Supporting Information

for

p-Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies

Panagiotis S. Gritzapis, Panayiotis C. Varras, Nikolaos-Panagiotis Andreou, Katerina R. Katsani, Konstantinos Dafnopoulos, George Psomas, Zisis V. Peitsinis, Alexandros E. Koumbis and Konstantina C. Fylaktakidou

Beilstein J. Org. Chem. 2020, 16, 337-350. doi:10.3762/bjoc.16.33

Experimental part

Table of contents

1.	General procedures for the synthesis of all compounds and data analysis	S3
2.	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of amidoxime, ethanone oxime and aldoxime carbamates	S7
	(Z)- N^{\prime}-[(benzyl-carbamoyl)oxy]isonicotinimidamide (8)	S7
	(Z)- N^{\prime}-[(phenyl-carbamoyl)oxy]isonicotinimidamide (9)	S9
	(Z)- N^{\prime}-[(4-methoxyphenyl-carbamoyl)oxy]isonicotinimidamide (10)	S11
	(Z)- N^{\prime}-[(4-nitrophenyl-carbamoyl)oxy]isonicotinimidamide (11)	S13
	(Z)- N^{\top}-[(4-chlorophenyl-carbamoyl)oxy]isonicotinimidamide (12)	S15
	(Z)- N^{\prime}-[(4-fluorophenyl-carbamoyl)oxy]isonicotinimidamide (13)	S17
	(E)-1-(pyridin-4-yl)ethanone O-benzylcarbamoyl oxime (15)	S19
	(E)-1-(pyridin-4-yl)ethanone O-phenylcarbamoyl oxime (16)	S21
	(E)-1-(pyridin-4-yl)ethanone O-4-methoxyphenylcarbamoyl oxime (17)	S23
	(E)-1-(pyridin-4-yl)ethanone O-4-nitrophenylcarbamoyl oxime (18)	S25
	(E)-1-(pyridin-4-yl)ethanone O-4-chlorophenylcarbamoyl oxime (19)	S27
	(E)-1-(pyridin-4-yl)ethanone O-4-fluorophenylcarbamoyl oxime (20)	S29
	(E)-isonicotinaldehyde O-benzylcarbamoyl oxime (22)	S31
	(E)-isonicotinaldehyde O-phenylcarbamoyl oxime (23)	S33
	(E)-isonicotinaldehyde O-4-methoxyphenylcarbamoyl oxime (24)	S35
	(E)/(Z)-isonicotinaldehyde O-4-nitrophenylcarbamoyl oxime (25)	S37
	$(E) /(Z)$-isonicotinaldehyde O-4-chlorophenylcarbamoyl oxime (26)	S39
	(E)/(Z)-isonicotinaldehyde O-4-fluorophenylcarbamoyl oxime (27)	S41
3.	Optimized structures of compounds 25-27 with the ab initio DFT computational methods	S43
4.	DNA binding studies	S44
	Figure S-4.1. UV-vis spectra of DMSO solution of compound (A) 11 and (B) 12 in the presence of increasing amounts of CT DNA.	S44
	Figure S-4.2. Plot of [DNA]/($\left.\varepsilon_{A}-\varepsilon_{f}\right)$ versus [DNA] for compound (A) 11 and (B) $\mathbf{1 2}$.	S44
	Figure S-4.3. Stern-Volmer quenching plot of EB bound to CT DNA for compound (A) 11 and (B) 12 .	S44
5.	UV absorption spectra of amidoxime, ethanone oxime and aldoxime carbamates	S45
	Figure S-5.1. UV-vis spectra of amidoxime carbamates	S45
	Figure S-5.2. UV-vis spectra of ethanone oxime carbamates	S45
	Figure S-5.3. UV-vis spectra of aldoxime carbamates	S45
6.	Gel electrophoresis pictures of amidoxime, ethanone oxime and aldoxime carbamates	S46
	Figure S-6.1. Comparative gel electrophoresis pictures of all carbamates	S46
	Figure S-6.2. Mechanistic studies involved by derivatives 12 and $\mathbf{2 6}$ and pH effect on compound 12.	S46
7.	UV absorption spectra of amidoxime carbamates 11 and 12 under irradiation	S47
	Figure S-7.1. UV-vis spectra of amidoxime carbamate 11	S47
	Figure S-7.2. UV-vis spectra of amidoxime carbamate 12	S47
8.	A computational study and photochemical aspects of compounds 11 and 12	S48
	Figure S-8.1. Ground state (S_{0}) structures of 12 (A) and 11 (B).	S48
	Table S-8.1. Molecular geometries of compounds 12 and 11.	S48
	Table S-8.2. Franck-Condon excitation energies.	S48
	Figure S-8.3. PES for the dissociation of M2 in the first excited triplet state.	S49
	8.4. Mathematical Appendix	S49

1. Synthesis of O -carbamoyl oximes

1.1. General procedure for the synthesis of O-carbamoyl amidoximes

(Z)- N '-Hydroxyisonicotinimidamide 1 [68] ($274 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in dry chloroform $(12 \mathrm{~mL})$ under Ar atmosphere. Triethylamine ($0.3 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, followed by slow addition (15 min) of the proper isocyanate (2.2 mmol). The mixture was stirred at rt or refluxed for the indicated period of time. Then, water (30 mL) was added and the mixture was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ the organic solvent was removed in a rotary evaporator and the crude residue was either recrystallized or subjected to a column chromatography and then recrystallized.

