Supporting Information

for

Microwave-assisted synthesis of 2-substituted 4,5,6,7-tetrahydro-1,3-thiazepines from 4-aminobutanol

María C. Mollo, Natalia B. Kilimciler, Juan A. Bisceglia and Liliana R. Orelli

Experimental procedures and characterization of new compounds
Table of contents

1. General information .. S2
2. Representative procedures for synthesis S2
3. Characterization data for compounds 1–4 S4
4. Copies of 1H and 13C NMR spectra of compounds 1–4 S18
5. References .. S71
1. General Information

Chromatography was carried out using Merck Kieselgel 60 (230–400 mesh). Thin layer chromatography was performed on Silica gel and was visualized by UV. Melting points were determined with a Büchi capillary apparatus and are uncorrected. 1H and 13C NMR spectra were recorded on a Bruker Bio Spin Avance III 600 MHz spectrometer or a Bruker Avance II 500 MHz spectrometer, using deuteriochloroform as the solvent. In 1H NMR spectra, chemical shifts (ppm) are referenced to residual CHCl$_3$ (7.27 ppm in CDCl$_3$). In 13C NMR spectra, chemical shifts (ppm) were referenced to the deuterated solvent (77.0 ppm in CDCl$_3$). D$_2$O was employed to confirm exchangeable protons (ex). Splitting multiplicities are reported as singlet (s), broad signal (bs), doublet (d), double doublet (dd), triplet (t), quartet (q), heptet (h) and multiplet (m). HRMS (ESI) were performed with a Bruker MicroTOF-Q II spectrometer. Reagents, solvents and starting materials were purchased from standard sources and purified according to literature procedures.

2. Representative procedures for synthesis

a. General procedure for the synthesis of N,O-diacyl-1,4-aminobutanols (1)

A solution of the acyl chloride or anhydride (5 mmol) in anhydrous dichloromethane (5 mL) was added dropwise to a mixture of 1,4-aminobutanol (2.5 mmol), DMAP (0.10 mmol) and 0.7 mL of triethylamine. The reaction mixture was stirred at room temperature until the disappearance of the acid chloride by TLC was observed. For compounds 1l,m the reaction was carried out at reflux for 48 h. After the reaction was completed, dichloromethane was evaporated in vacuo. The crude product was purified by column chromatography (silicagel, hexane/ethyl acetate 3: 2\rightarrow1:1).

b. General procedure for the synthesis of N-thioacyl-O-acyl-1,4-aminobutanols (2)

To a solution of amidoester 1 (2 mmol) in toluene (20 mL) was added LR (0.75 mmol). The mixture was heated at reflux for 30 min. After the reaction is complete, the toluene is evaporated in vacuo. The resulting residue is purified by column chromatography (silicagel, dichloromethane).

c. General procedure for the synthesis of N-(4-hydroxybutyl)thioamides (3)

Thioamidoester 2 (1.5 mmol) was placed in a round-bottomed flask and a solution of K$_2$CO$_3$ in water/methanol 1: 1 was added. The mixture was stirred at 70 °C for 30 minutes. After completion of the reaction, as indicated by TLC, the solvent is evaporated in vacuo. For compounds 3l,m the reaction was carried out using 10% NaOH:methanol at reflux for 4h. The mixture obtained is diluted with water (15 mL) and extracted with dichloromethane (3 \times 30 mL). The combined organic phases were washed with water, dried over anhydrous Na$_2$SO$_4$, filtered and concentrated in vacuo. The crude product was purified by column chromatography (silicagel, hexane: ethyl acetate 1: 1\rightarrow2: 3)
d. General procedure for the synthesis of 4,5,6,7-tetrahydro-1,3-thiazepines (4)

A mixture of the corresponding compound 3 (1 mmol) and neat PPSE (6 g) was reacted in the microwave reactor (Monowave 300, Anton Paar) at the indicated temperature and time. After reaching room temperature, the resulting oil was treated with ethyl acetate (25 mL) and 10% aqueous NaOH (10 mL). The aqueous phase was extracted with ethyl acetate (2 × 25 mL). The organic phases were pooled, washed with water (5 mL), filtered, dried over Na$_2$SO$_4$ and filtered. The solvent was removed in vacuo. The crude products were purified by column chromatography (silicagel, hexane/ethyl acetate 3:2).
3. Characterization data for compounds 1–6

Compounds 1a, 1b, 1i, 3a, 3j, 4a, 4f were described in the literature.

4-Benzamidobutyl benzoate (1a)

Prepared according to the general procedure, 706.25 mg, 95%. White solid, mp (hexane/CHCl₃): 42-44°C.

¹H NMR (600 MHz, CDCl₃) δ 1.71-1.74 (m, 2H), 1.79-1.84 (m, 2H), 3.47-3.50 (m, 2H), 4.31 (t, J=6.5 Hz, 2H), 6.86 (bs ex, 1H), 7.35-7.45 (m, 5H), 7.53 (t, J=7.5 Hz, 1H), 7.77 (d, J=7.2 Hz, 2H), 8.00 (d, J=7.2 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 26.1, 26.15, 39.7, 64.4, 126.8, 128.2, 128.3, 129.4, 130.0, 131.2, 132.8, 134.5, 166.5, 167.6.

HRMS (ESI): m/z Calcd. for C₁₈H₂₀NO₃⁺ [M+H⁺]: 298.1438; found: [M+H⁺]: 298.1424.

4-(4-Chlorobenzamido)butyl 4-chlorobenzoate (1b)

Prepared according to the general procedure, 824.0 mg, 90%. White solid, mp (ethyl acetate): 147-148°C.

¹H NMR (500 MHz, CDCl₃) δ 1.74-1.80 (m, 2H), 1.84-1.89 (m, 2H), 3.51-3.55 (m, 2H), 4.36 (t, J=6.4 Hz, 2H), 6.26 (bs ex, 1H), 7.39-7.42 (m, 4H), 7.70 (ddd, J=8.7, 2.3, 2.0 Hz, 2H), 7.96 (ddd, J=8.7, 2.3, 2.0 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 26.1, 26.15, 39.7, 64.4, 128.3, 128.6, 128.7, 129.8, 130.9, 132.9, 137.7, 139.4, 165.8, 166.5.

HRMS (ESI): m/z Calcd. for C₁₈H₁₈Cl₂NO₃⁺ [M+H⁺]: 366.0658; found: [M+H⁺]: 366.0662.

4-(4-Methylbenzamido)butyl 4-methylbenzoate (1c)

Prepared according to the general procedure, 756.0 mg, 93%. White solid, mp (hexane/CHCl₃): 103-105°C.

¹H NMR (500 MHz, CDCl₃) δ 1.75-1.81 (m, 2H), 1.84-1.90 (m, 2H), 2.39 (s, 3H), 2.41 (s, 3H), 3.51-3.55 (m, 2H), 4.35 (t, J=6.4 Hz, 2H), 6.28 (bs ex, 1H), 7.21-7.24 (m, 4H), 7.67 (d, J=8.0 Hz, 2H), 7.91 (d, J=8.0 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 21.4, 21.6, 26.3, 26.4, 39.6, 64.3, 126.8, 127.5, 129.1, 129.2, 129.5, 131.7, 141.7, 143.6, 166.7, 167.5

HRMS (ESI): m/z calcd. for C₂₀H₂₂NO₃⁺ [M+H⁺]: 326.1751; found: [M+H⁺]: 326.1756.
4-(4-Methoxybenzamido)butyl 4-methoxybenzoate (1d)

\[
\begin{align*}
\text{H}_3\text{CO} & \quad \text{O} \\
& \quad \text{O} \\
& \quad \text{N} \\
\end{align*}
\]

Prepared according to the general procedure, 849.0 mg, 95%. White solid, mp (isopropanol): 132-134°C.

