Supporting Information

for

Silver-catalyzed synthesis of β-fluorovinylphosphonates by phosphonofluorination of aromatic alkynes

Yajing Zhang, Qingshan Tian, Guozhu Zhang and Dayong Zhang

Beilstein J. Org. Chem. 2020, 16, 3086-3092. doi:10.3762/bjoc.16.258

Experimental procedures, full characterization of products, and NMR spectra

1 Experimental details S1
1.1 Optimization of the reaction conditions. S1
2 General information S2
2.1 Gram-scale reaction S9
3 References S9
4 Copies of NMR spectra S10

1 Experimental Details

1.1 Optimization of the reaction conditions

Catalyst screening

entry	catalyst	yield (\%) ${ }^{\text {a }}$
1	CuI	trace
2	AuCl_{3}	9%
3	$(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$	no reaction
4	$[\mathrm{Rh}(\mathrm{OH})(\mathrm{COD})]_{2}$	no reaction
5	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{4}$	3%
6	CuOAc	trace

${ }^{\text {a }}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis with an internal standard (diethyl phthalate).

2 General Information

All reagents were obtained from commercial sources and used without further purification. Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). ${ }^{1} \mathrm{H}$ NMR spectra were obtained at 400 MHz and recorded relative to the tetramethylsilane signal (0 ppm) or residual proton solvent. ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 100 MHz , and chemical shifts were recorded relative to the solvent resonance ($\mathrm{CDCl}_{3}, 77.16 \mathrm{ppm}$). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift (δ, ppm) and multiplicity ($\mathrm{s}=$ singlet, d = doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant (s) in Hz , integration).

General procedure for the silver-catalyzed fluorophosphorylation of alkynes

In a vial, 1a ($20.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), Selectfluor ${ }^{\circledR}$ ($141.7 \mathrm{mg}, 0.4 \mathrm{mmol}$), diethyl phosphonate ($55.2 \mathrm{mg}, 0.4 \mathrm{mmol}$), and silver acetate ($3.3 \mathrm{mg}, 0.02 \mathrm{mmol}$) were dissolved in DEC/ $\mathrm{H}_{2} \mathrm{O} 1 \mathrm{~mL}: 1 \mathrm{~mL}$. The resulting mixture was stirred under N_{2} atmosphere at $60{ }^{\circ} \mathrm{C}$ for 24 h . After completion, the reaction was quenched, and the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Volatile solvent was evaporated in vacuo, and the residual oil was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to afford the fluorine product 2a. Note: A single Z-isomer of the product $\mathbf{2 a}$ was established by comparison with previous reports [1,2].

Diethyl (Z)-(2-fluoro-2-phenylvinyl)phosphonate (2a)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($40.9 \mathrm{mg}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.81$ (m, 2H), 7.51-7.42 (m, 3H), $5.51(\mathrm{dd}, J=$ 25.6, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05-3.95 (m, 4H), 1.20-1.17 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8$ (dd, $J=272.8,26.0 \mathrm{~Hz}), 131.5,130.4(\mathrm{~d}, J=28.7 \mathrm{~Hz}), 128.83128 .78,128.2$, 95.2 (dd, $J=202.3,22.5 \mathrm{~Hz}), 62.3,62.2,16.23,16.16 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -66.9 (dd, $J=72.9,25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.5(\mathrm{~d}, J=72.7 \mathrm{~Hz}$, 1P); HR-MS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}_{3} \mathrm{P} \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd. 259.0905 found 259.0896

Diethyl (Z)-(2-fluoro-2-(p-tolyl)vinyl)phosphonate (2b)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($37.0 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.44 (dd, $J=26.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05-3.96 (m, 4H), 2.39 (s, 3H), 1.20 (t, J = 7.0 Hz, 6H);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1(\mathrm{dd}, J=272.0,26.3 \mathrm{~Hz}), 142.0,128.9,128.7$ (d, $J=6.0 \mathrm{~Hz}$), 127.5 (d, $J=29.4 \mathrm{~Hz}$), 94.3 (dd, $J=203.1,23.2 \mathrm{~Hz}$), 62.2, 62.1, 21.7, 16.24, 16.17; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.0(\mathrm{dd}, \mathrm{J}=73.7,25.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}(162$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.9(\mathrm{~d}, J=72.7 \mathrm{~Hz}, 1 \mathrm{P})$; HR-MS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{P} \quad[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. 273.1061 found 273.1053

