

Supporting Information

for

Construction of pillar[4]arene[1]quinone-1,10-dibromodecane pseudorotaxanes in solution and in the solid state

Xinru Sheng, Errui Li and Feihe Huang

Beilstein J. Org. Chem. 2020, 16, 2954-2959. doi:10.3762/bjoc.16.245

Materials and methods, characterizations of H and G, crystallographic data, and characterization studies on the complexation between H and G in solution

Table of contents

1.	Materials and methods	S1
2.	Characterizations of H and G	S2
3.	Crystallographic data of the [3]pseudorotaxane between H	
	and G in the solid state	S4
4.	Characterization studies on the complexation between H and	
	G in solution	S5
5.	References	S9

1. Materials and methods

All reagents and solvents were commercially available and used as supplied without further purification. **H** was synthesized according to literature procedures. S1 1H NMR spectra were recorded on a temperature-controlled 400 MHz, 500 MHz, or 600 MHz spectrometer with use of the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDITOF MS) was recorded on a Bruker Ultraflex spectrometer with a 355 nm Nd: YAG laser (Smartbeam II) and a 25 kV ion source voltage. UV—vis spectra were taken on a Perkin-Elmer Lambda 35 UV-vis spectrophotometer.

2. Characterizations of **H** and **G**

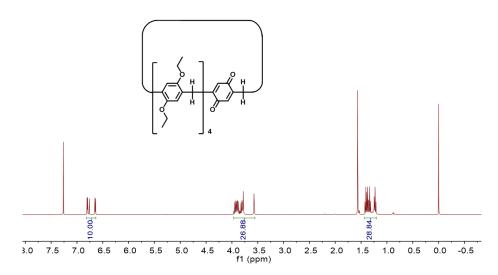


Figure S1: ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of H.

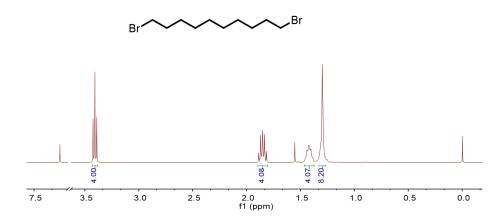


Figure S2: ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of G.

MALDI-TOF Mass Spectrum

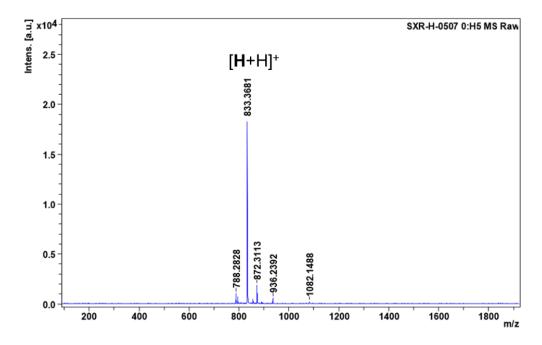


Figure S3: MALDI-TOF mass spectrum of H.

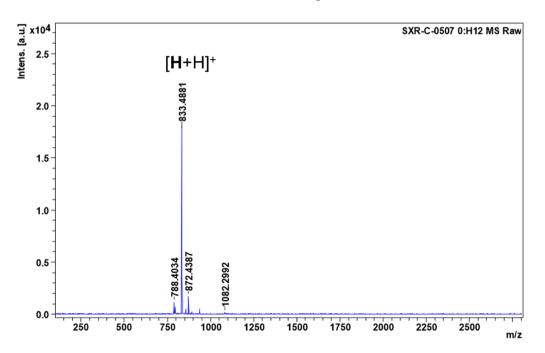
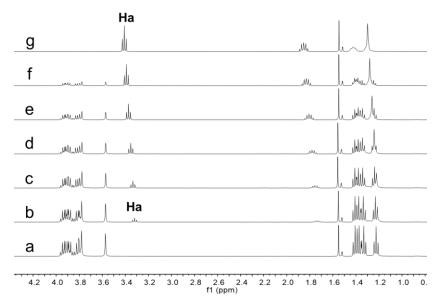
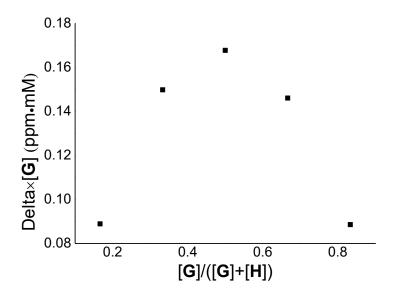
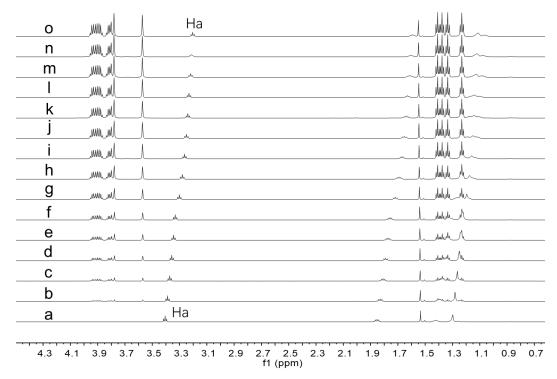