\(^1\text{H} \text{NMR}\) (500 MHz, CDCl\(_3\)) \(\delta\) 1.74-1.80 (m, 2H), 1.83-1.88 (m, 2H), 3.51-3.54 (m, 2H), 3.84 (s, 3H), 3.86 (s, 3H), 4.32-4.35 (m, 2H), 6.29 (bs ex, 1H), 6.90-6.92 (m, 4H), 7.74 (dd, \(J=8.9, 2.8, 2.1\) Hz, 2H), 8.00 (dd, \(J=8.9, 2.8, 2.1\) Hz, 2H).

\(^{13}\text{C} \text{NMR}\) (125 MHz, CDCl\(_3\)) \(\delta\) 26.38, 26.43, 39.6, 55.36, 55.40, 64.2, 113.6, 113.7, 122.6, 126.8, 128.6, 131.5, 162.1, 163.3, 166.4, 167.1.

HRMS (ESI): m/z calcd. for C\(_{36}\)H\(_{26}\)NO\(_5\)\([M+H]^+\): 358.1649; found: [M+H]\(^+\): 358.1655.

4-(4-Nitrobenzamido)butyl 4-nitrobenzoate (1e)

\[
\begin{align*}
\text{O} & \quad \text{N} \\
& \quad \text{O} \\
\end{align*}
\]

Prepared according to the general procedure, 871.5 mg, 90%. Yellow solid, mp (isopropanol): 130-131°C.

\(^1\text{H} \text{NMR}\) (500 MHz, CDCl\(_3\)) \(\delta\) 1.80-1.86 (m, 2H), 1.90-1.96 (m, 2H), 3.58-3.62 (m, 2H), 4.46 (t, \(J=6.4\) Hz, 2H), 6.33 (bs ex, 1H), 7.94 (d, \(J=8.7\) Hz, 2H), 8.22 (d, \(J=8.9\) Hz, 2H), 8.29-8.31 (m, 4H).

\(^{13}\text{C} \text{NMR}\) (125 MHz, CDCl\(_3\)) \(\delta\) 26.1, 26.1, 39.9, 65.2, 123.5, 123.8, 128.1, 130.7, 135.5, 140.1, 149.5, 150.5, 164.7, 165.6.

HRMS (ESI): m/z Calcd. for C\(_{36}\)H\(_{26}\)N\(_3\)O\(_7\)\([M+H]^+\): 388.1139; found: [M+H]\(^+\): 388.1134.

4-(2,4-Dichlorobenzamido)butyl 2,4-dichlorobenzoate (1f)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
& \quad \text{O} \\
& \quad \text{N} \\
\end{align*}
\]

Prepared according to the general procedure, 1022.6 mg, 94%. White solid, mp (ethyl acetate): 100-102°C.

\(^1\text{H} \text{NMR}\) (500 MHz, CDCl\(_3\)) \(\delta\) 1.77-1.82 (m, 2H), 1.86-1.91 (m, 2H), 3.51-3.55 (m, 2H), 4.38 (t, \(J=6.5\) Hz, 2H), 6.36 (bs ex, 1H), 7.27-7.31 (m, 2H), 7.41 (d, \(J=2.0\) Hz, 1H), 7.47 (d, \(J=2.0\) Hz, 1H), 7.61 (d, \(J=8.0\) Hz, 1H), 7.79 (d, \(J=8.0\) Hz, 1H).

\(^{13}\text{C} \text{NMR}\) (125 MHz, CDCl\(_3\)) \(\delta\) 26.1, 26.2, 39.7, 65.2, 127.0, 127.5, 128.4, 130.0, 131.0, 131.2, 131.3, 132.5, 133.4, 134.8, 136.7, 138.3, 164.8, 165.5.

HRMS (ESI): m/z calcd. for C\(_{36}\)H\(_{26}\)Cl\(_2\)N\(_3\)O\(_7\)\([M+H]^+\): 433.9879; found: [M+H]\(^+\): 433.9885.

4-(2-Fluorobenzamido)butyl 2-fluorobenzoate (1g)

\[
\begin{align*}
\text{F} & \quad \text{O} \\
& \quad \text{O} \\
& \quad \text{N} \\
\end{align*}
\]
Prepared according to the general procedure, 800 mg, 96%. White solid, mp (ethyl acetate): 60-62°C

1H NMR (500 MHz, CDCl$_3$) δ: 1.79-1.84 (m, 2H), 1.85-1.92 (m, 2H), 3.56-3.60 (m, 2H), 4.39-4.41 (m, 2H), 6.82 (bs ex, 1H), 7.10-7.16 (m, 2H), 7.20-7.23 (m, 1H), 7.25-7.28 (m, 1H), 7.45-7.49 (m, 1H), 7.50-7.55 (m, 1H), 7.94 (td, $J=7.5$, 1.8 Hz, 1H), 8.10 (td, $J=8.0$, 1.8 Hz, 1H).

13C NMR (125 MHz, CDCl$_3$) δ: 26.1, 26.3, 39.6, 64.9, 115.9 (d, $J=25.4$ Hz), 117.0 (d, $J=22.7$ Hz), 118.7 (d, $J=9.1$ Hz), 121.0 (d, $J=10.9$ Hz), 123.9 (d, $J=3.6$ Hz), 124.8 (d, $J=2.7$ Hz), 132.0 (d, $J=3.6$ Hz), 132.1 (d, $J=2.7$ Hz), 133.2 (d, $J=9.1$ Hz), 134.4 (d, $J=9.1$ Hz), 160.5 (d, $J=247.1$ Hz), 162.2 (d, $J=259.8$ Hz), 163.3 (d, $J=2.7$ Hz), 164.5 (d, $J=3.6$ Hz).

HRMS (ESI): m/z Calcd. for C$_{13}$H$_{13}$F$_{3}$NO$_3^+ [M+H]$^+$: 334.1249; found: [M+H]$^+$: 334.1253.

4-(2-Methylbenzamido)butyl 2-methylbenzoate (1h)

Prepared according to the general procedure, 732.2 mg, 90%. White solid, mp (hexane/CHCl$_3$): 100-102°C.

1H NMR (600 MHz, CDCl$_3$) δ: 1.76-1.81 (m, 2H), 1.86-1.90 (m, 2H), 2.44 (s, 3H), 2.60 (s, 3H), 3.50-3.54 (m, 2H), 4.35 (t, $J=6.4$ Hz, 2H), 5.89 (bs ex, 1H), 7.18-7.25 (m, 4H), 7.31 (t, $J=7.5$ Hz, 1H), 7.34 (d, $J=7.5$ Hz, 1H), 7.40 (d, $J=7.5$ Hz, 1H), 7.90 (d, $J=8.0$ Hz, 1H).

13C NMR (151 MHz, CDCl$_3$) δ: 19.7, 21.7, 26.3, 26.5, 39.4, 64.2, 125.7, 126.5, 129.6, 129.8, 130.5, 131.0, 131.7, 132.0, 135.9, 136.5, 140.1, 167.6, 170.2.

HRMS (ESI): m/z calcd. for C$_{26}$H$_{28}$NO$_5^+ [M+H]$^+$: 326.1751; found: [M+H]$^+$: 326.1745.

4-Cinnamamidobutyl cinnamate (II)$_3$

Prepared according to the general procedure, 830.0 mg, 95%. White solid, mp (hexane/ethyl acetate): 103-106°C.