Diethyl (Z)-(2-fluoro-2-(m-tolyl)vinyl)phosphonate (2c)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE:EA=10:1) to give a colorless oil ($36.4 \mathrm{mg}, 67 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=$ $25.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05-3.95 (m, 4H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1$ (dd, $J=272.9,26.1 \mathrm{~Hz}$), 137.9, 132.3, 130.4 (d, $J=$ 28.9 Hz), 129.2 (d, $J=5.8 \mathrm{~Hz}$), 128.1, 126.1 (d, $J=6.2 \mathrm{~Hz}$), 95.1 (dd, $J=203.3,22.6$ $\mathrm{Hz}), 62.22,62.16,21.5,16.25,16.19 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-66.6(\mathrm{dd}, \mathrm{J}=72.9$, $25.2 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.7$ (d, $\left.J=73.2 \mathrm{~Hz}, 1 \mathrm{P}\right)$; HR-MS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{P} \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd. 273.1061 found 273.1050

Diethyl (Z)-(2-(4-(tert-butyl)phenyl)-2-fluorovinyl)phosphonate (2d)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($47.1 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{dd}, J=$ $25.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1(\mathrm{dd}, J=271.8,26.2 \mathrm{~Hz}), 155.1,128.6(\mathrm{~d}, J=6.1 \mathrm{~Hz})$, 127.4 (dd, $J=28.8,1.4 \mathrm{~Hz}$), 125.2, 94.2 (dd, $J=202.6,23.0 \mathrm{~Hz}$), 62.2, 62.1, 35.1, 31.2, 16.2, 16.1; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.2$ (dd, $\left.J=73.3,25.6 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;{ }^{31} \mathrm{P}(162$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.8(\mathrm{~d}, \mathrm{~J}=73.4 \mathrm{~Hz}, 1 \mathrm{P})$; HR-MS m/z: Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{FO}_{3} \mathrm{P} \quad[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. 315.1531 found 315.1543

Diethyl (Z)-(2-fluoro-2-(4-methoxyphenyl)vinyl)phosphonate (2e)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 5:1) to give a colorless oil ($34.6 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.93 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.38 (dd, $J=26.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05-3.98 (m, 4H), 3.85 (s, 3H), 1.22 (t, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8$ (dd, $\mathrm{J}=270.5,26.5 \mathrm{~Hz}$), 162.1, 130.6 (d, $J=6.7$ $\mathrm{Hz}), 122.6$ (dd, $J=29.2,1.4 \mathrm{~Hz}$), 113.6, 92.9 (dd, $J=202.9,23.7 \mathrm{~Hz}), 62.2,62.1$, $55.5,16.3,16.2 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.4$ (dd, $\left.J=74.1,26.3 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;{ }^{31} \mathrm{P}(162$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.3$ (d, $J=74.0 \mathrm{~Hz}, 1 \mathrm{P}$); HR-MS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]$ ${ }^{+}$calcd. 289.1010 found 289.1001

Diethyl (Z)-(2-([1,1'-biphenyl]-4-yl)-2-fluorovinyl)phosphonate (2f)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 5:1) to give a colorless oil ($46.1 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68-7.61 (m, 4H), 7.49-7.45 (m, 2H), 7.41-7.37 (m, 1H), 5.52 (dd, $J=26.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), ~ 4.08-4.00$ (m, 4H), 1.22 (t, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6$ (dd, $\mathrm{J}=271.4,26.1 \mathrm{~Hz}$), 144.2, 140.1, 129.3 (d, $J=6.3 \mathrm{~Hz}$), 129.1, 128.2, 127.3, 126.9, 95.0 (dd, $J=202.4,22.8 \mathrm{~Hz}$), 62.31, 62.25, 16.3, 16.2; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.8$ (dd, $\left.J=72.9,25.9 \mathrm{~Hz}, 1 \mathrm{~F}\right)$; ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.6(\mathrm{~d}, J=72.9 \mathrm{~Hz}, 1 \mathrm{P})$; HR-MS m$/ \mathrm{z}$: Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{FO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 335.1218 found 335.1209