3. Crystallographic data of the [3]pseudorotaxane between **H** and **G** in the solid state

Table S1: Crystal data for single crystals of the [3]pseudorotaxane between **H** and **G** in the solid state.


d G in the solid state.	
empirical formula	C112H140Br2O20
formula weight	1966.06
temperature	170 K
wavelength	0.71073
crystal system	monoclinic
space group	P 1 2 ₁ /c 1
unit cell dimensions	$a = 17.4426(6) \text{ Å} \qquad \alpha = 90$
	$b = 19.3528(8) \text{ Å} \beta = 96.800(1)$
	$c = 15.3931(4) \text{ Å} \gamma = 90$
volume	5159.6(3)
Z	4
density (calculated)	1.265 g/cm ⁻³
absorption coefficient	0.854
F(000)	2084.0
crystal size	$0.336 \times 0.139 \times 0.116 \text{ mm}^3$
θ range for data collection	2.35 to 27.40°
index ranges	-19<=h<=22, -25<=k<=20, -
	19<= <=19
reflections collected	41520
independent reflections	11778 [<i>R</i> (int) = 0.0705]
completeness to θ = 27.492°	0.996
absorption correction	multiscan
max. and min. transmission	0.746, 0.686
data/restraints/parameters	11778/0/612
goodness-of-fit on <i>F</i> 2	1.046
final R indices [/ > 2o(/)]	R1 = 0.0480, wR2 = 0.0511
R indices (all data)	R1 = 0.0705, wR2 = 0.0672
largest diff. peak and hole	0.561, -0.709 e. Å ⁻³
CCDC	2031286

Characterization studies on the complexation between H and G in solution


MALDI-TOF Mass Spectrum


Figure S4: MALDI-TOF mass spectrum of **H** and **G**. There only exist the peaks of **H**.

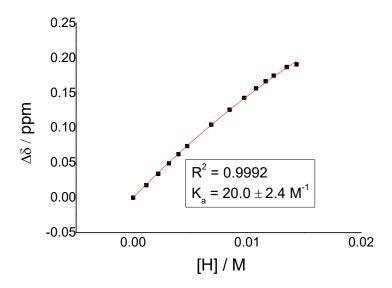

Figure S5: Partial ¹H NMR spectra (500 MHz, chloroform-*d*, 298 K): (a) 6.00 mM **H**; (b) 1.00 mM **G** and 5.00 mM **H**; (c) 2.00 mM **G** and 4.00 mM **H**; (d) 3.00 mM **G** and 3.00 mM **H**; (e) 4.00 mM **G** and 2.00 mM **H**; (f) 5.00 mM **G** and 1.00 mM **H**; (g) 6.00 mM **G**.

Figure S6: Job plot showing the 1:1 stoichiometry of the complexation between **H** and **G** in chloroform-d using the proton NMR data for H_a. Delta is the chemical shift change of H_a. [H] + [G] = 6.00 mM. [H] and [G] are concentrations of **H** and **G**, respectively.

Figure S7: Partial ¹H NMR spectra (600 MHz, chloroform-*d*, 298 K) of **G** at the concentration of 5.00 mM upon addition of **H**: (a) 0 mM; (b) 1.16 mM; (c) 2.20 mM; (d) 3.14 mM; (e) 3.98 mM; (f) 4.74 mM; (g) 6.85 mM; (h) 8.47 mM; (i) 9.74 mM; (j) 10.77 mM; (k) 11.63 mM; (l) 12.34 mM; (m) 13.47 mM; (n) 14.33 mM; (o) 15.00 mM.

Figure S8: The chemical shift changes upon addition of **H**. The red solid line was obtained from the non-linear curve-fitting equation, S2 y = (P1/[**G**]) $(0.5x+0.5)([\mathbf{G}]+P2)-(0.5(x^2+(2x(P2-[\mathbf{G}]))+(P2+[\mathbf{G}])^2)^{0.5}))$, where y = $\Delta\delta$, P1 = $\Delta\delta_{max}$, P2 = 1/ K_a , and x = [**H**].

5. References

- S1. Han, C.; Zhang, Z.; Yu, G.; Huang, F. *Chem. Commun.*, **2012**, *48*, 9876–9878.
- S2. Zhu, X.-Z.; Chen, C.-F. *J. Org. Chem.*, **2005**, *70*, 917–924.