1H NMR (600 MHz, CDCl$_3$) δ: 1.69-1.74 (m, 2H), 1.78-1.83 (m, 2H), 3.45-3.49 (m, 2H), 4.25 (t, $J=6.5$ Hz, 2H), 5.90 (bs ex, 1H), 6.42 (d, $J=15.6$ Hz, 1H), 6.44 (d, $J=16$ Hz, 1H), 7.34-7.36 (m, 3H), 7.37-7.40 (m, 3H), 7.48-7.50 (m, 2H), 7.50-7.54 (m, 2H), 7.64 (d, $J=15.6$ Hz, 1H), 7.70 (d, $J=16$ Hz, 1H).

13C NMR (151 MHz, CDCl$_3$) δ: 26.3, 26.3, 39.3, 64.1, 118.0, 120.6, 127.7, 128.1, 128.8, 128.9, 129.6, 130.3, 134.3, 134.8, 141.0, 144.9, 165.9, 167.0.

HRMS (ESI): m/z calcd. for C$_{22}$H$_{26}$NO$_5^+ [M+H]$^+$: 350.1751; found: [M+H]$^+$: 350.1755.

4-(2-Phenylacetamido)butyl 2-phenylacetate (1j)

Prepared according to the general procedure, 700.0 mg, 86%. White solid, mp (hexane/ethyl acetate): 47-49°C.
1H NMR (600 MHz, CDCl₃) δ 1.43–1.48 (m, 2H), 1.55-1.60 (m, 2H), 3.21 (c, J = 7.0 Hz, 2H), 3.58 (s, 2H), 3.61 (s, 2H), 4.07 (t, J = 6.5 Hz, 2H), 5.40 (bs ex, 1H), 7.26-7.28 (m, 5H), 7.31-7.34 (m, 3H), 7.37–7.39 (m, 2H).

13C NMR (151 MHz, CDCl₃) δ 25.9, 26.0, 39.1, 41.4, 43.8, 64.3, 127.1, 127.4, 128.5, 129.0, 129.2, 129.4, 134.0, 134.9, 170.9, 171.5.

4-Hexanamidobutyl hexanoate (1k)

Prepared according to the general procedure, 499.5 mg, 70%. Colorless oil.

1H NMR (600 MHz, CDCl₃) δ 0.85–0.88 (m, 6H), 1.25-1.33 (m, 8H), 1.52-1.66 (m, 8H), 2.14 (t, J = 7.7 Hz, 2H), 2.25 (t, J = 7.6 Hz, 2H), 3.24-3.27 (m, 2H), 4.05 (t, J = 6.5 Hz, 2H), 5.78 (bs ex, 1H).

4-Isobutyramidobutyl isobutyrate (1l)

Prepared according to the general procedure, 533 mg, 93%. Yellow oil.

1H NMR (600 MHz, CDCl₃) δ 1.14-1.16 (m, 12H), 1.54-1.59 (m, 2H), 1.63-1.68 (m, 2H), 2.33 (s, J = 6.5 Hz, 1H), 2.36 (m, J = 6.5 Hz, 1H), 3.26-3.29 (m, 2H), 4.07 (t, J = 6.5 Hz, 2H), 5.62 (bs ex, 1H).

13C NMR (151 MHz, CDCl₃) δ 18.9, 19.6, 26.1, 26.2, 34.0, 35.6, 38.9, 63.8, 177.0, 177.2.

4-Pivalamidobutyl pivalate (1m)

Prepared according to the general procedure, 533 mg, 77%. Yellow solid, mp (ethyl acetate): 38–40°C.

1H NMR (600 MHz, CDCl₃) δ 1.19 (s, 18 H), 1.54-1.59 (m, 2H), 1.63-1.68 (m, 2H), 2.36-3.29 (m, 2H), 4.07 (t, J = 6.5 Hz, 2H), 5.70 (bs ex, 1H).

13C NMR (151 MHz, CDCl₃) δ 26.1, 26.3, 27.2, 27.6, 38.6, 38.7, 39.1, 63.9, 178.4, 178.6.

HRMS (ESI): m/z calcd. for C₁₆H₂₄NO₃⁺ [M+H]⁺: 258.2064; found: [M+H]⁺: 258.2081.

4-Phenythioamidobutyl benzoate (2a)

Prepared according to the general procedure, 595.4 mg, 95%. Yellow oil.
1^H NMR (600 MHz, CDCl₃) δ 1.90-1.97 (m, 4H), 3.92-3.95 (m, 2H), 4.40 (t, J=5.9 Hz, 2H), 7.36-7.39 (m, 2H), 7.43-7.46 (m, 3H), 7.57 (t, J=7.4 Hz, 1H), 7.73-7.74 (m, 3H), 8.05 (d, J=7.3 Hz, 2H).

13C NMR (151 MHz, CDCl₃) δ 24.8, 26.4, 26.4, 64.3, 126.6, 128.4, 128.5, 129.5, 130.1, 131.0, 133.0, 141.9, 166.6, 199.5.

HRMS (ESI): m/z Calcd. for C₁₉H₂₀NO₃S⁺ [M+H]⁺: 314.1209; found: [M+H]⁺: 314.1215.

4-(4-Chlorophenylthioamido)butyl 4-chlorobenzoate (2b)

![Structure](image)

Prepared according to the general procedure, 711.0 mg, 93%. White solid, mp (ethyl acetate): 141-143°C.

1^H NMR (500 MHz, CDCl₃) δ 1.90-1.95 (m, 4H), 3.91-3.95 (m, 2H), 4.40 (t, J=6.0 Hz, 2H), 7.36 (ddd, J=8.6, 2.6, 2.0 Hz, 2H), 7.42 (ddd, J=8.6, 2.3, 2.0 Hz, 2H), 7.66 (bs ex, 1H), 7.69 (ddd, J=8.6, 2.6, 2.0 Hz, 2H), 7.98 (ddd, J=8.6, 2.3, 2.0 Hz, 2H).

13C NMR (125 MHz, CDCl₃) δ 24.8, 26.4, 26.4, 64.5, 127.9, 128.5, 128.7, 128.8, 131.0, 137.3, 139.6, 140.1, 165.8, 198.0.

HRMS (ESI): m/z Calcd. for C₁₉H₁₆Cl₂NO₃S⁺ [M+H]⁺: 382.0430; found: [M+H]⁺: 382.0425.

4-(4-Methylphenylthioamido)butyl 4-methylbenzoate (2c)

![Structure](image)

Prepared according to the general procedure, 648.8 mg, 95%. Yellow solid (Hexane/CHCl₃), mp 108-110°C.

1^H NMR (500 MHz, CDCl₃) δ 1.88-1.97 (m, 4H), 2.37 (s, 3H), 2.42 (s, 3H), 3.91-3.95 (m, 2H), 4.38 (t, J=6.0 Hz, 2H), 7.17-7.18 (m, 2H), 7.23-7.25 (m, 2H), 7.66 (d, J=8.2 Hz, 2H), 7.70 (bs ex, 1H), 7.93 (d, J=8.2, 2H).

13C NMR (125 MHz, CDCl₃) δ 21.3, 21.7, 24.4, 26.5, 46.3, 46.4, 126.6, 127.4, 129.11, 129.12, 129.6, 139.1, 141.6, 143.7, 166.7, 199.2.

HRMS (ESI): m/z Calcd. for C₂₀H₂₂NO₃S⁺ [M+H]⁺: 342.1522; found: [M+H]⁺: 342.1530.

4-(4-Methoxyphenylthioamido)butyl 4-methoxybenzoate (2d)

![Structure](image)

Prepared according to the general procedure, 694.7 mg, 93%. Yellow solid (ethyl acetate), mp 119-121°C.

1^H NMR (500 MHz, CDCl₃) δ 1.87-1.96 (m, 4H), 3.84 (s, 3H), 3.86 (s, 3H), 3.91-3.95 (m, 2H), 4.36 (t, J=6.1 Hz, 2H), 6.87 (d, J=8.9 Hz, 2H), 6.92 (d, J=8.9 Hz, 2H), 7.67 (bs ex, 1H), 7.76 (d, J=8.9 Hz, 2H), 7.99 (d, J=8.9, 2H).