Diethyl (Z)-(2-fluoro-2-(4-fluorophenyl)vinyl)phosphonate (2g)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($42.5 \mathrm{mg}, 77 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.87-7.84$ (m, 2H), 7.14-7.10 (m, 2H), 5.49 (dd, $J=$ 25.6, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06-3.97 (m, 4H), $1.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.7(\mathrm{dd}, J=271.6,26.0 \mathrm{~Hz}), 164.6(\mathrm{dd}, J=253.9,1.1 \mathrm{~Hz}), 131.2(\mathrm{ddd}, J=$ $8.8,6.3,0.8 \mathrm{~Hz}$), 126.6 (ddd, $\mathrm{J}=29.5,3.2,1.6 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 95.2$ (dd, J $=202.3,22.6 \mathrm{~Hz}), 62.3,62.2,16.3,16.2 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-107.43-107.36(\mathrm{~m}$, 1F), δ-66.8 (dd, $J=72.6,25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.3$ (d, $J=72.6 \mathrm{~Hz}$, 1P); HR-MS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]+$ calcd. 277.0811 found 277.0800

Diethyl (Z)-(2-fluoro-2-(3-fluorophenyl)vinyl)phosphonate (2h)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($44.1 \mathrm{mg}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dt}, J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.19$ (td, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (dd, $J=25.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08-3.99 (m, 4H), 1.22 (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 168.1 (ddd, $J=272.1,25.5,2.5 \mathrm{~Hz}$), 162.2 (d, $J=247.8 \mathrm{~Hz}$), 132.3 (ddd, $J=29.7,8.2,1.5 \mathrm{~Hz}$), $130.8(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 124.8(\mathrm{q}, J=2.3 \mathrm{~Hz}), 118.5(\mathrm{~d}, J=21.2 \mathrm{~Hz})$, 115.8 (dd, $J=327.2,21.6 \mathrm{~Hz}$), 115.8 (dd, $J=24.0,6.0 \mathrm{~Hz}$), 96.4 (dd, $J=202.1$, 21.9 Hz), 62.4, 62.3, 16.3, 16.2; ${ }^{19} \mathrm{~F}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -112.27-112.20 (m, 1F), δ -67.9 (dd, $J=71.8,25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.7(\mathrm{~d}, J=71.9 \mathrm{~Hz}, 1 \mathrm{P})$;

HR-MS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 277.0811 found 277.0796

Diethyl (Z)-(2-(4-chlorophenyl)-2-fluorovinyl)phosphonate (2i)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($48.5 \mathrm{mg}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.52 (dd, $J=26.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6$ (dd, $\left.J=271.6,25.9 \mathrm{~Hz}\right), 137.8,130.2(\mathrm{dd}, J=6.1,0.8 \mathrm{~Hz})$, 128.8 (dd, $J=29.5,1.7 \mathrm{~Hz}$), 128.6, 95.8 (dd, $J=202.0,22.2 \mathrm{~Hz}$), 62.4, 62.3, 16.3, 16.2; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.9(\mathrm{dd}, J=71.8,25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 15.0(\mathrm{~d}, \mathrm{~J}=72.1 \mathrm{~Hz}, 1 \mathrm{P})$; HR-MS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClFO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]$ +calcd. 293.0515 found 293.0521

