12.6 (CH₃CH), 37.8 (CH₃CH), 66.0 (CH₂OH), 80.4 (q, J 27.1, CCF₃), 125.6 (ArC(2,6)H), 126.2 (q, J 287.9, CF₃), 128.0 (ArC(4)H), 128.2 (ArC(3,5)H), 138.2 (ArC(1)); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ_F: –74.7 (CF₃); IR V_{max} (film)/cm⁻¹: 3372 (O–H); **HRMS** (APCI⁺) C₁₁H₁₄F₃O₂ ([M+H]⁺), found 235.0934, requires 235.0940 (–2.7 ppm).

(2S,3S)-N-Allyl-3-(4-bromophenyl)-4,4,4-trifluoro-3-hydroxy-2-methylbutanamide (12)

Following general procedure **A**, 1-oxopropan-2-yl 4-nitrobenzoate **4** (167 mg, 0.750 mmol), 1-(4-bromophenyl)-2,2,2-trifluoroethan-1-one **S3** (127 mg, 0.500 mmol), precatalyst **3** (18 mg, 50 μ mol), caesium carbonate (179 mg, 0.550 mmol) and THF (10 mL) for 24h; followed by allylamine (188 μ L, 2.50 mmol), NEt₃ (70 μ L, 0.50 mmol) and THF (5 mL) for a further 24 h gave the crude product (75:25 dr), which was purified by column chromatography on silica (30% Et₂O in hexane) to give (2*S*,3*S*)-*N*-allyl-3-(4-bromophenyl)-4,4,4-trifluoro-3-hydroxy-2-methylbutanamide **12** as a colourless crystalline solid (single diastereoisomer, 111 mg, 0.304 mmol, 61%).

mp 107–108 °C; [α]_D²⁰ +22.6 (c 0.5, CHCl₃); **Chiral GC analysis** Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μm), carrier gas: He, linear velocity: 60 cm/sec, temperature: 190 °C, t_R minor (2R,3R) 29.9 min, t_R major (2S,3S) 30.6 min, 99:1 er; ¹**H NMR** (400 MHz, CDCl₃) δ_H : 0.97 (3H, d, J 7.0, CH₃), 2.88 (1H, q, J 7.0, CH₃CH), 3.74–4.12 (2H, m, NHCH₂), 5.06–5.37 (2H, m, HC=CH₂), 5.85 (1H, ddt, J 17.2, 10.2, 5.7, HC=CH₂), 6.10 (1H, t, J 5.8, NH), 6.75

(1H, s, O*H*), 7.43 (2H, d, *J* 8.4, ArC(3,5)*H*), 7.53 (2H, d, *J* 8.8, ArC(2,6)*H*); ¹³C{¹H} NMR (126 MHz, CDCl₃) $\delta_{\rm C}$: 13.9 (*C*H₃), 41.6 (CH₃*C*H), 42.0 (NH*C*H₂), 78.2 (q, *J* 27.6, *C*CF₃), 117.4 (HC=*C*H₂), 122.9 (Ar*C*(4)), 125.5 (q, *J* 288.4, *C*F₃), 127.9 (Ar*C*(3,5)H), 131.6 (Ar*C*(2,6)H), 132.9 (H*C*=CH₂), 135.2 (Ar*C*(1)), 175.5 (*C*=O); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) $\delta_{\rm F}$: -76.9 (C*F*₃); **IR** $\nu_{\rm max}$ (film)/cm⁻¹: 3302 (O–H), 1634 (C=O); **HRMS** (ESI⁺) C₁₄H₁₆⁷⁹BrF₃NO₂ ([M+H]⁺), found 366.0314, requires 366.0311 (+0.8 ppm).