13C NMR (125 MHz, CDCl₃) δ 24.9, 26.5, 46.3, 55.42, 55.45, 64.0, 113.6, 113.6, 122.5, 128.4, 131.6, 134.1, 162.1, 163.4, 166.4, 198.2.

HRMS (ESI): m/z Calcd. for C₂₀H₂₄NO₄S⁺ [M+H]⁺: 374.1421; found: [M+H]⁺: 374.1425.
4-(4-Nitrophenylthioamido)butyl 4-nitrobenzoate (2e)

Prepared according to the general procedure, 807.0 mg, 100%. Yellow solid, mp (isopropanol): 133-135°C

1H NMR (600 MHz, CDCl$_3$) δ 1.97-2.01 (m, 4H), 3.95-3.97 (m, 2H), 4.47 (t, J=6.0 Hz, 2H), 7.83 (bs ex, 1H), 7.86 (d, J=8.6 Hz, 2H), 8.21-8.23 (m, 4H), 8.29 (d, J=8.7 Hz, 2H).

13C NMR (151 MHz, CDCl$_3$) δ 24.6, 26.2, 46.4, 65.1, 123.6, 123.7, 127.6, 130.7, 135.4, 146.9, 148.9, 150.6, 164.7, 197.0.

HRMS (ESI): m/z Calcd. for C$_{18}$H$_{15}$NO$_3$S$^+$ [M+H$^+$]: 404.0911; found: [M+H$^+$]: 404.0905.

4-(2,4-Dichlorophenylthioamido)butyl 2,4-dichlorobenzoate (2f)

Prepared according to the general procedure, 785.0 mg, 87%. Yellow solid, mp (ethyl acetate): 134-136°C

1H NMR (600 MHz, CDCl$_3$) δ 1.90-1.98 (m, 4H), 3.89-3.92 (m, 2H), 4.41 (t, J=5.7 Hz, 2H), 7.26 (dd, J=8.4, 2.0 Hz, 1H), 7.31 (dd, J=8.4, 2.0 Hz, 1H), 7.37 (d, J=2.0 Hz, 1H), 7.47 (d, J=2.0 Hz, 1H), 7.51 (d, J=8.4 Hz, 1H), 7.58 (bs ex, 1H), 7.80 (d, J=8.4 Hz, 1H).

13C NMR (151 MHz, CDCl$_3$) δ 24.6, 26.2, 45.9, 65.1, 127.1, 127.4, 128.3, 129.1, 129.6, 131.0, 131.1, 132.5, 134.7, 135.7, 138.4, 140.3, 164.9, 196.1

HRMS (ESI): m/z Calcd. for C$_{18}$H$_{15}$Cl$_2$NO$_3$S$^+$ [M+H$^+$]: 449.9656; found: [M+H$^+$]: 449.9656.

4-(2-Fluorophenylthioamido)butyl 2-fluorobenzoate (2g)

Prepared according to the general procedure, 629.0 mg, 90%. Yellow oil.

1H NMR (500 MHz, CDCl$_3$) δ 1.91-1.98 (m, 4H), 3.94-3.97 (m, 2H), 4.41 (d, J= 6 Hz, 2H), 7.03-7.08 (m, 1H), 7.18-7.23 (m, 1H), 7.37-7.40 (m, 1H), 7.50-7.5m (m, 1H), 7.94 (td, J=7.5, 1.8 Hz, 1H), 7.96 (bs ex, 1H), 8.10 (td, J=8.0, 1.9 Hz, 1H).

13C NMR (125 MHz, CDCl$_3$) δ 24.7, 26.1, 46.4, 64.7, 115.8 (d, J= 23.6 Hz), 116.9 (d, J= 22.5 Hz), 118.7 (d, J= 10.0 Hz), 124.0 (d, J= 3.6 Hz), 124.5 (d, J= 3.6 Hz), 128.1 (d, J= 10.7 Hz), 132.1, 132.2 (d, J= 9.0 Hz), 133.3 (d, J= 1.6 Hz), 134.5 (d, J= 9.0 Hz), 157.6 (d, J= 248.4 Hz), 161.9 (d, J= 259.6 Hz), 164.5 (d, J= 3.6 Hz), 193.6 (d, J= 1.7 Hz).

HRMS (ESI): m/z Calcd. for C$_{18}$H$_{15}$F$_2$NO$_3$S$^+$ [M+H$^+$]: 350.1021; found: [M+H$^+$]: 350.1014.
4-(2-Methylphenylthioamido)butyl 2-methylbenzoate (2h)

\[
\text{\begin{center}
\includegraphics[scale=0.5]{image1}
\end{center}}
\]

Prepared according to the general procedure, 628.0 mg, 92%. White solid (Hexane/CHCl₃), mp 91-93°C.

\(^1\text{H NMR} \) (500 MHz, CDCl₃) \(\delta \) 1.90–1.93 (m, 4H), 2.37 (s, 3H), 2.59 (s, 3H), 3.88–3.92 (m, 2H), 4.35–4.37 (m, 2H), 7.17–7.20 (m, 2H), 7.23–7.27 (m, 4H), 7.41 (td, \(J = 7.4, 1.2 \) Hz, 2H), 7.46 (bs ex, 1H), 7.90 (d, \(J = 7.4, 2H \)).

\(^{13}\text{C NMR} \) (125 MHz, CDCl₃) \(\delta \) 19.3, 21.7, 24.9, 26.4, 45.4, 64.0, 125.7, 125.9, 126.5, 128.9, 129.5, 130.5, 130.7, 131.7, 132.0, 132.8, 143.9, 167.5, 201.9.

HRMS (ESI): \(m/z \) Calcd. for C₂₀H₂₂NO₂S⁺ [M+H]⁺: 342.1522; found: [M+H]⁺: 342.1525.

4-((E)-3-Phenylprop-2-enethioamido)butyl cinnamate (2i)

\[
\text{\begin{center}
\includegraphics[scale=0.5]{image2}
\end{center}}
\]

Prepared according to the general procedure, 694.4 mg, 95%. White solid, mp (hexane/ethyl acetate): 122-125°C. This compound was obtained as inseparable mixture of E/Z diastereoisomers. Only the major isomer is reported.

\(^1\text{H NMR} \) (600 MHz, CDCl₃) \(\delta \) 1.81–1.90 (m, 4H), 3.89–3.92 (m, 2H), 4.29 (t, \(J = 6.0 \) Hz, 2H), 6.47 (d, \(J = 16.0 \), 1H), 6.86 (d, \(J = 15.3 \) Hz, 1H), 7.35–7.37 (m, 3H), 7.39–7.41 (m, 3H), 7.52–7.57 (m, 4H), 7.57 (bs ex, 1H), 7.71 (d, \(J = 16 \) Hz, 1H), 7.82 (d, \(J = 15.3 \) Hz, 1H).

\(^{13}\text{C NMR} \) (151 MHz, CDCl₃) \(\delta \) 24.8, 26.5, 45.6, 63.9, 117.8, 127.6, 128.0, 128.1, 128.85, 128.89, 129.8, 130.4, 134.3, 134.9, 141.6, 145.1, 167.1, 194.9.

4-(2-Phenylethanethioamido)butyl 2-phenylacetate (2j)

\[
\text{\begin{center}
\includegraphics[scale=0.5]{image3}
\end{center}}
\]

Prepared according to the general procedure, 546.0 mg, 80%. Yellow oil.