1.2. General procedure for the synthesis of O-carbamoyl ethanone oximes

(E)-1-(Pyridin-4-yl)ethan-1-one oxime 14 [69] ($136 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in dry chloroform or tetrahydrofuran (6 mL) under Ar atmosphere. Triethylamine ($0.15 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, followed by slow addition (15 min) of the proper isocyanate ($1.1-1.8 \mathrm{mmol}$). The mixture was stirred at rt or refluxed for the indicated period of time. Then, water $(20 \mathrm{~mL})$ was added and the mixture was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ the organic solvent was removed in a rotary evaporator and the crude residue was either recrystallized or subjected to a column chromatography and then recrystallized.

1.3. General procedure for the synthesis of O-carbamoyl aldoximes

(E)-Isonicotinaldehyde oxime 21 [70] ($244 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in tetrahydrofuran or other indicated solvent (25 mL) under Ar atmosphere. Triethylamine ($0.3 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, followed by slow addition (15 min) of the proper isocyanate (2.2 mmol). The mixture was stirred at rt or refluxed for the indicated period of time. Then, water (30 mL) was added and the mixture was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ the organic solvent was removed in a rotary evaporator and the crude residue was either recrystallized or subjected to a column chromatography and then recrystallized.

1.4. Data analysis of O-carbamoyl amidoximes 8-13, O-carbamoyl ethanone oximes 15-20, and O-carbamoyl amidoximes 22-27

(Z)- $N^{\prime}-[($ Benzyl-carbamoyl)oxy]isonicotinimidamide (8).

Reaction time: 1 h (rt); method of purification: recrystallization; yield: 408 mg (75%); white crystals, mp $132{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes); IR (KBr): 3378, 3292, 3111, $1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta 4.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.97(\mathrm{brt}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04-7.19 (m, 5H), $7.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta 44.0,120.2,126.5,126.6,127.8,137.9,138.3,149.2,151.9,155.2 \mathrm{ppm} ;$ HRMS (ESI) calc $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 271.1190$; found 271.1189.
(Z)- $N^{\prime}-[($ Phenyl-carbamoyl)oxy]isonicotinimidamide (9).

Reaction time: 2 h (rt); method of purification: column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 20/1); yield: $353 \mathrm{mg}(69 \%)$; beige crystals, mp $168{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$; IR (KBr): 3413, 3304, 1718 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta 6.63(\mathrm{br} \mathrm{s} 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.98$ (br $\mathrm{s}, 1 \mathrm{H}) \mathrm{ppm}{ }^{13}{ }^{13} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta 118.2,119.9,122.2,127.6,136.8,137.8$, 148.7, 151.3, 152.3 ppm ; HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$257.1033; found 257.1030.
(Z)- N^{\prime}-[(4-Methoxyphenyl-carbamoyl)oxy]isonicotinimidamide (10).

Reaction time: $24 \mathrm{~h}(\mathrm{rt})$; method of purification: column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $40 / 3$); yield: $401 \mathrm{mg}(70 \%)$; grey crystals, $\mathrm{mp} 167^{\circ} \mathrm{C}$ (ethyl acetate); IR (KBr): 3468, 3326, 1718 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.44$
(d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.69(\mathrm{~d}, J=6.1, \mathrm{~Hz}, 2 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 55.2,113.9,121.0,121.4,131.3,138.8,150.0,152.7,153.2,155.4 \mathrm{ppm} ;$ HRMS (ESI) calc $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$287.1139; found 287.1135.

(Z)-N'-[(4-Nitrophenyl-carbamoyl)oxy]isonicotinimidamide (11).

Reaction time: 4 h (reflux); method of purification: recrystallization; yield: 556 mg (92%); yellow-orange crystals, $\mathrm{mp} 202{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$; $\mathrm{IR}(\mathrm{KBr}): 3482,3358,3316,1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.24$ (d, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 10.14(\mathrm{br} \mathrm{s} 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 118.4, 121.0, 125.0, 138.6, 142.0, 145.1, 150.0, 151.9, 154.6 ppm; HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 302.0884$; found 302.0886 .