(2S,3S)-N-Allyl-4,4,4-trifluoro-3-(4-fluorophenyl)-3-hydroxy-2-methylbutanamide (13)

Following general procedure **A**, 1-oxopropan-2-yl 4-nitrobenzoate **4** (167 mg, 0.750 mmol), 2,2,2-trifluoro-1-(4-fluorophenyl)ethan-1-one **S4** (70 μ L, 0.50 mmol), precatalyst **3** (18 mg, 50 μ mol), caesium carbonate (179 mg, 0.550 mmol) and THF (10 mL) for 24h; followed by allylamine (188 μ L, 2.50 mmol), NEt₃ (70 μ L, 0.50 mmol) and THF (5 mL) for a further 24 h gave the crude product (75:25 dr), which was purified by column chromatography on silica (30% Et₂O in hexane) to give (2*S*,3*S*)-*N*-allyl-4,4,4-trifluoro-3-(4-fluorophenyl)-3-hydroxy-2-methylbutanamide **13** as a colourless crystalline solid (single diastereoisomer, 109 mg, 0.357 mmol, 71%).

mp 90–92 °C; [α]_D²⁰ +19.2 (c 0.5, CHCl₃); **Chiral GC analysis** Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μm), carrier gas: He, linear velocity: 60 cm/sec, temperature: 157 °C, t_R minor (2R,3R) 40.1 min, t_R major (2S,3S) 41.1 min, 97:3 er; ¹**H NMR** (400 MHz, CDCl₃) δ_H : 0.97 (3H, d, J 7.0, CH₃CH), 2.89 (1H, q, J 7.0, CH₃CH), 5.12–5.32 (2H, m, HC=CH₂), 5.85 (1H, ddt, J 17.2, 10.2, 5.7, HC=CH₂), 6.05 (1H, s, NH), 6.71 (1H, s, OH), 7.08 (2H, dd, J 9.1, 8.4, ArC(3,5)H), 7.54 (2H, dd, J 8.6, 5.3, ArC(2,6)H); ¹³C{¹**H**} NMR (101 MHz, CDCl₃) δ_C : 13.8 (CH₃CH), 41.8 (CH₃CH), 42.0 (NHCH₂), 78.1 (q, J 27.6, CCF₃), 115.3 (d, J 21.5, ArC(3,5)H), 117.4 (HC=CH₂), 125.6 (q, J 288.3, CF₃), 128.0 (d, J 8.1, ArC(2,6)H), 131.8 (d, J 3.2, ArC(1)), 133.0 (HC=CH₂), 162.7 (d, J 247.7, ArC(4)), 175.5 (C=O); ¹⁹**F**{¹**H**} NMR (377 MHz, CDCl₃) δ_F : -113.7 (ArC(4)F), -77.1 (CF₃); **IR** v_{max} (film)/cm⁻¹: 3306 (O–H), 1622 (C=O); **HRMS** (ESI⁺) C₁₄H₁₅F₄NO₂Na ([M+Na]⁺), found 328.0932, requires 328.0931 (+0.3 ppm).

(2S,3S)-N-allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(4-(trifluoromethyl)phenyl)butanamide (14)

Following general procedure **A**, 1-oxopropan-2-yl 4-nitrobenzoate **4** (167 mg, 0.750 mmol), 2,2,2-trifluoro-1-(4-(trifluoromethyl)phenyl)ethan-1-one **S5** (84 μ L, 0.50 mmol), precatalyst **3** (18 mg, 50 μ mol), caesium carbonate (179 mg, 0.550 mmol) and THF (10 mL) for 24h; followed by allylamine (188 μ L, 2.50 mmol), NEt₃ (70 μ L, 0.50 mmol) and THF (5 mL) for a further 24 h gave the crude product (75:25 dr), which was purified by column chromatography on silica (30% Et₂O in hexane) to give (2*S*,3*S*)-*N*-allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(4-(trifluoromethyl)phenyl)butanamide **14** as a colourless crystalline solid (single diastereoisomer, 105 mg, 0.295 mmol, 59%).

mp 86–87 °C; [α]_D²⁰ +14.6 (c 0.5, CHCl₃); **Chiral GC analysis** Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μm), carrier gas: He, linear velocity: 40 cm/sec, temperature: 165 °C, t_R minor (2R,3R) 40.0 min, t_R major (2S,3S) 40.7 min, 95:5 er; ¹**H NMR** (500 MHz, CDCl₃) δ_H : 0.97 (3H, d, J 7.0, CH₃CH), 2.94 (1H, q, J 7.0, CH₃CH), 3.85–4.09 (2H, m, NHCH₂), 5.15–5.34 (2H, m, HC=CH₂), 5.86 (1H, ddt, J 17.2, 10.3, 5.7, HC=CH₂), 6.08 (1H, t, J 5.9, NH), 6.83 (1H, s, OH), 7.59–7.80 (4H, m, ArH); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_C : 13.9 (CH₃CH), 41.6 (CH₃CH), 42.0 (NHCH₂), 78.3 (q, J 27.6, CCF₃), 117.4 (HC=CH₂), 123.9 (q, J 272.2, CF₃), 125.4 (q, J 3.3, ArC(3,5)H), 125.5 (q, J 288.6, CF₃), 126.6 (ArC(2,6)H), 130.8 (q, J 32.6, ArC(4)), 132.9 (HC=CH₂), 140.1 (ArC(1)), 175.3 (C=O); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F : –76.8 (CF₃), –62.7 (ArCF₃); **IR** v_{max} (film)/cm⁻¹: 3323 (O–H), 1641 (C=O); **HRMS** (APCI⁺) C₁₅H₁₆F₆O₂N ([M+H]⁺), found 356.1079, requires 356.1080 (–0.2 ppm).