\(^1\text{H NMR} \) (600 MHz, CDCl₃) \(\delta \) 1.55–1.57 (m, 4H), 3.60–3.62 (m, 4H)*, 4.06 (t, \(J = 6.0 \) Hz, 2H), 4.13 (s, 2H), 6.99 (bs ex, 1H), 7.25–7.27 (m, 5H), 7.30–7.40 (m, 5H).

\(^{13}\text{C NMR} \) (151 MHz, CDCl₃) \(\delta \) 24.3, 25.9, 41.4, 45.5, 53.2, 64.1, 127.1, 127.9, 128.6, 129.2, 129.3, 129.5, 134.0, 134.8, 171.5, 202.1.

HRMS (ESI): \(m/z \) Calcd. for C₂₀H₂₂NO₂S⁺ [M+H]⁺: 342.1522; found: [M+H]⁺: 342.1527.

*overlapping signals

4-Hexanethioamidobutyl hexanoate (2k)

\[
\text{\begin{center}
\includegraphics[scale=0.5]{image4}
\end{center}}
\]

S10
Prepared according to the general procedure, 603.0 mg, 100%. Yellow oil.

1^H NMR (600 MHz, CDCl$_3$) δ 0.88–0.91 (m, 6H), 1.27-1.38 (m, 8H), 1.60-1.65 (m, 2H), 1.70-1.79 (m, 6H), 2.30 (t, $J = 7.6$ Hz, 2H), 2.64 (t, $J = 7.7$ Hz, 2H), 3.69-3.73 (m, 2H), 4.11 (t, $J = 6.0$ Hz, 2H), 7.37 (bs ex, 1H).

1^C NMR (151 MHz, CDCl$_3$) δ 13.87, 13.90, 22.3, 22.4, 24.5, 24.6, 26.2, 29.1, 31.1, 31.3, 34.3, 45.5, 47.3, 63.5, 174.0, 205.9.

HRMS (ESI): m/z calcd. for C$_{18}$H$_{22}$NO$_3$S$^+$ [M+H]$^+$: 302.2148; found: [M+H]$^+$: 302.2154.

4-(2-Methylpropanethioamido)butyl isobutyrate (2I)

Prepared according to the general procedure, 417.0 mg, 85%. Yellow oil.

1^H NMR (600 MHz, CDCl$_3$) δ 1.15 (d, $J = 7.0$ Hz, 6H), 1.25 (d, $J = 6.6$ Hz, 6H), 1.70-1.75 (m, 4H), 2.54 (h, $J = 7.0$ Hz, 1H), 2.80 (h, $J = 6.6$ Hz,1H), 3.70-3.73 (m, 2H), 4.09-4.11 (m, 2H), 7.40 (bs ex, 1H).

1^C NMR (151 MHz, CDCl$_3$) δ 18.9, 22.6, 24.5, 26.2, 34.0, 44.5, 45.2, 63.6, 177.2, 211.7.

HRMS (ESI): m/z calcd. for C$_{18}$H$_{22}$NO$_3$S$^+$ [M+H]$^+$: 246.1522; found: [M+H]$^+$: 246.1526.

4-(2,2-Dimethylpropanethioamido)butyl pivalate (2m)

Prepared according to the general procedure, 475 mg, 87%. White solid, mp (Hexane/ CHCl$_3$): 35-47°C.

1^H NMR (600 MHz, CDCl$_3$) δ 1.20 (s, 9 H), 1.35 (s, 9 H), 1.69-1.73 (m, 4H), 3.71-3.74 (m, 2H), 4.10 (t, $J = 6.2$ Hz, 2H), 5.70 (bs ex, 1H).

1^C NMR (151 MHz, CDCl$_3$) δ 24.5, 26.2, 27.2, 30.1, 38.7, 44.5, 45.8, 63.6, 178.6, 213.46.

HRMS (ESI): m/z calcd. for C$_{18}$H$_{22}$NO$_3$S$^+$ [M+H]$^+$: 274.1835; found: [M+H]$^+$: 274.1841.

N-(4-Hydroxybutyl)benzothioamide (3a)a

Prepared according to the general procedure, 298.0 mg, 95%. White solid (Hexane/ CHCl$_3$), mp 61-62°C.

1^H NMR (600 MHz, CDCl$_3$) δ 1.70-1.74 (m, 2H), 1.82 (bs ex, 1H), 1.86-1.91 (m, 2H), 3.74 (t, $J = 6.0$ Hz, 2H), 3.83-3.87 (m, 2H), 7.36-7.38 (m, 2H), 7.43-7.46 (m, 1H), 7.75 (d, $J = 7.3$ Hz, 2H) , 8.32 (bs ex, 1H).

4-Chloro-N-(4-hydroxybutyl)benzothioamide (3b)

Prepared according to the general procedure, 318.0 mg, 87%. White solid (Hexane/ CHCl$_3$), mp 89-90°C.
1H NMR (500 MHz, CDCl₃) δ 1.69-1.74 (m, 2H), 1.86-1.91 (m, 2H), 1.97 (bs ex, 1H), 3.73 (t, J= 6.0 Hz, 2H), 3.79-3.83 (m, 2H), 7.33 (ddd, J=8.6, 2.6, 2.0 Hz, 2H), 7.70 (ddd, J=8.6, 2.6, 2.0 Hz, 2H), 8.50 (bs ex, 1H).

13C NMR (125 MHz, CDCl₃) δ 24.7, 29.6, 46.9, 62.2, 128.1, 128.5, 137.1, 139.9, 197.2

HRMS (ESI): m/z Calcd. for C₁₃H₁₈ClNOS⁺ [M+H]⁺: 244.0557; found: [M+H]⁺: 244.0561.

N-(4-Hydroxybutyl)-4-methylbenzothioamide (3c)

![Chemical Structure]

Prepared according to the general procedure, 274.0 mg, 82%. Yellow oil.

1H NMR (500 MHz, CDCl₃) δ 1.71-1.76 (m, 2H), 1.90-1.93 (m, 2H), 2.38 (s, 3H), 3.76 (t, J= 6.0 Hz, 2H), 3.85-3.88 (m, 2H), 7.18 (d, J=8.1 Hz, 2H), 7.68 (d, J=8.1 Hz, 2H), 8.20 (bs ex, 1H).

13C NMR (125 MHz, CDCl₃) δ 21.3, 24.7, 29.7, 46.6, 62.3, 126.7, 129.1, 139.0, 141.5, 198.7

HRMS (ESI): m/z Calcd. for C₁₂H₁₅NOS⁺ [M+H]⁺: 224.1104; found: [M+H]⁺: 224.1111.

N-(4-Hydroxybutyl)-4-methoxybenzothioamide (3d)

![Chemical Structure]

Prepared according to the general procedure, 312.0 mg, 87%. Yellow oil.

1H NMR (500 MHz, CDCl₃) δ 1.70-1.75 (m, 2H), 1.85 (bs ex, 1H), 1.86-1.92 (m, 2H), 3.75 (m, J=6.0 Hz, 2H), 3.84-3.87 (m, 5H), 6.87 (ddd, J=8.8, 3.1, 2.0 Hz, 2H), 7.78 (ddd, J=8.8, 3.1, 2.0 Hz, 2H), 8.19 (bs ex, 1H).

13C NMR (125 MHz, CDCl₃) δ 24.7, 29.7, 46.6, 55.4, 62.3, 113.5, 128.5, 134.1, 162.0, 197.7

HRMS (ESI): m/z Calcd. for C₁₂H₁₆NO₂S⁺ [M+H]⁺: 244.1053; found: [M+H]⁺: 244.1059.

Overlapping signals

N-(4-Hydroxybutyl)-4-nitrobenzothioamide (3e)

![Chemical Structure]

Prepared according to the general procedure, 347.3 mg, 91%. Yellow oil.