(Z)-N'-[(4-Chlorophenyl-carbamoyl)oxy]isonicotinimidamide (12).

Reaction time: 24 h (reflux); method of purification: recrystallization; yield: $522 \mathrm{mg}(90 \%)$; grey crystals, mp $197{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$; IR (KBr): 3467, 3327, 3176, $1703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta 6.59(\mathrm{br} \mathrm{s} 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ DMSO$\left.d_{6}\right) \delta 119.6,120.1,126.9,127.6,135.8,137.9,148.8,151.3,152.5 \mathrm{ppm}$; HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$291.0643; found 291.0650, 293.0614 (3:1).
(Z)-N'-[(4-Fluorophenyl-carbamoyl)oxy]isonicotinimidamide (13).

Reaction time: 4 h (reflux); method of purification: recrystallization; yield: 525 mg (96%); grey crystals, mp $182{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$; IR (KBr): 3408, 3297, 3158, $1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.06(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.17\left(\mathrm{t},{ }^{3} J_{H F}={ }^{3} J_{H H}=8.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.56\left(\mathrm{dd},{ }^{3} J_{H H}=8.9 \mathrm{~Hz},{ }^{4} J_{H F}=5.0\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 115.3\left(\mathrm{~d},{ }^{2} J_{C F}=22.2 \mathrm{~Hz}\right), 121.0,121.4\left(\mathrm{~d},{ }^{3} J_{C F}=7.9 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d},{ }^{4} J_{C F}=2.5\right.$ $\mathrm{Hz}), 138.8,150.0,152.6,153.5,158.1\left(\mathrm{~d},{ }^{1} J_{C F}=238.0 \mathrm{~Hz}\right) \mathrm{ppm}$; HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FN}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 275.0939$; found 275.0934.

(E)-1-(Pyridin-4-yl)ethanone O-benzylcarbamoyl oxime (15).

Reaction time: 24 h (reflux); solvent: chloroform; method of purification: column chromatography (eluent: ethyl acetate/hexanes $2 / 1$); yield: 207 mg (77%); off-white crystals, mp $118{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes); IR (KBr): 3334, $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.42$ (s, $3 \mathrm{H}), 4.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,45.2,120.8,127.6,127.7,128.7$, 137.7, 142.3, 150.1, 154.8, 158.3 ppm ; HRMS (ESI) calc $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$270.1237; found 270.1235 .

(E)-1-(Pyridin-4-yl)ethanone O-phenylcarbamoyl oxime (16).

Reaction time: 2 h (reflux); solvent: chloroform; method of purification: column chromatography (eluent: ethyl acetate/hexanes 2/1); yield: 225 mg (88%); pale yellow crystals, $\mathrm{mp} 148{ }^{\circ} \mathrm{C}$ (ethyl acetate); IR (KBr): $3230,1756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.49$ (s, 3H), 7.15 (t, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 8.75 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,119.7,121.1,124.6,129.2$, 136.6, 142.8, 149.7, 151.4, 158.6 ppm ; HRMS (ESI) calc $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 256.1081$; found 256.1078 .

(E)-1-(Pyridin-4-yl)ethanone O-4-methoxyphenylcarbamoyl oxime (17).

Reaction time: $24 \mathrm{~h}(\mathrm{rt})$; solvent: tetrahydrofuran; method of purification: column chromatography (eluent: ethyl acetate/hexanes 2/1); yield: 201 mg (70%); yellow crystals, mp 147 ${ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes); IR (KBr): 3246, $1752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.47$ (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.09$ (br s,
$1 \mathrm{H}), 8.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,55.5,114.3,120.8,121.9$, 129.6, 142.2, 150.3, 152.0, 156.8, 158.7 ppm ; HRMS (ESI) calc $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$286.1186; found 286.1189.

(E)-1-(Pyridin-4-yl)ethanone O-4-nitrophenylcarbamoyl oxime (18).

Reaction time: 24 h (reflux); solvent: tetrahydrofuran; method of purification: recrystallization; yield: 291 mg (97%); yellow crystals, mp $169{ }^{\circ} \mathrm{C}\left(\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}\right)$, IR (KBr): 3204, $1786 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 7.77(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.26$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.72(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 10.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 13.6,118.5,121.0,125.1,141.8,142.3,144.8,150.3,151.1,160.4 \mathrm{ppm}$; HRMS (ESI) calc $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 301.0931$; found 301.0931.

(E)-1-(Pyridin-4-yl)ethanone O-4-chlorophenylcarbamoyl oxime (19).