(2S,3S)-N-Allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(p-tolyl)butanamide (15)

Following general procedure $\bf A$, 1-oxopropan-2-yl 4-nitrobenzoate $\bf 4$ (335 mg, 1.50 mmol), 2,2,2-trifluoro-1-(p-tolyl)ethan-1-one $\bf S6$ (152 μL , 1.00 mmol), precatalyst $\bf 3$ (37 mg, 0.10 mmol), caesium carbonate (358 mg, 1.10 mmol) and THF (20 mL) for 24h; followed by allylamine (0.38 mL, 5.0 mmol), NEt₃ (139 μL , 1.00 mmol) and THF (10 mL) for a further 24 h gave the crude product (75:25

dr), which was purified by column chromatography on silica (25% Et_2O in hexane) to give (2*S*,3*S*)-*N*-allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(p-tolyl)butanamide **15** as a colourless crystalline solid (single diastereoisomer, 139 mg, 0.460 mmol, 46%).

mp 108–110 °C; [α]_D²⁰ +23.0 (c 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ_{H} : 0.98 (3H, d, J 7.0, CH₃CH), 2.36 (3H, s, ArC(4)CH₃), 2.90 (1H, q, J 7.0, CH₃CH), 3.78–4.10 (2H, m, NHCH₂), 5.07–5.38 (2H, m, HC=CH₂), 5.86 (1H, ddt, J 16.3, 10.8, 5.7, HC=CH₂), 6.04 (1H, t, J 6.0, NH), 6.58 (1H, s, OH), 7.20 (2H, d, J 8.0, ArC(3,5)H), 7.43 (2H, d, J 7.9, ArC(2,6)H); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_{F} : -77.0; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ_{C} : 13.9 (CH₃CH), 21.2 (ArC(4)CH₃), 41.9 (CH₃CH), 42.0 (NHCH₂), 78.3 (q, J 27.3, CCF₃), 117.2 (HC=CH₂), 125.8 (q, J 288.3, CF₃), 125.9 (ArC(2,6)H), 129.1 (ArC(3,5)H), 133.0 (ArC(1)), 133.1 (HC=CH₂), 138.2 (ArC(4)), 175.8 (C=O); **IR** v_{max} (film)/cm⁻¹: 3356 (O-H), 1647 (C=O); **HRMS** (APCI⁺) C₁₅H₁₉F₃O₂N ([M+H]⁺), found 302.1365, requires 302.1362 (+0.9 ppm).

No separation of the enantiomers could be obtained using Chiral GC or HPLC.

(2S,3R)-N-Allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(thiophen-2-yl)butanamide (16)

Following general procedure **A**, 1-oxopropan-2-yl 4-nitrobenzoate **4** (167 mg, 0.750 mmol), 2,2,2-trifluoro-1-(thiophen-2-yl)ethan-1-one **S7** (64 μ L, 0.50 mmol), precatalyst **3** (18 mg, 50 μ mol), caesium carbonate (179 mg, 0.550 mmol) and THF (10 mL) for 24h; followed by allylamine (188 μ L, 2.50 mmol), NEt₃ (70 μ L, 0.50 mmol) and THF (5 mL) for a further 24 h gave the crude product (80:20 dr), which was purified by column chromatography on silica (20% Et₂O in hexane) to give (2*S*,3*R*)-*N*-allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(thiophen-2-yl)butanamide **16** as a colourless crystalline solid (single diastereoisomer, 76 mg, 0.26 mmol, 51%).