1H NMR (500 MHz, CDCl₃) δ 1.70 (bs ex, 1H) 1.76-1.81 (m, 2H), 1.93-1.98 (m, 2H), 3.80 (t, J=5.8 Hz, 2H), 3.84-3.87 (m, 2H), 7.91 (ddd, J=8.6, 2.5, 1.9 Hz, 2H), 8.22 (ddd, J=8.6, 2.5, 1.9 Hz, 2H), 8.76 (bs ex, 1H).

13C NMR (125 MHz, CDCl₃) δ 24.7, 29.5, 47.2, 62.4, 123.6, 127.8, 146.9, 148.8, 196.0

HRMS (ESI): m/z Calcd. for C₁₂H₁₃N₂O₃S⁺ [M+H]⁺: 255.0798; found: [M+H]⁺: 255.0793.

2,4-Dichloro-N-(4-hydroxybutyl)benzothioamide (3f)

![Chemical Structure]

Prepared according to the general procedure, 408.9 mg, 98%. Yellow oil.

1H NMR (600 MHz, CDCl₃) δ 1.69-1.74 (m, 3H)*, 1.86-1.90 (m, 2H), 3.72 (t, J=6.0 Hz, 2H), 3.82-3.85 (m, 2H), 7.26 (dd, J=8.3, 2 Hz; 1H), 7.38 (d, J=8.3 Hz, 1H), 7.49 (d, J=2.0 Hz, 1H), 8.11 (bs ex, 1H).

S overlapping signals
1^H NMR (500 MHz, CDCl₃) δ 1.69-1.74 (m, 3H)*, 1.86-1.92 (m, 2H), 3.74 (t, J=6.1 Hz, 2H), 3.88-3.91 (m, 2H), 7.05-7.09 (m, 1H), 7.18-7.22 (m, 1H), 7.37-7.42 (m, 1H), 8.08 (td, J=8.0, 1.8 Hz, 1H), 8.33 (bs ex, 1H).

1^3C NMR (125 MHz, CDCl₃) δ 19.4, 24.6, 29.7, 45.8, 62.20, 126.0, 126.5, 128.9, 130.7, 132.9, 144.0, 201.5.

*overlapping signals

2-Fluoro-N-(4-hydroxybutyl)benzothioamide (3g)

Prepared according to the general procedure, 307 mg, 90%. Pale yellow oil.

1^H NMR (500 MHz, CDCl₃) δ 1.69-1.74 (m, 3H)*, 1.86-1.92 (m, 2H), 3.74 (t, J=6.1 Hz, 2H), 3.88-3.91 (m, 2H), 7.05-7.09 (m, 1H), 7.18-7.22 (m, 1H), 7.37-7.42 (m, 1H), 8.08 (td, J=8.0, 1.8 Hz, 1H), 8.33 (bs ex, 1H).

1^3C NMR (125 MHz, CDCl₃) δ 24.5, 29.6, 46.7, 62.2, 115.8 (d, J=23.5 Hz), 124.5 (d, J=3.3 Hz), 128.4 (d, J=10.9 Hz), 132.2 (d, J=9 Hz), 133.2 (d, J=1.6 Hz), 156.6 (d, J=248.6 Hz), 193.3.

*overlapping signals

N-(4-Hydroxybutyl)-2-methylbenzothioamide (3h)

Prepared according to the general procedure, 278 mg, 83%. Yellow oil.

1^H NMR (500 MHz, CDCl₃) δ 1.69-1.74 (m, 2H), 1.84-1.90 (m, 2H), 2.38 (s, 3H), 3.73 (t, J=6.0 Hz, 2H), 3.83-3.87 (m, 2H), 7.18 (d, J=7.5, 2H), 7.23-7.27 (m, 3H), 7.76 (bs ex, 1H).

1^3C NMR (125 MHz, CDCl₃) δ 19.4, 24.6, 29.7, 45.8, 62.20, 126.0, 126.5, 128.9, 130.7, 132.9, 144.0, 201.5.

(E)-N-(4-Hydroxybutyl)-3-phenylprop-2-enethioamide (3i)

Prepared according to the general procedure, 282 mg, 80%. Yellow solid (Hexane/ CHCl₃), mp 80-83°C

This compound was obtained as inseparable mixture of E/Z diastereoisomers. Only the major isomer is reported.

1^H NMR (600 MHz, CDCl₃) δ 1.68-1.72 (m, 2H), 1.83-1.88 (m, 3H)*, 3.74 (t, J=6 Hz, 2H), 3.81-3.84 (m, 2H), 6.84 (d, J=16 Hz, 1H), 7.34-7.37 (m, 4H), 7.52-7.53 (m, 2H), 7.80 (d, J=16 Hz, 1H), 8.09 (bs ex, 1H).

1^3C NMR (151 MHz, CDCl₃) δ 24.8, 29.7, 45.8, 62.2, 127.7, 128.0, 128.8, 129.7, 134.9, 141.3, 194.3.

*overlapping signals
N-(4-Hydroxybutyl)-2-phenylethanethioamide (3j)

Prepared according to the general procedure, 268 mg, 80%. Yellow oil.

1H NMR (600 MHz, CDCl$_3$) δ 1.47 (bs ex, 1H), 1.51-1.55 (m, 2H), 1.65-1.69 (m, 2H), 3.58 (t, J = 6.0 Hz, 2H), 3.64-3.67 (m, 2H), 4.13 (s, 2H), 7.26 (d, J = 7.1 Hz, 2H), 7.32-7.34 (m, 1H), 7.37-7.39 (m, 2H), 7.56 (bs ex, 1H).

N-(4-Hydroxybutyl)hexanethioamide (3k)

Prepared according to the general procedure, 284.0 mg, 93%. Yellow oil.

1H NMR (600 MHz, CDCl$_3$) δ 0.88 (t, J = 7.1 Hz, 2H), 1.26-1.34 (m, 4H), 1.63-1.67 (m, 2H), 1.73-1.80 (m, 4H), 2.27 (bs ex, 1H) 2.62 (t, J = 7.7 Hz, 2H), 2.78-2.79 (m, 2H), 3.65-3.69 (m, 2H), 3.70 (t, J = 6.0 Hz, 2H), 8.00 (bs ex, 1H).

13C NMR (151 MHz, CDCl$_3$) δ 13.9, 22.3, 24.5, 29.0, 29.5, 31.0, 45.8, 47.1, 62.1, 205.4.

HRMS (ESI): m/z Calcd. for C$_{10}$H$_{22}$NOS$^+$ [M+H]$^+$: 204.1417; found: [M+H]$^+$: 204.1421.

N-(4-Hydroxybutyl)-2-methylpropanethioamide (3l)

Prepared according to the general procedure, 187 mg, 71%. White solid (hexane/CHCl$_3$ crystallized): 44-46°C.

1H NMR (600 MHz, CDCl$_3$) δ 1.22 (d, J = 6.7 Hz, 6H), 1.62-1.66 (m, 2H), 1.75-1.80 (m, 2H), 2.46 (bs ex, 1H), 2.81 (h, J = 6.7 Hz, 1H), 3.65-3.70 (m, 4H), 8.04 (bs ex, 1H).

13C NMR (151 MHz, CDCl$_3$) δ 22.4, 24.4, 29.5, 44.3, 45.5, 62.0, 211.1.

HRMS (ESI): m/z Calcd. for C$_{8}$H$_{18}$NOS$^+$ [M+H]$^+$: 176.1104; found: [M+H]$^+$: 176.1106.

N-(4-Hydroxybutyl)-2,2-dimethylpropanethioamide (3m)

Prepared according to the general procedure, 252 mg, 89%. Yellow oil.