Diethyl (Z)-(2-(3-chlorophenyl)-2-fluorovinyl)phosphonate (2j)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($41.5 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.74$ (m, 2H), 7.47-7.45 (m, 1H), 7.40-7.36(m, $1 \mathrm{H}), 5.56$ (dd, $J=25.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.97(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 168.1(\mathrm{dd}, J=272.6,25.4 \mathrm{~Hz}), 134.3,132.0(\mathrm{dd}, J=29.4$, $1.3 \mathrm{~Hz}), 131.5,129.6,127.9$ (dd, $J=160.5,6.1 \mathrm{~Hz}), 96.6$ (dd, $J=202.1,21.7 \mathrm{~Hz}$), $62.4,62.4,16.3,16.2 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-68.1(\mathrm{dd}, J=71.4,25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.7$ (d, $J=71.6 \mathrm{~Hz}, 1 \mathrm{P}$); HR-MS m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClFO}_{3} \mathrm{P}$ [M + H] ${ }^{+}$calcd. 293.0515 found 293.0505

Diethyl (Z)-(2-(2-chlorophenyl)-2-fluorovinyl)phosphonate (2k)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($32.7 \mathrm{mg}, 56 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.57-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}$, $1 \mathrm{H}), 5.68$ (dd, $J=20.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02-3.86 (m, 4H), 1.17 (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1$ (dd, $J=279.0,24.8 \mathrm{~Hz}$), 133.3, 132.4, $132.1 \quad(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}), 130.5(\mathrm{dd}, J=25.6,1.7 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 99.4(\mathrm{dd}, J=200.5,19.7$ $\mathrm{Hz}), 62.14,62.10,16.22,16.15 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.1$ (dd, $J=66.6,21.1 \mathrm{~Hz}$, 1F); ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7$ (d, $\left.J=66.7 \mathrm{~Hz}, 1 \mathrm{P}\right)$; HR-MS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClFO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd. 293.0515 found 293.0507
Diethyl (Z)-(2-(4-bromophenyl)-2-fluorovinyl)phosphonate (2l)
The reaction was conducted on a 0.2 mmol scale following the general procedure. The
desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($45.7 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.53 (dd, $J=25.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6(\mathrm{dd}, J=271.7,25.6 \mathrm{~Hz}$), 131.6, 130.4 (dd, $J=6.1,0.8 \mathrm{~Hz}$), 129.2 (dd, $J=29.5,1.7 \mathrm{~Hz}$), 126.2 (d, $J=1.3 \mathrm{~Hz}$), 96.0 (dd, $J=202.0,22.2 \mathrm{~Hz}$), 62.4 , 62.3, 16.3, 16.2; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-68.2$ (dd, $\left.J=71.8,25.6 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;{ }^{31} \mathrm{P}(162$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.0(\mathrm{~d}, \mathrm{~J}=72.1 \mathrm{~Hz}, 1 \mathrm{P})$; $\quad \mathrm{HR}-\mathrm{MS} \mathrm{m} / \mathrm{z}$: Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrFO}_{3} \mathrm{P}[\mathrm{M}$ $+\mathrm{H}{ }^{+}$calcd. 336.9926 found 236.9941

Diethyl (Z)-(2-fluoro-2-(4-(trifluoromethyl)phenyl)vinyl)phosphonate (2m)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 10:1) to give a colorless oil ($55.4 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.63$ (dd, $J=25.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07-4.00(m, 4H), 1.22 (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101MHz, CDCl_{3}) $\delta 168.0$ (dd, $\left.J=272.525 .6 \mathrm{~Hz}\right), 133.4$ (d, $\left.J=66.4,29.6 \mathrm{~Hz}\right), 129.3$ (d, $J=5.6 \mathrm{~Hz}$), 125.2 (q, $J=3.7 \mathrm{~Hz}$), 123.7 (q, $J=273.8 \mathrm{~Hz}$), 97.5 (dd, $J=201.6$, $21.3 \mathrm{~Hz}), 62.5,62.4,16.3,16.2 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.2(\mathrm{~s}, 1 \mathrm{~F}),-68.2(\mathrm{dd}, J=$ 71.1, $25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3(\mathrm{~d}, J=71.1 \mathrm{~Hz}, 1 \mathrm{P}) ;$ HR-MS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 327.0779 found 327.0789