mp 108–109 °C; [α]_D²⁰ +14.6 (c 0.5, CHCl₃); **Chiral GC analysis** Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μm), carrier gas: He, linear velocity: 60 cm/sec, temperature: 160 °C, t_R minor (2R,3R) 33.6 min, t_R major (2S,3S) 34.5 min, 96:4 er; ¹**H NMR** (400 MHz, CDCl₃) δ_H : 1.09 (3H, d, J 7.0, CH_3), 2.81 (1H, q, J 7.0, CH_3 CH), 3.78–4.12 (2H, m, NHC H_2), 5.11–5.34 (2H, m, HC=C H_2), 5.84 (1H, ddt, J 17.2, 10.3, 5.8, HC=C H_2), 5.97 (1H, s, NH), 6.84 (1H, s, OH), 7.00–7.07 (2H, m, ArC(3,5)H), 7.30–7.37 (1H, m, ArC(4)H); ¹³C{¹**H**} NMR (126 MHz, CDCl₃) δ_C : 14.0 (CH₃), 42.0 (NHCH₂), 43.1 (CH₃CH), 78.4 (q, J 28.9, CCF₃), 117.4 (HC=CH₂), 124.5 (ArC(3)H or ArC(5)H), 125.2 (q, J 287.8, CF₃), 125.9 (ArC(4)H), 127.2 (ArC(3)H or ArC(5)H),

133.0 (H*C*=CH₂), 140.3 (Ar*C*(2)), 175.4 (*C*=O); ¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ_F : -78.5 (C*F*₃); **IR** ν_{max} (film)/cm⁻¹: 3341 (O–H), 1638 (C=O); **HRMS** (ESI⁺) C₁₂H₁₅F₃NO₂S ([M+H]⁺), found 294.0773, requires 294.0770 (+1.0 ppm).

(2S,3S)-N-Allyl-2-benzyl-4,4,4-trifluoro-3-hydroxy-3-phenylbutanamide (17)

Following general procedure **A**, 1-oxo-3-phenylpropan-2-yl 4-nitrobenzoate **S1** (449 mg, 1.50 mmol), trifluoroacetophenone **5** (140 μ L, 1.00 mmol), precatalyst **3** (37 mg, 0.10 mmol), caesium carbonate (358 mg, 1.10 mmol) and THF (20 mL) for 24h; followed by allylamine (0.38 mL, 5.0 mmol), NEt₃ (139 μ L, 1.00 mmol) and THF (10 mL) for a further 24 h gave the crude product (70:30 dr), which was purified by column chromatography on silica (20% Et₂O in hexane) to give (2*S*,3*S*)-*N*-allyl-2-benzyl-4,4,4-trifluoro-3-hydroxy-3-phenylbutanamide **17** as a colourless crystalline solid (single diastereoisomer, 125 mg, 0.343 mmol, 34%).