1H NMR (600 MHz, CDCl$_3$) δ 1.34 (s, 9H), 1.63-1.67 (m, 2H), 1.77-1.82 (m, 2H), 2.09 (bs ex, 1H), 3.68-3.72 (m, 4H), 7.88 (bs ex, 1H).

13C NMR (151 MHz, CDCl$_3$) δ 24.3, 29.5, 30.0, 44.4, 46.2, 62.0, 213.1.

HRMS (ESI): m/z Calcd. for C$_{9}$H$_{20}$NOS$^+$ [M+H]$^+$: 190.1260; found: [M+H]$^+$: 190.1251.
2-Phenyl-4,5,6,7-tetrahydro-1,3-thiazepine (4a)

Prepared according to the general procedure, 139.0 mg, 73%. Colorless oil.

\[\text{H NMR (600 MHz, CDCl}_3 \text{) } \delta 1.89-1.92 (m, 2H), 2.07-2.11 (m, 2H), 2.91-2.93 (m, 2H), 4.07-4.09 (m, 2H), 7.37-7.39 (m, 2H), 7.43 (t, } J = 7.3 \text{ Hz, 1H), 7.95 (d, } J = 7.8 \text{ Hz, 2H).} \]

\[\text{C NMR (151 MHz, CDCl}_3 \text{) } \delta 25.6, 28.0, 30.9, 53.8, 128.1, 128.5, 130.5, 139.8, 163.8.} \]

HRMS (ESI): m/z calcd. for C\textsubscript{16}H\textsubscript{16}NS+ [M+H+]: 237.0692; found: 237.0700.

2-(4-Chlorophenyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4b)

Prepared according to the general procedure, 185 mg, 82%. Yellow oil.

\[\text{H NMR (500 MHz, CDCl}_3 \text{) } \delta 1.87-1.92 (m, 2H), 2.06-2.11 (m, 2H), 2.91-2.93 (m, 2H), 4.05-4.07 (m, 2H), 7.35 (dd, } J = 8.6, 2.5, 1.8 \text{ Hz, 2H), 7.91 (ddd, } J = 8.6, 2.5, 1.8 \text{ Hz, 2H).} \]

HRMS (ESI): m/z calcd. for C\textsubscript{17}H\textsubscript{17}ClNS+ [M+H+]: 275.0692; found: 275.0692.

2-(4-Methylphenyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4c)

Prepared according to the general procedure, 147.8 mg, 72%. Yellow oil.

\[\text{H NMR (300 MHz, CDCl}_3 \text{) } \delta 1.85-1.93 (m, 2H), 2.04-2.11 (m, 2H), 2.38 (s, 3H), 2.88-2.92 (m, 2H), 4.03-4.07 (m, 2H), 7.18 (d, } J = 8.1 \text{ Hz, 2H), 7.85 (ddd, } J = 8.1 \text{ Hz, 2H).} \]

HRMS (ESI): m/z calcd. for C\textsubscript{16}H\textsubscript{15}NS+ [M+H+]: 277.0842; found: 277.0845.

2-(4-Methoxyphenyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4d)

OCH\textsubscript{3}

Prepared according to the general procedure, 177.1 mg, 80%. Colorless oil.

\[\text{H NMR (500 MHz, CDCl}_3 \text{) } \delta 1.85-1.89 (m, 2H), 2.03-2.08 (m, 2H), 2.87-2.89 (m, 2H), 3.83 (s, 3H), 4.01-4.03 (m, 2H), 6.88 (ddd, } J = 8.9, 2.9, 2.0 \text{ Hz, 2H), 7.91 (ddd, } J = 8.9, 2.9, 2.0 \text{ Hz, 2H).} \]

HRMS (ESI): m/z calcd. for C\textsubscript{16}H\textsubscript{16}O\textsubscript{2}NS+ [M+H+]: 279.0842; found: 279.0845.

2-(4-Nitrophenyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4e)

NO\textsubscript{2}

Prepared according to the general procedure, 153.6 mg, 65%. Yellow solid, mp (hexane/CHCl\textsubscript{3} crystallized): 89-91°C.

\[\text{H NMR (500 MHz, CDCl}_3 \text{) } \delta 1.90-1.96 (m, 2H), 2.09-2.14 (m, 2H), 2.95-2.97 (m, 2H), 4.11-4.14 (m, 2H), 8.12 (ddd, } J = 9.0, 2.3, 2.0 \text{ Hz, 2H), 8.22 (ddd, } J = 9.0, 2.3, 2.0 \text{ Hz, 2H).} \]

HRMS (ESI): m/z calcd. for C\textsubscript{16}H\textsubscript{12}N\textsubscript{2}O\textsubscript{2}S+ [M+H+]: 315.0700; found: 315.0700.
2-(2,4-Dichlorophenyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4f)

Prepared according to the general procedure, 182.0 mg, 70%. Pale yellow oil.

\[^1H \text{ NMR} \] (500 MHz, CDCl$_3$) δ 1.90-1.94 (m, 2H), 2.16-2.20 (m, 2H), 2.94-2.96 (t, 2H), 4.04-4.06 (m, 2H), 7.23 (dd, $J=8.3$, 1.5 Hz; 1H), 7.26 (d, $J=8.3$ Hz, 1H), 7.39 (d, $J=1.5$ Hz, 1H).

\[^13C \text{ NMR} \] (125 MHz, CDCl$_3$) δ 25.6, 28.3, 31.8, 53.5, 127.0, 129.7, 130.4, 132.8, 135.2, 138.6, 161.5.

HRMS (ESI): m/z calcd. for C$_{11}$H$_7$Cl$_2$NS$^+$ [M+H]$^+$: 260.0062; found: 260.0058.

2-(2-Fluorophenyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4g)

Prepared according to the general procedure, 134.0 mg, 64%. Pale yellow oil.

\[^1H \text{ NMR} \] (500 MHz, CDCl$_3$) δ 1.91-1.95 (m, 2H), 2.14-2.18 (m, 2H), 2.95-2.97 (m, 2H), 4.09-4.11 (m, 2H), 7.07-7.10 (m, 1H), 7.13-7.15 (m, 1H), 7.33-7.37 (m, 1H), 7.52 (td, $J=7.5$, 1.7 Hz, 1H).

\[^13C \text{ NMR} \] (125 MHz, CDCl$_3$) δ 25.5, 28.1, 31.4, 53.4, 116.1 (d, $J=22.0$ Hz), 123.8 (d, $J=3.7$ Hz), 129.0 (d, $J=10.5$ Hz), 130.3 (d, $J=2.4$ Hz), 131.1 (d, $J=8.5$ Hz), 159.8 (d, $J=251.6$ Hz), 160.4.

2-(2-Methylphenyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4h)

Prepared according to the general procedure, 133.5 mg, 65%. Colorless oil.

\[^1H \text{ NMR} \] (500 MHz, CDCl$_3$) δ 1.96-2.01 (m, 2H), 2.18-2.22 (m, 2H), 2.44 (s, 3H), 2.99-3.01 (m, 2H), 4.06-4.08 (m, 2H), 7.17-7.20 (m, 2H), 7.23-7.26 (m, 1H), 7.17-7.20 (m, 2H), 7.35-7.37 (m, 1H).

\[^13C \text{ NMR} \] (125 MHz, CDCl$_3$) δ 19.8, 26.2, 28.0, 31.4, 52.7, 125.5, 128.5, 129.0, 130.6, 135.5, 140.5, 164.6.

HRMS (ESI): m/z calcd. for C$_{12}$H$_{16}$NS$^+$ [M+H]$^+$: 206.0998; found: 206.1000.