Reaction time: 24 h (reflux); solvent: tetrahydrofuran; method of purification: column chromatography (eluent: ethyl acetate/hexanes 2/1); yield: 212 mg (73%); pale yellow crystals, mp $169{ }^{\circ} \mathrm{C}$ (ethyl acetate/hexanes), IR (KBr): $3223,1760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.47$ (s, $3 \mathrm{H}), 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 8.73 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,120.8,120.9,129.2,129.6$, 135.3, 142.0, 150.4, 151.4, 159.2 ppm ; HRMS (ESI) calc $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 290.0691$; found 290.0689, 292.0658 (3:1).

(E)-1-(Pyridin-4-yl)ethanone O-4-fluorophenylcarbamoyl oxime (20).

Reaction time: 2 h (reflux); solvent: tetrahydrofuran; method of purification: column chromatography (eluent: ethyl acetate/hexanes $2 / 1$); yield: 172 mg (63%); pale yellow crystals, mp $181{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$, IR (KBr): $3197,1752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta$ $2.40(\mathrm{~s}, 3 \mathrm{H}), 7.03\left(\mathrm{t},{ }^{3} J_{H F}={ }^{3} J_{H H}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.53\left(\mathrm{dd},{ }^{3} J_{H H}=8.8 \mathrm{~Hz},{ }^{4} J_{H F}=4.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.72(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.64(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO$\left.d_{6}\right) \delta 11.7,113.4\left(\mathrm{~d},{ }^{2} J_{C F}=22.2 \mathrm{~Hz}\right), 119.2,119.4\left(\mathrm{~d},{ }^{3} J_{C F}=6.1 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d},{ }^{4} J_{C F}=2.5 \mathrm{~Hz}\right)$, 140.3, 148.3, 150.0, $156.6\left(\mathrm{~d},{ }^{1} J_{C F}=239.5 \mathrm{~Hz}\right), 157.0 \mathrm{ppm}$; HRMS (ESI) calc $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FN}_{3} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$274.0986; found 274.0984

(E)-Isonicotinaldehyde O-benzylcarbamoyl oxime (22).

Reaction time: 24 h (rt); solvent: tetrahydrofuran; method of purification: column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20 / 1$); yield: 100 mg (20\%); white crystals, mp $101{ }^{\circ} \mathrm{C}$ (ethyl acetate); IR (KBr): 3398, $1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 4.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{brt}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.64(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d $d_{6} \delta 44.0,121.8,126.9$, 127.1, 128.3, 137.9, 139.2, 150.4, 152.2, 154.6 ppm ; HRMS (ESI) calc $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 256.1081; found 256.1075.
(E)-Isonicotinaldehyde O-phenylcarbamoyl oxime (23). ${ }^{71}$

Reaction time: 24 h (rt); solvent: tetrahydrofuran; method of purification: column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20 / 1$); yield: 203 mg (42%); pale yellow crystals, mp 136 ${ }^{\circ} \mathrm{C}(\mathrm{MeOH})$; IR (KBr): $3180,1750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 119.3,121.8,123.4,128.9$, 137.8, 138.1, 150.5, 151.4, 153.3 ppm; HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$242.0924; found 242.0927.

(E)-Isonicotinaldehyde O-4-methoxyphenylcarbamoyl oxime (24).

Reaction time: 24 h (rt); solvent: tetrahydrofuran; method of purification: column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40 / 1$); yield: 191 mg (35\%); pale brown-beige crystals, mp
$159{ }^{\circ} \mathrm{C}$ (ethyl acetate); IR (KBr): $3195,1763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 3.73$ (s, 3H), $6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 55.2,114.1,121.3,121.8,131.0$, 137.9, 150.5, 151.6, 153.0, $155.6 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{ESI})$ calc $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 272.1030$; found 272.1025.
(E)/(Z)-Isonicotinaldehyde O-4-nitrophenylcarbamoyl oxime (25).

Reaction time: 4 h (reflux); solvent: tetrahydrofuran; method of purification: column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40 / 1$); yield: 307 mg (54%); yellow crystals (ethyl acetate); IR (KBr): $3210,1760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, mixture of E / Z isomers $c a .9: 1$) $\delta 6.59$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.54(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.76(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1.8 \mathrm{H}), 7.79(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1.8 \mathrm{H}), 7.94(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 8.17(\mathrm{~s}, 0.1 \mathrm{H}), 8.26(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1.8 \mathrm{H}), 8.59(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $0.2 \mathrm{H}), 8.74(\mathrm{~s}, 0.9 \mathrm{H}), 8.74(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1.8 \mathrm{H}), 10.74(\mathrm{br} \mathrm{s}, 0.9 \mathrm{H}), 11.80(\mathrm{br} \mathrm{s}, 0.1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, ~ D M S O-d_{6}$, mixture of E / Z isomers $c a .9: 1$) $\delta 112.4,118.6,120.6,121.9,125.1$, $126.4,137.6,140.3,142.3,144.7,146.6,150.1,150.5,151.0,154.2,155.7,156.1 \mathrm{ppm} ;$ HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 287.0775$; found 287.0771.