mp 126–128 °C; [α] $_D^{20}$ +31.1 (c 0.5, CHCl₃); Chiral HPLC analysis; Chiralcel OD-H (95:5 hexane : 2-propanol, flow rate 1 mLmin $^{-1}$, 211 nm, 30 °C) $_{\rm R}$ minor (2 $_{\rm R}$,3 $_{\rm R}$): 5.7 min, $_{\rm R}$ major (2 $_{\rm S}$,3 $_{\rm S}$): 7.1 min, 99:1 er; $^{\rm 1}$ H NMR (400 MHz, CDCl₃) $_{\rm H}$: 2.39 (1H, dd, $_{\rm J}$ 12.9, 2.8, CH $_{\rm a}$ H $_{\rm b}$ CH), 2.80–2.90 (1H, m, CH $_{\rm a}$ H $_{\rm b}$ CH), 2.94 (1H, dd, $_{\rm J}$ 11.9, 2.8, CH $_{\rm 2}$ CH), 3.72 (2H, tt, $_{\rm J}$ 5.6, 1.4, NHCH $_{\rm 2}$), 4.89 (1H, dd, $_{\rm J}$ 17.1, 1.4, HC=CH $_{\rm trans}$ H), 5.00 (1H, dd, $_{\rm J}$ 10.3, 1.3, HC=CH $_{\rm cis}$ H), 5.35 (1H, t, $_{\rm J}$ 4.7, N $_{\rm H}$), 5.49 (1H, ddt, $_{\rm J}$ 17.2, 10.3, 5.8, HC=CH $_{\rm 2}$), 6.69 (1H, s, O $_{\rm H}$), 6.96–7.03 (2H, m, Ar $_{\rm H}$), 7.15–7.26 (3H, m, Ar $_{\rm H}$), 7.38–7.44 (1H, m, Ar $_{\rm H}$), 7.45–7.53 (2H, m, Ar $_{\rm H}$), 7.68 (2H, d, $_{\rm J}$ 7.6, C(3)ArC(2,6)H); $^{\rm 13}$ C($^{\rm 14}$ H) NMR (126 MHz, CDCl $_{\rm 3}$) $^{\rm 6}$ C: 34.3 (CH $_{\rm 2}$ CH), 41.8 (NHCH $_{\rm 2}$), 51.3 (CH $_{\rm 2}$ CH), 78.4 (q, $_{\rm J}$ 27.3, CCF $_{\rm 3}$), 117.1 (HC=CH $_{\rm 2}$), 125.5 (q, $_{\rm J}$ 288.6, CF $_{\rm 3}$), 125.9 (C(3)ArC(2,6)H), 126.8 (ArCH), 128.63 (2 × ArCH), 128.65 (2 × ArCH), 128.68 (ArCH), 128.8 (2 × ArCH), 132.8 (HC=CH $_{\rm 2}$), 136.2 (C(3)ArC(1)), 138.2 (CH $_{\rm 2}$ ArC(1)), 173.6 (C=O); $^{\rm 19}$ F($^{\rm 14}$ H) NMR (376 MHz, CDCl $_{\rm 3}$) $^{\rm 6}$ F: -76.5 (CF $_{\rm 3}$); IR $_{\rm V_{max}}$ (film)/cm $^{-1}$: 3312 (O–H), 1628 (C=O); HRMS (ESI $^{\rm +}$) C $_{\rm 20}$ H $_{\rm 21}$ F $_{\rm 3}$ NO $_{\rm 2}$ ([M+H] $^{\rm +}$), found 364.1518, requires 364.1519 (-0.2 ppm).

(2S,3S)-N-Allyl-2-(2-(benzyloxy)ethyl)-4,4,4-trifluoro-3-hydroxy-3-phenylbutanamide (18)

Following general procedure **A**, 4-(benzyloxy)-1-oxobutan-2-yl 4-nitrobenzoate **S2** (258 mg, 0.750 mmol), trifluoroacetophenone **5** (70 μ L, 0.50 mmol), precatalyst **3** (18 mg, 50 μ mol), caesium carbonate (179 mg, 0.550 mmol) and THF (10 mL) for 24h; followed by allylamine (188 μ L, 2.50 mmol), NEt₃ (70 μ L, 0.50 mmol) and THF (5 mL) for a further 24 h gave the crude product (70:30 dr), which was purified by column chromatography on silica (20% Et₂O in hexane) to give (2*S*,3*S*)-*N*-allyl-2-(2-(benzyloxy)ethyl)-4,4,4-trifluoro-3-hydroxy-3-phenylbutanamide **18** as a colourless oil (single diastereoisomer, 70 mg, 0.17 mmol, 34%).