(E)-2-Styril-4,5,6,7-tetrahydro-1,3-thiazepine (4i)

Prepared according to the general procedure, 141.2 mg, 65%. Colorless oil.

\[^1H \text{ NMR} \] (600 MHz, CDCl$_3$) δ 1.79-1.83 (m, 2H), 2.02-2.06 (m, 2H), 2.79-2.81 (m, 2H), 4.01-4.03 (m, 2H), 6.88 (d, $J=16$ Hz, 1H), 7.30-7.32 (m, 1H), 7.35-7.37 (m, 2H), 7.50 (d, $J=7.5$ Hz, 2H), 7.54 (d, $J=16$ Hz, 1H).

\[^13C \text{ NMR} \] (151 MHz, CDCl$_3$) δ 25.6, 28.5, 30.7, 53.7, 127.5, 128.7, 129.0, 130.5, 135.8, 138.8, 163.5.

HRMS (ESI): m/z calcd. for C$_{12}$H$_{16}$NS$^+$ [M+H]$^+$: 218.0998; found: 218.0991.

2-Benzyl-4,5,6,7-tetrahydro-1,3-thiazepine (4j)

Prepared according to the general procedure, 154 mg, 75%. Colorless oil.

\[^1H \text{ NMR} \] (600 MHz, CDCl$_3$) δ 1.79-1.83 (m, 2H), 1.91-1.95 (m, 2H), 2.68-2.70 (m, 2H), 3.72 (s, 2H), 3.85-3.87 (m, 2H), 7.24-7.33 (5H, m).

\[^13C \text{ NMR} \] (151 MHz, CDCl$_3$) δ 25.8, 28.0, 30.5, 49.7, 52.4, 126.7, 128.4, 129.1, 136.7, 164.8.

HRMS (ESI): m/z calcd. for C$_{13}$H$_{18}$NS$^+$ [M+H]$^+$: 206.0998; found: 206.1003.
2-Pentyl-4,5,6,7-tetrahydro-1,3-thiazepine (4k)
Prepared according to the general procedure, 148.3 mg, 80%. Colorless oil.

^1H NMR (600 MHz, CDCl₃) δ 0.88-0.90 (m, 3H), 1.28-1.35 (m, 4H), 1.60-1.67 (m, 2H), 1.78-1.83 (m, 2H), 1.98-2.02 (m, 2H), 2.38 (t, J=7.7 Hz, 2H), 2.78-2.79 (m, 2H), 3.79-3.81 (m, 2H).

^13C NMR (151 MHz, CDCl₃) δ 14.0, 22.4, 26.0, 27.3, 28.0, 30.3, 31.3, 43.4, 52.2, 166.5.

HRMS (ESI): m/z calcd. for C₂₀H₂₀NS⁺ [M+H]⁺: 186.1311; found: 186.1307.

2-Isopropyl-4,5,6,7-tetrahydro-1,3-thiazepine (4l)
Prepared according to the general procedure, 149.4 mg, 95%. Colorless oil.

^1H NMR (600 MHz, CDCl₃) δ 1.16 (d, J=6.9 Hz, 6H), 1.71-1.75 (m, 2H), 1.95-1.99 (m, 2H), 2.60 (h, J=6.9 Hz, 1H), 2.74-2.76 (m, 2H), 3.81-3.83 (m, 2H).

^13C NMR (151 MHz, CDCl₃) δ 20.5, 25.7, 28.0, 30.2, 41.5, 52.3, 171.6.

HRMS (ESI): m/z calcd. for C₁₆H₁₆NS⁺ [M+H]⁺: 158.0998; found: 158.1051.

2-(tert-Butyl)-4,5,6,7-tetrahydro-1,3-thiazepine (4m)
Prepared according to the general procedure, 68.5 mg, 40%. Colorless oil.

^1H NMR (600 MHz, CDCl₃) δ 1.20 (s, 9H), 1.71-1.75 (m, 2H), 1.91-1.95 (m, 2H), 2.67-2.69 (m, 2H), 3.83-3.85 (m, 2H).

^13C NMR (151 MHz, CDCl₃) δ 25.3, 28.0, 28.2, 30.3, 43.1, 52.8, 173.9.

4. Copies of 1H and 13C NMR spectra of compounds 1–4

1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1a

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 1a

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 1b
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 1b
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 1c

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 1c
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 1d

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 1d
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 1e

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 1e
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 1f

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 1f
$^{1}\text{H NMR (500 MHz, CDCl}_3\text{)}$ spectrum of compound $1g$

$^{13}\text{C NMR (125 MHz, CDCl}_3\text{)}$ spectrum of compound $1g$
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1h

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 1h
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1i

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 1i
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1j

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 1j
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1k

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 1k

1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1l
13C NMR (151 MHz, CDCl$_3$) spectrum of compound 11
$\text{H NMR (600 MHz, CDCl}_3\text{) spectrum of compound 1m}$

$\text{13C NMR (151 MHz, CDCl}_3\text{) spectrum of compound 1m}$
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2a

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 2a
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 2b

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 2b
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 2c

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 2c
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 2d

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 2d
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2e

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 2e
1H NMR (600 MHz, CDCl$_3$) spectrum of compound $2f$

13C NMR (151 MHz, CDCl$_3$) spectrum of compound $2f$
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 2g

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 2g
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 2h

13C NMR (125 MHz, CDCl$_3$) spectrum of compound 2h
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2i

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 2i
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2j

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 2j
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2k

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 2k
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2l

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 2l
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2m

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 2m
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 3a

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3b
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3b

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3c
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3c

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3d
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3d

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3e
\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) spectrum of compound 3e

\(^1\)H NMR (600 MHz, CDCl\(_3\)) spectrum of compound 3f
13C NMR (151 MHz, CDCl$_3$) spectrum of compound 3f

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3g
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3g

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 3h
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 3h

1H NMR (600 MHz, CDCl$_3$) spectrum of compound 3i
13C NMR (151 MHz, CDCl$_3$) spectrum of compound 3i

1H NMR (600 MHz, CDCl$_3$) spectrum of compound 3j
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 3k

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 3k
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 3l

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 3l
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 3m

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 3m
1H NMR (600 MHz, CDCl$_3$) spectrum of compound 4a

13C NMR (151 MHz, CDCl$_3$) spectrum of compound 4a
NOESY spectrum of compound 4a

HSQC spectrum of compound 4a
HMBC spectrum of compound 4a

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 4b
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 4b

1H NMR (300 MHz, CDCl$_3$) spectrum of compound 4c

13C NMR (75 MHz, CDCl$_3$) spectrum of compound 4c
1H NMR (500 MHz, CDCl$_3$) spectrum of compound 4d

Chemical Shift (ppm)
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 4d

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 4e
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 4e

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 4f
13C NMR (125 MHz, CDCl$_3$) spectrum of compound $4f$

1H NMR (500 MHz, CDCl$_3$) spectrum of compound $4g$
13C NMR (125 MHz, CDCl$_3$) spectrum of compound 4g

1H NMR (500 MHz, CDCl$_3$) spectrum of compound 4h
\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) spectrum of compound 4h

\(^1\)H NMR (600 MHz, CDCl\(_3\)) spectrum of compound 4i
13C NMR (151 MHz, CDCl$_3$) spectrum of compound 4i

1H NMR (600 MHz, CDCl$_3$) spectrum of compound 4j
13C NMR (151 MHz, CDCl$_3$) spectrum of compound $4j$

1H NMR (600 MHz, CDCl$_3$) spectrum of compound $4k$
Compound 4k underwent partial decomposition after purification.

1H NMR (600 MHz, CDCl$_3$) spectrum of compound 4l
13C NMR (151 MHz, CDCl₃) spectrum of compound 4l

1H NMR (600 MHz, CDCl₃) spectrum of compound 4m
13C NMR (151 MHz, CDCl$_3$) spectrum of compound 4m
5. References