(E)/(Z)-Isonicotinaldehyde O-4-chlorophenylcarbamoyl oxime (26).

Reaction time: 24 h (reflux); solvent: chloroform; method of purification: column chromatography (eluent: ethyl acetate/hexanes $2 / 1$); yield: $447 \mathrm{mg}(81 \%)$; white crystals (ethyl acetate); IR (KBr): $3247,1762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, mixture of E / Z isomers $c a$. $9: 1) \delta 6.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1.8 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1.8 \mathrm{H}), 7.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1.8 \mathrm{H}), 8.17(\mathrm{~s}, 0.1 \mathrm{H}), 8.59(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 0.2 \mathrm{H}), 8.70(\mathrm{~s}, 0.9 \mathrm{H}), 8.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1.8 \mathrm{H}), 10.15(\mathrm{~s}, 0.9 \mathrm{H}), 11.80(\mathrm{~s}, 0.1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}, mixture of E / Z isomers $c a .9: 1$) $\delta 115.2,120.6,120.7,121.8,127.1$, $128.5,128.8,137.1,137.7,140.3,146.6,150.1,150.5,151.3,153.5 \mathrm{ppm}$; HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 276.0534$; found 276.0529, 278.0501 (3:1).
(E)/(Z)-Isonicotinaldehyde O-4-fluorophenylcarbamoyl oxime (27).

Reaction time: 24 h (rt); solvent: tetrahydrofuran; method of purification: column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40 / 1$); yield: 120 mg (23%); pale yellow crystals, (ethyl acetate $/ 1,4$-dioxane); IR (KBr): $3218,1763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, mixture of E / Z isomers ca. 9:1) $\delta 7.11\left(\mathrm{t},{ }^{3} J_{H F}={ }^{3} J_{H H}=8.9 \mathrm{~Hz}, 0.2 \mathrm{H}\right), 7.19\left(\mathrm{t},{ }^{3} J_{H F}={ }^{3} J_{H H}=8.8 \mathrm{~Hz}, 1.8 \mathrm{H}\right), 7.45$ $\left(\mathrm{dd},{ }^{4} J_{H F}=8.9 \mathrm{~Hz},{ }^{3} J_{H H}=5.0 \mathrm{~Hz}, 0.2 \mathrm{H}\right), 7.55(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 0.2 \mathrm{H}$, obscured), $7.55(\mathrm{dd}, J=9.1,5.0$ $\mathrm{Hz}, 1.8 \mathrm{H}), 7.77(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1.8 \mathrm{H}), 8.17(\mathrm{~s}, 0.1 \mathrm{H}), 8.59(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 8.69(\mathrm{~s}, 0.9 \mathrm{H}), 8.73$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1.8 \mathrm{H}), 10.03(\mathrm{~s}, 0.9 \mathrm{H}), 11.80(\mathrm{~s}, 0.1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, mixture of E / Z isomers $c a .9: 1) \delta 115.2\left(\mathrm{~d},{ }^{2} J_{C F}=22.1 \mathrm{~Hz}\right.$, minor isomer), $115.5\left(\mathrm{~d},{ }^{2} J_{C F}=22.3 \mathrm{~Hz}\right.$, major isomer), 120.0 ($\mathrm{d},{ }^{3} J_{C F}=7.6 \mathrm{~Hz}$, minor isomer), $120.6,121.2\left(\mathrm{~d},{ }^{3} J_{C F}=7.6 \mathrm{~Hz}\right.$, major isomer), 121.8, 134.4 ($\mathrm{d},{ }^{4} J_{C F}=2.4 \mathrm{~Hz}$, major isomer), $136.0\left(\mathrm{~d},{ }^{4} J_{C F}=2.2 \mathrm{~Hz}\right.$, minor isomer), $137.8,140.3,146.6,150.1,150.5,151.5,153.3,157.3\left(\mathrm{~d},{ }^{1} J_{C F}=236.8 \mathrm{~Hz}\right.$, minor isomer), 158.2 (d, ${ }^{1} J_{C F}=238.5 \mathrm{~Hz}$, major isomer) ppm; HRMS (ESI) calc $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 260.0830$; found 260.0833.
2. ${ }^{1} H$ NMR and ${ }^{13} C$ NMR of amidoxime, ethanone oxime and aldoxime carbamates

3. Optimized molecular geometries for NMR prediction

1. Optimized molecular geometries of \boldsymbol{E}-25-DMSO (A) and Z-25-DMSO (B) complexes at B3LYP/631G(d) level

2. Optimized molecular geometries of E-26-DMSO (A) and Z-26-DMSO (B) complexes at B3LYP/631G(d) level

3. Optimized molecular geometries of E-27-DMSO (A) and Z-27-DMSO (B) complexes at B3LYP/631G(d) level
A.

B.