Diethyl (Z)-(2-(4-cyanophenyl)-2-fluorovinyl)phosphonate (2n)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 3:1) to give a colorless oil ($39.1 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.66 (dd, $J=25.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07-3.99 (m, 4H), 3.95 (s, 3H), 1.21 (t, J = 7.2 Hz, 6H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8(\mathrm{~d}, J=348.45 \mathrm{~Hz}$), 134.1, 131.8, 129.3 (d, $J=$ 5.05 Hz), 117.9, 114.8, 98.1 (dd, $J=201.0,21.2 \mathrm{~Hz}$), 62.42, 62.36, 16.14, $16.07 ;{ }^{19} \mathrm{~F}$ $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.6(\mathrm{dd}, J=70.3,25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3$ (d, $J=71.1 \mathrm{~Hz}, 1 \mathrm{P}$); HR-MS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd. 284.0857 found 2284.0861

Methyl (Z)-4-(2-(diethoxyphosphoryl)-1-fluorovinyl)benzoate (2o)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 1:1) to give a colorless oil ($46.8 \mathrm{mg}, 74 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91 (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.61$
(dd, $J=25.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4$ (dd, $J=272.5,25.5 \mathrm{~Hz}$), 166.3, 134.4 (dd, $J=28.0,1.1 \mathrm{~Hz}$), 132.6, 129.3, 128.9 (d, $J=5.8 \mathrm{~Hz}$), 97.2 (dd, $J=202.0,21.7 \mathrm{~Hz}$), $62.4,62.3,52.5$, 16.3, 16.2; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-68.3$ (dd, $\left.J=71.4,25.6 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;{ }^{31} \mathrm{P}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 14.5(\mathrm{~d}, J=71.4 \mathrm{~Hz}, 1 \mathrm{P})$; HR-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. 317.0960 found 317.0957

Diethyl (Z)-(1-fluoro-1-phenylprop-1-en-2-yl)phosphonate (2p)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 3:1) to give a colorless oil ($32.6 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.82$ (m, 4H), 2.05-2.01 (m, 3H), 1.12 (td, $J=6.8,1.2 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.2(\mathrm{dd}, J=270.4,33.5 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=28.9 \mathrm{~Hz}), 130.4,129.4,129.3$, $127.8,104.8$ (dd, $J=193.1,17.8 \mathrm{~Hz}$), 61.94, 61.88, 16.1, 16.0, 12.5 (dd, $J=9.9,5.1$ $\mathrm{Hz}) ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.8(\mathrm{~d}, J=54.1 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.7 (d, $J=53.8 \mathrm{~Hz}, 1 \mathrm{P}$); HR-MS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 273.1061 found 273.1060

Diethyl (Z)-(1-fluoro-1-phenylbut-1-en-2-yl)phosphonate (2q)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 3:1) to give a colorless oil ($29.2 \mathrm{mg}, 51 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 3.99-3.84$ (m, 4H), 2.52-2.46 (m, 2H), $1.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) 1.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7$ (dd, $J=270.5,34.4 \mathrm{~Hz}$), $132.2(\mathrm{dd}, J=28.9,1.6 \mathrm{~Hz}$), 130.4 (d, $J=2.1 \mathrm{~Hz}$), 129.4 (dd, $J=3.8,0.9 \mathrm{~Hz}$), 127.8, 111.3 (dd, $J=190.0,6.8 \mathrm{~Hz}$), 61.9, 61.8, 21.0 (dd, $J=8.2,5.2 \mathrm{~Hz}$), 16.14, 16.07, 14.3; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-70.4(\mathrm{~d}, \mathrm{~J}=55.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2(\mathrm{~d}, J=55.9 \mathrm{~Hz}, 1 \mathrm{P}) ;$ HR-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{FO}_{3} \mathrm{P} \quad[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd. 287.1218 found 287.1219