[α] $_{\mathbf{D}}^{20}$ +26.5 (*c* 0.5, CHCl₃); **Chiral HPLC analysis**; Chiralcel OD-H (95:5 hexane : 2-propanol, flow rate 1 mLmin⁻¹, 211 nm, 30 °C) t_R minor (2*R*,3*R*): 6.8 min, t_R major (2*S*,3*S*): 10.0 min, 96:4 er; 1 **H NMR** (400 MHz, CDCl₃) δ_H: 1.42–1.52 (1H, m, C $_{\mathbf{H}}^{\mathbf{A}}$ H₀CH), 1.79 (1H, ddt, *J* 14.7, 11.4, 3.4, CH_a $_{\mathbf{H}}^{\mathbf{b}}$ CH), 3.12 (1H, dd, *J* 11.4, 3.4, CH₂CH), 3.26–3.40 (2H, m, OC $_{\mathbf{H}}^{\mathbf{2}}$ CH₂), 3.65–3.76 (1H, m, NHC $_{\mathbf{H}}^{\mathbf{a}}$ H₀), 3.89–3.99 (1H, m, NHCH_a $_{\mathbf{H}}^{\mathbf{b}}$), 4.29 (1H, d, *J* 11.9, OC $_{\mathbf{H}}^{\mathbf{a}}$ H₀Ar), 4.44 (1H, d, *J* 11.9, OCH_a $_{\mathbf{H}}^{\mathbf{b}}$ Ar), 5.13–5.29 (2H, m, HC=C $_{\mathbf{H}}^{\mathbf{2}}$ CH₂), 5.77 (1H, ddt, *J* 17.1, 10.2, 5.8, *H*C=CH₂), 5.90 (1H, t, *J* 6.0, N*H*), 6.65 (1H, s, O*H*), 7.24–7.45 (8H, m, Ar*H*), 7.57 (2H, d, *J* 7.5, C(3)ArC(2,6)*H*); $_{\mathbf{H}}^{\mathbf{13}}$ C{ $_{\mathbf{H}}^{\mathbf{14}}$ NMR (126 MHz, CDCl₃) δ_C: 27.8 (CH₂CH), 42.0 (NHCH), 44.1 (CH₂CH), 66.5 (OCH₂CH₂), 72.8 (OCH₂Ar), 78.5 (q, *J* 27.4, CCF₃), 117.4 (HC=CH₂), 125.6 (q, *J* 288.5, CF₃), 126.1 (C(3)ArC(2,6)H), 127.9 (2 × ArCH), 128.0 (ArCH), 128.4 (2 × ArCH), 128.5 (ArCH), 128.6 (2 × ArCH), 133.2 (HC=CH₂), 136.1 (C(3)ArC(1)), 138.0 (OCH₂ArC(1)), 174.4 (C=O); $_{\mathbf{H}}^{\mathbf{19}}$ Th NMR (376 MHz, CDCl₃) δ_F: -76.7 (CF₃); IR $_{\mathbf{V}_{\mathbf{max}}}$ (film)/cm⁻¹: 3319 (O–H), 1628 (C=O); HRMS (APCI⁺) C₂₂H₂₅F₃O₃N ([M+H]⁺), found 408.1781, requires 408.1781 (+0.0 ppm).

¹H, 500 MHz, CDCl₃

5.0 f1 (ppm)

S43

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

).5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm)

(2S,3S)-N-Benzyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-phenylbutanamide (8)

Me,,, Ph

Chiral HPLC analysis; Chiralcel OD-H (95:5 hexane : 2-propanol, flow rate 1 mLmin⁻¹, 211 nm, 30 °C) t_R minor (2*R*,3*R*): 23.0 min, t_R major (2*S*,3*S*): 24.8 min, 96:4 er.

<Peak Table>

mAU

<Peak Table>

(2S,3S)-4,4,4-Trifluoro-3-hydroxy-2-methyl-3-phenyl-1-(pyrrolidin-1-yl)butan-1-one (9)

Chiral HPLC analysis; Chiralcel OD-H (90:10 hexane: 2-propanol, flow rate 1 mLmin^{-1} , 211 nm, 30 °C) $\mathrm{t_R}$ minor (2R,3R): 5.3 min, $\mathrm{t_R}$ major (2S,3S): 5.9 min, 96:4 er.

mAU

<Peak Table>

PDAC	<u>nızıınm</u>	
Peak#	Ret. Time	Area%
1	5.359	50.129
2	6.019	49.871
Total		100.000

<Peak Table>

PDA Ch1 211nm

PDA C		
Peak#	Ret. Time	Area%
1	5.342	4.171
2	5.939	95.829
Total		100.000

(2S,3S)-4,4,4-Trifluoro-3-hydroxy-2-methyl-3-phenylbutanamide (10)

Chiral GC analysis Restek Rt®bDEXcst (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μ m), carrier gas: He, linear velocity: 60 cm/sec, temperature: 160 °C, t_R minor (2R,3R) 44.0 min, t_R major (2S,3S) 45.6 min, > 99:1 er.

Peaks at 46.5 and 49.1 min in racemic trace belong to minor diastereoisomer

(2R,3S)-4,4,4-Trifluoro-2-methyl-3-phenylbutane-1,3-diol (11)

Chiral GC analysis Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μ m), carrier gas: He, linear velocity: 30 cm/sec, temperature: 135 °C, t_R minor (2*S*,3*R*) 50.8 min, t_R major (2*R*,3*S*) 51.8 min, 96:4 er.