4. DNA binding studies

Figure S-4.1. UV-vis spectra of DMSO solution of compound (A) $\mathbf{1 1}\left(1 \times 10^{-4} \mathrm{M}\right)$ and (B) $\mathbf{1 2}$ (1 $\times 10^{-4} \mathrm{M}$) in the presence of increasing amounts of CT DNA ($\mathrm{r}^{\prime}=[\mathrm{DNA}] /[$ compound $]=0-0.8$). The arrows show the changes upon increasing amounts of CT DNA.

Figure S-4.2. Plot of $[D N A] /\left(\varepsilon_{A}-\varepsilon_{f}\right)$ versus [DNA] for compound (A) $\mathbf{1 1}$ and (B) $\mathbf{1 2}$.

Figure S-4.3. Stern-Volmer quenching plot of EB bound to CT DNA for compound (A) 11 and (B) 12.

5. UV absorption spectra of amidoxime, ethanone oxime and aldoxime carbamates

Concentration
$\mathbf{8}: 10^{-4} \mathrm{M}$
$\mathbf{9}: 10^{-4} \mathrm{M}$
$\mathbf{1 0}: 10^{-4} \mathrm{M}$
$\mathbf{1 1}: 2 \times 10^{-5} \mathrm{M}$
$\mathbf{1 2}: 10^{-4} \mathrm{M}$
$\mathbf{1 3}: 10^{-4} \mathrm{M}$

Figure S-5.1. UV-vis spectra of amidoxime carbamates 8-13.

Concentration
$15: 10^{-4} \mathrm{M}$
16: $10^{-4} \mathrm{M}$
17: $10^{-4} \mathrm{M}$
18: $10^{-4} \mathrm{M}$
19: $10^{-4} \mathrm{M}$
20: $10^{-4} \mathrm{M}$

Figure S-5.2. UV-vis spectra of ethanone oxime carbamates 15-20.

Concentration
22: $10^{-4} \mathrm{M}$
23: $10^{-4} \mathrm{M}$
24: $10^{-4} \mathrm{M}$
25: $5 \times 10^{-5} \mathrm{M}$
26: $10^{-4} \mathrm{M}$
27: $10^{-4} \mathrm{M}$

Figure S-5.3. UV-vis spectra of aldoxime carbamates 22-27.
6. Gel electrophoresis pictures of amidoxime, ethanone oxime and aldoxime carbamates

Figure S-6.1. DNA photo-cleavage at concentration of $500 \mu \mathrm{M}$. Gel electrophoreses pictures, Top: (A): Lane 1: DNA without UV irradiation; Lane 2: DNA with UV irradiation; Lanes 3-8: DNA + carbamoyl amidoximes ($\mathbf{8}$ or $\mathbf{9}$, or 10, or 11, or 12, or 13, respectively) + UV irradiation; (B): Lane 1: DNA without UV irradiation; Lane 2: DNA with UV irradiation; Lanes 3-8: DNA + carbamoyl ethanone oximes ($\mathbf{1 5}$ or $\mathbf{1 6}$, or $\mathbf{1 7}$, or $\mathbf{1 8}$, or $\mathbf{1 9}$, or $\mathbf{2 0}$, respectively) + UV irradiation; (C): Lane 1: DNA without UV irradiation; Lane 2: DNA with UV irradiation; Lanes 3-8: DNA + carbamoyl aldoximes ($\mathbf{2 2}$ or $\mathbf{2 3}$, or $\mathbf{2 4}$, or $\mathbf{2 5}$, or $\mathbf{2 6}$, or $\mathbf{2 7}$, respectively) + UV irradiation; Bottom: Calculation of the $\%$ conversion to ss and ds damage.

Figure S-6.2. DNA photo-cleavage at concentration of $500 \mu \mathrm{M}$. Gel electrophoreses pictures, Top: (A): Mechanistic studies involved by derivative 12. Lane 1: DNA without UV irradiation; Lane 2: DNA with UV irradiation; Lane 3: DNA + 12; Lane 4: DNA + $\mathbf{1 2}+\operatorname{argon} ;$ Lane 5: DNA + $\mathbf{1 2}+$ DMSO (20\%); lane 6: DNA $+\mathbf{1 2}+\mathrm{NaN}_{3}(20 \mathrm{mM})$; lane 7: DNA $+\mathbf{1 2}+\mathrm{D}_{2} \mathrm{O}$; (B): Mechanistic studies involved by derivative 26. Lane 1: DNA without UV irradiation; Lane 2: DNA with UV irradiation; Lane 3: DNA + 26; Lane 4: DNA + $\mathbf{2 6}+\operatorname{argon}$; Lane 5: DNA + $\mathbf{2 6}+$ DMSO (20\%); lane 6: DNA $+\mathbf{2 6}+\mathrm{NaN}_{3}(20 \mathrm{mM})$; lane 7: DNA $+\mathbf{2 6}+\mathrm{D}_{2} \mathrm{O}$; (C): Effect of pH on the cleavage of compound 12. Lane 1: DNA without UV irradiation; Lane 2: DNA with UV irradiation; Lane 3-8: DNA $+\mathbf{1 2}+\mathrm{UV}$ irradiation at $\mathrm{pH} 5,6,7,8,9,10$, respectively; Bottom: Calculation of the $\%$ conversion to ss and ds damage.
7. UV absorption spectra of amidoxime carbamates 11 and 12 under irradiation