Dimethyl (Z)-(2-fluoro-2-phenylvinyl)phosphonate (3a)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 5:1) to give a colorless oil ($34.5 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52-7.42 (m, 3H), 5.48 (dd, J $=25.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (d, $J=11.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4$ (dd, $J=273.4,26.6 \mathrm{~Hz}$), 131.7, 130.2 (d, $J=28.8 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 128.3$, 93.8 (dd, $J=203.7,23.3 \mathrm{~Hz}), 52.72,52.66 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.8(\mathrm{dd}, J=$
72.9, $25.2 \mathrm{~Hz}, 1 \mathrm{~F}$); ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.5$ (d, $J=73.4 \mathrm{~Hz}, 1 \mathrm{P}$); HR-MS m/z: Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 231.0592 found 231.0595

Dimethyl (Z)-(2-fluoro-2-(p-tolyl)vinyl) phosphonate (3b)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 5:1) to give a colorless oil ($29.3 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), \delta 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.42 (dd, $J=25.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 6 \mathrm{H}) 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6$ (dd, $J=272.7,26.8 \mathrm{~Hz}$), 142.2, 129.0, 128.6 (d, $J=6.3 \mathrm{~Hz}$), 127.3 (dd, $J=28.8,1.5 \mathrm{~Hz}$), 92.8 (dd, $J=204.0,23.9 \mathrm{~Hz}$), 52.7, 52.6, 21.7; ${ }^{19} \mathrm{~F}(376$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.9(\mathrm{dd}, J=74.1,25.6 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.9(\mathrm{~d}, J$ $=74.0 \mathrm{~Hz}, 1 \mathrm{P}$); HR-MS m/z: Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 245.0748 found 245.0743

Dimethyl (Z)-(2-fluoro-2-(4-fluorophenyl)vinyl) phosphonate (3c)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 5:1) to give a colorless oil (34.2 mg , 69\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), \delta$ $7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.51(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6$ (ddd, $J=271.8,25.9,2.6 \mathrm{~Hz}$), 162.3 (d, $J=248.1$ $\mathrm{Hz}), 132.1$ (ddd, $J=29.3,8.2,1.6 \mathrm{~Hz}$), 130.0 (d, $J=8.2 \mathrm{~Hz}$), $124.7(\mathrm{dd}, J=6.0,3.1 \mathrm{~Hz})$, $118.7(\mathrm{~d}, J=21.2 \mathrm{~Hz}$), 115.6 (dd, $J=24.0,6.2 \mathrm{~Hz}$), $95.1(\mathrm{dd}, J=203.2,22.6 \mathrm{~Hz}$), 52.8, 52.7; ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.0(\mathrm{~m}, 1 \mathrm{~F}),-66.7$ (dd, $\left.J=72.2,25.2 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;$ ${ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.1$ (d, $J=72.3 \mathrm{~Hz}, 1 \mathrm{P}$); HR-MS m/z: Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 249.0498 found 249.0501

Dimethyl (Z)-(2-(4-bromophenyl)-2-fluorovinyl)phosphonate (3d)

The reaction was conducted on a 0.2 mmol scale following the general procedure. The desired product was purified by column chromatography (PE/EA 5:1) to give a colorless oil ($44.4 \mathrm{mg}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), \delta 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.64 (dd, $J=25.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68(d, $J=11.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9$ (dd, $J=272.9,26.1 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=29.4,1.7 \mathrm{~Hz}), 132.1,129.4(\mathrm{~d}, J=6.0$, 0.7 Hz), 96.9 (dd, $J=202.1,21.8 \mathrm{~Hz}$), $52.94,52.88 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-68.1$ (dd, $J=71.1,25.2 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.8$ (d, $\left.J=71.1 \mathrm{~Hz}, 1 \mathrm{P}\right) ;$ HR-MS m / z : Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrFO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd.308.9613 found 308.9625