(2S,3S)-N-Allyl-3-(4-bromophenyl)-4,4,4-trifluoro-3-hydroxy-2-methylbutanamide (12)

30.615

47315

50.0657

Chiral GC analysis Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μ m), carrier gas: He, linear velocity: 60 cm/sec, temperature: 190 °C, t_R minor (2*R*,3*R*) 29.9 min, t_R major (2*S*,3*S*) 30.6 min, 99:1 er.

$(2S,\!3S)\text{-}N\text{-}Allyl\text{-}4,\!4,\!4\text{-}trifluoro\text{-}3\text{-}(4\text{-}fluorophenyl)\text{-}3\text{-}hydroxy\text{-}2\text{-}methylbutanamide}\ (13)$

Chiral GC analysis Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 μ m), carrier gas: He, linear velocity: 60 cm/sec, temperature: 157 °C, t_R minor (2*R*,3*R*) 40.1 min, t_R major (2*S*,3*S*) 41.1 min, 97:3 er.

Peak#	Ret.Time	Area	Area%
1	40.090	91703	49.9090
2	41.086	92037	50.0910
Total		183740	100 0000

1 40.053 5833 3.0318 2 41.100 186578 96.9682 Total 192411 100.0000

(2S,3S)-N-allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(4-(trifluoromethyl)phenyl)butanamide (14)

Total

196581

100.0000

(2S,3R)-N-Allyl-4,4,4-trifluoro-3-hydroxy-2-methyl-3-(thiophen-2-yl)butanamide (16)

Total

Chiral GC analysis Agilent Cyclosil-B (length: 30 m, thickness: 0.250 mm, film thickness: 0.25 µm), carrier gas: He, linear velocity: 60 cm/sec, temperature: 160

-587500-							
-590000-				33.6437			
-592500— 31	1	32	33	34	35	36	37
Peak#	Ret.Time	Area	Area%				min
1 2	33.643 34.456	9403 209431	4.2968 95.7032				

100.0000

218834

(2S,3S)-N-Allyl-2-benzyl-4,4,4-trifluoro-3-hydroxy-3-phenylbutanamide (17)

Chiral HPLC analysis; Chiralcel OD-H (95:5 hexane : 2-propanol, flow rate 1 mLmin⁻¹, 211 nm, 30 °C) t_R minor (2*R*,3*R*): 5.7 min, t_R major (2*S*,3*S*): 7.1 min, 99:1 er.

<Peak Table>

PDA Ch1 211nm					
Peak#	Ret. Time	Area%			
1	5.657	49.975			
2	7.178	50.025			
Total		100.000			

<Peak Table>

PDA Ch1 211nm				
Peak#	Ret. Time	Area%		
1	5.655	1.471		
2	7.082	98.529		
Total		100.000		

(2S,3S)-N-Allyl-2-(2-(benzyloxy)ethyl)-4,4,4-trifluoro-3-hydroxy-3-phenylbutanamide (18)

BnO NH H H CF3

Chiral HPLC analysis; Chiralcel OD-H (95:5 hexane : 2-propanol, flow rate 1 mLmin⁻¹, 211 nm, 30 °C) t_R minor (2*R*,3*R*): 6.8 min, t_R major (2*S*,3*S*): 10.0 min, 96:4 er.

mAU

<Peak Table>

mAU

<Peak Table>

PDA Ch1 211nm				
Peak#	Ret. Time	Area%		
1	6.819	4.365		
2	9.965	95.635		
Total		100.000		

References

- [1] (a) Struble J. R.; Bode, J. W. *Org. Synth.* **2010**, *87*, 362–376; (b) Vora, H. U.; Lathrop, S. P.; Reynolds, N. T.; Kerr, M. S.; Read de Alaniz J.; Rovis, T. *Org. Synth.* **2010**, *87*, 350–361.
- [2] Davies, A. T.; Taylor, J. E.; Douglas, J.; Collett, C. J.; Morrill, L. C.; Fallan, C.; Slawin, A. M. Z.; Churchill G.; Smith, A. D. *J. Org. Chem.* **2013**, *78*, 9243–9257.
- [3] Davies, A. T.; Slawin, A. M. Z.; Smith, A. D. Chem. Eur. J. 2015, 21, 18944–18948.