Figure S-7.1. UV absorption spectrum of amidoxime carbamate $\mathbf{1 1}$ under irradiation (312 nm).

Figure S-7.2. UV absorption spectrum of amidoxime carbamate $\mathbf{1 2}$ under irradiation (312 nm).
8. A computational study and photochemical aspects of compounds 11 and 12

8.1. Ground state energies

Figure S-8.1. Ground state $\left(\mathrm{S}_{0}\right)$ structures of $\mathbf{1 2}(\mathrm{A})$ and 11 (B).

Table S-8.1. Molecular geometries of compounds 12 and 11. Selected B3PW91/6-31G(d) geometrical parameters for compounds $\mathbf{1 2}$ and $\mathbf{1 1}$ in the ground $\left(\mathrm{S}_{0}\right)$ and lowest triplet excited state $\left(\mathrm{T}_{1}\right)^{\mathrm{a}}$ in aqueous solution.

comp.	state	$\mathbf{r}_{\text {C3C11 }}$	$\mathbf{r}_{\text {C11N12 }}$	$\mathbf{r}_{\text {N12O13 }}$	$\mathbf{r}_{\text {O13C14 }}$	$\mathbf{r}_{\text {C14N16 }}$	$\boldsymbol{\varphi}_{\mathbf{1}}$	$\boldsymbol{\varphi}_{\mathbf{2}}$
$\mathbf{1 2}$	$\mathbf{S}_{\mathbf{0}}$	1.483	1.299	1.423	1.370	1.357	162.61	164.02
	$\mathbf{T}_{\mathbf{1}}$	1.421	1.409	1.386	1.408	1.347	92.31	91.66
$\mathbf{1 1}$	$\mathbf{S}_{\mathbf{0}}$	1.484	1.300	1.425	1.364	1.365	162.68	163.67
	$\mathbf{T}_{\mathbf{1}}$	1.484	1.300	1.424	1.367	1.360	162.41	163.84

${ }^{\text {a }}$ Bond lengths (r) in Angstroms (\AA) and angles, φ (dihedral) in degrees. The values are given according to the suggestions of Hoffmann, Schleyer and Schaefer III ${ }^{[3]}, \varphi_{1}=\varphi($ C4C11C18C20 $), \varphi_{2}=$ $\varphi(\mathrm{C} 4 \mathrm{C} 11 \mathrm{~N} 12 \mathrm{O} 13)$.

8.2. Franck-Condon excitation energies

Table S-8.2. Franck-Condon excitation energies. Franck-Condon (vertical) excitation energies $\left(\Delta E_{\text {ex }} / \mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$ and their corresponding wave-lengths (λ / nm) for compounds $\mathbf{1 2}$ and 11 [PBE0/6-31G(d)//B3PW91/6-31G(d)]

comp./ state	T_{1}		T_{2}		T_{3}		S_{1}		S_{2}		S_{3}	
	$\Delta E_{\text {ex }}$	λ										
12	74.38	384.36	78.45	364.44	87.87	325.37	91.75	311.61	95.60	299.05	99.17	288.29
11	66.18	432.05	67.18	425.58	75.30	379.32	77.33	369.72	88.00	324.90	90.79	314.92

8.3. Potential energy surface for the dissociation of 11 in T_{1} excited state in aqueous solution

Figure S-8.3. PES for the dissociation of $\mathbf{1 1}$ in the first excited triplet state. The reaction coordinate is the $\mathrm{N} 12-\mathrm{O} 13$ bond. The products are ground state radicals.