2.1 Gram-scale reaction

In a vial, 1a ($816 \mathrm{mg}, 8 \mathrm{mmol}$), Selectfluor ${ }^{\circledR}$ ($5.6 \mathrm{~g}, 16 \mathrm{mmol}$), diethyl phosphonate ($2.2 \mathrm{mg}, 16 \mathrm{mmol}$), and silver acetate ($132 \mathrm{mg}, 0.8 \mathrm{mmol}$) were dissolved in $\mathrm{DEC} / \mathrm{H}_{2} \mathrm{O} 25 \mathrm{~mL}: 25 \mathrm{~mL}$. The resulting mixture was stirred under N_{2} atmosphere at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the reaction was quenched and the residual oil was purified by column chromatography on silica gel, affording the product $\mathbf{2 a}(1.4 \mathrm{~g}$, yield 67\%).

3 References

1. Okoromoba, O. -E.; Han, J. -B.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2014, 136, 14381-14384
2. Xu, J.-J.; Burton, D.-J. J.Org.Chem. 2006, 71, 3743-3747

4 Copies of NMR spectra

Diethyl (Z)-(2-fluoro-2-phenylvinyl)phosphonate (2a)

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

80	50	20	-10	-40	-70	$\begin{gathered} -100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	-140	-180	-220	-260

${ }^{31}$ P NMR

Diethyl (Z)-(2-fluoro-2-(p-tolyl)vinyl)phosphonate (2b)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-fluoro-2-(m-tolyl)vinyl)phosphonate (2c)
${ }^{1} \mathrm{H}$ NMR

${ }^{19} \mathrm{~F}$ NMR

80 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Diethyl (Z)-(2-(4-(tert-butyl)phenyl)-2-fluorovinyl)phosphonate (2d)
${ }^{1} \mathrm{H}$ NMR

${ }^{19}$ F NMR
(

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-fluoro-2-(4-methoxyphenyl)vinyl)phosphonate (2e)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

80	50	20	-10	-40	-70	-100	-140
				-180	-220		

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-([1,1'-biphenyl]-4-yl)-2-fluorovinyl)phosphonate (2f)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31}$ P NMR

Diethyl (Z)-(2-fluoro-2-(4-fluorophenyl)vinyl)phosphonate (2g)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-fluoro-2-(3-fluorophenyl)vinyl)phosphonate (2h)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-(4-chlorophenyl)-2-fluorovinyl)phosphonate (2i)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR
(

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-(3-chlorophenyl)-2-fluorovinyl)phosphonate (2j)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

 $\xrightarrow[-67.1]{ }$
OET

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-(2-chlorophenyl)-2-fluorovinyl)phosphonate (2k)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-(4-bromophenyl)-2-fluorovinyl)phosphonate (2l)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-fluoro-2-(4-(trifluoromethyl)phenyl)vinyl)phosphonate (2m)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(2-(4-cyanophenyl)-2-fluorovinyl)phosphonate (2n)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Methyl (Z)-4-(2-(diethoxyphosphoryl)-1-fluorovinyl)benzoate (2o)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR
过志志

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(1-fluoro-1-phenylprop-1-en-2-yl)phosphonate (2p)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

		Mぁ ぁృ家家			

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Diethyl (Z)-(1-fluoro-1-phenylbut-1-en-2-yl)phosphonate (2q)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

in
$\stackrel{\text { m}}{\alpha}$
$\stackrel{\alpha}{\alpha}$

Dimethyl (Z)-(2-fluoro-2-phenylvinyl)phosphonate (3a)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR
(

${ }^{31}$ P NMR

Dimethyl (Z)-(2-fluoro-2-(p-tolyl)vinyl) phosphonate (3b)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31} \mathrm{P}$ NMR

Dimethyl (Z)-(2-fluoro-2-(4-fluorophenyl)vinyl) phosphonate (3c)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{31}$ P NMR

Dimethyl (Z)-(2-(4-bromophenyl)-2-fluorovinyl)phosphonate (3d)
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19} \mathrm{~F}$ NMR

${ }^{31} \mathrm{P}$ NMR