8.4. Mathematical appendix

In this section we shall prove that the infinite series given in equation (8) of the paper,

$$
\begin{equation*}
\kappa(T)=\sum_{n=0}^{\infty}(-1)^{n} \beta \cdot\left[\frac{1-e^{\left\{[\beta-(n+1) \alpha] \cdot \Delta \mathrm{E}_{0}^{*}\right\}}}{(n+1) \alpha-\beta}+\frac{1}{n \alpha+\beta}\right] \tag{1}
\end{equation*}
$$

is convergent and we shall compute its sum. First we note that the above series can be written as a sum of three terms,

$$
\begin{equation*}
\kappa(T)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \beta}{(n+1) \alpha-\beta}+\sum_{n=0}^{\infty} \frac{(-1)^{n} \beta}{n \alpha+\beta}-\sum_{n=0}^{\infty} \frac{(-1)^{n} \beta e^{[\beta-(n+1) \alpha] \Delta E_{0}^{t}}}{(\mathrm{n}+1) \alpha-\beta} \tag{2}
\end{equation*}
$$

Consider first the third series. In order to test it for convergence we'll need the Ratio or D'Alembert's test ${ }^{[1-2]}$: if $\sum u_{n}$ is an infinite series and if $\lim _{n \rightarrow \infty}\left|u_{n+1} / u_{n}\right|=l$, then if (i) $l<1$ the series is absolutely convergent and hence is convergent, (ii) $l>1$ the series is divergent, while if $l=1$ the test gives no information. For our case, $\alpha>\beta>0$ and $\alpha \cdot \Delta \mathrm{E}^{\neq}=12.54 \gg 1$,

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \beta e^{[\beta-(n+2) \alpha] \Delta E_{0}^{*}} /[(n+2) \alpha-\beta]}{(-1)^{n} \beta e^{[\beta-(n+1) \alpha] \Delta E_{0}^{*}} /[(n+1) \alpha-\beta]}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) \alpha-\beta}{(n+2) \alpha-\beta} \cdot e^{-\alpha \Delta E_{0}^{*}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{\left(1+\frac{1}{n}\right) \alpha-\frac{\beta}{n}}{\left(1+\frac{2}{n}\right) \alpha-\frac{\beta}{n}}\right| \cdot e^{-\alpha \Delta E_{0}^{*}}=e^{-\alpha \Delta E_{0}^{*}} \ll 1 \tag{3}
\end{align*}
$$

Hence the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \beta e^{[\beta-(n+1) \alpha] \Delta E_{0}^{*}}}{(\mathrm{n}+1) \alpha-\beta}$ converges.
For the other two series the ratio test cannot be applied since $\lim _{n \rightarrow \infty}\left|u_{n+1} / u_{n}\right|=1$. In this case we shall use the alternating series test ${ }^{[1-2]}$: suppose that in the series $\sum u_{n}$ (i) the terms are alternately positive and negative, (ii) $\left|\mathrm{u}_{\mathrm{n}+1}\right|<\left|u_{n}\right|$ and (iii) $\lim _{n \rightarrow \infty} u_{n}=0$. Then the series $\sum u_{n}$ converges. The first series of equation (2) gives,

$$
\left|\mathrm{u}_{\mathrm{n}+1}\right|=\left|\frac{(-1)^{n+1} \beta}{(n+2) \alpha-\beta}\right|=\left|\frac{(-1)^{n} \beta}{(n+2) \alpha-\beta}\right|
$$

Since $|(n+2) \alpha-\beta|>|(n+1) \alpha-\beta|$ it follows that $\left|\frac{1}{(n+2) \alpha-\beta}\right|<\left|\frac{1}{(n+1) \alpha-\beta}\right|$, and therefore $\left|\mathrm{u}_{\mathrm{n}+1}\right|<\left|u_{n}\right|$.
Taking the limit of the absolute value of the nth term gives,

$$
\lim _{n \rightarrow \infty}\left|u_{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} \beta}{(n+1) \alpha-\beta}\right|=\beta \cdot \lim _{n \rightarrow \infty}\left|\frac{1 / n}{\left(1+\frac{1}{n}\right) \alpha-\frac{\beta}{n}}\right|=0
$$

Consequently, the given series converges. By a similar argument it can be shown that the second series is also convergent. This completes the proof.
The sums of each series in equation (2) were computed at www.wolframalpha.com and are given below,
$\sum_{n=0}^{\infty} \frac{(-1)^{n} \beta}{(n+1) \alpha-\beta}=0.56123$,
$\sum_{n=0}^{\infty} \frac{(-1)^{n} \beta}{n \alpha+\beta}=0.80692$ and
$\sum_{n=0}^{\infty} \frac{(-1)^{n} \beta e^{[\beta-(n+1) \alpha] \Delta E_{0}^{*}}}{(\mathrm{n}+1) \alpha-\beta}=0.0005266$
Finally, $\kappa(T)=\underline{0.56123+0.80692-0.0005266}=1.3676234$ at $T=298.15 \mathrm{~K}$.

References for session 8

1. J. A. Green, Sequences and Series, Routledge and Kegan Paul Ltd (1975)
2. M. H. Porter, C. B. Morrey, A first Course in Real Analysis, Springer-Verlag (1977)
3. Hoffmann, R.; Schleyer, P. von R.; Shaefer, H. F. III, Angew. Chem., Int. Ed. 2008, 47, 7164
