

Supporting Information

for

Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine-quinolizinium conjugates

Phil M. Pithan, Sören Steup and Heiko Ihmels

Beilstein J. Org. Chem. 2020, 16, 904-916. doi:10.3762/bjoc.16.82

Experimental procedures, additional spectroscopic data, ¹H NMR and ¹³C NMR spectra

Table of Contents

1	Experimental Section			S2	
	1.1	Me	thods	S2	
	1.2	Syı	nthesis	S2	
	1.2	2.1	Synthesis of the 5'-formyl-substituted spirooxazine 1b	S2	
2	Ad	lditio	onal spectroscopic data	S5	
3	¹H	and	¹³ C NMR spectra	S8	
4	Re	fere	nces	S18	

1 Experimental Section

1.1 Methods

The relative fluorescence quantum yields of the derivatives 3a, 3b, and 4a were determined under identical conditions, i.e., the same cuvettes were used, and the measurements were performed at a constant temperature with the same settings on the spectrometer, such as detection wavelength, excitation wavelength, detector voltage, slit bandwidths (5 nm), and collection rate (120 nm·min⁻¹). Coumarin 307 ($\Phi_{\rm fl} = 0.58$ in MeCN)^[1] and Rhodamine 6G ($\Phi_{\rm fl} = 0.95$ in EtOH)^[2] were used as standards. The emission spectra were collected from diluted solutions with Abs < 0.10 at the excitation wavelength. The emission spectra were smoothed with the implemented moving-average function by a factor of 5. After integration of the fluorescence band, the relative fluorescence quantum yields were calculated according to Equation S1.^[3]

$$\phi_{fl} = \frac{J_{x} \cdot (1 - T_{S})}{J_{S} \cdot (1 - T_{x})} \cdot \frac{n_{x}^{2}}{n_{S}^{2}} \cdot \phi_{fl,S}$$
 (Eq. S1)

The subscripts "x" and "s" refer to the substance under investigation and a reference compound, respectively; $J = \int I_{\rm fl}(\Lambda) d\Lambda$ is the emission integral over the area of interest; T is the optical transmittance of the sample solution at the excitation wavelength, $\Lambda_{\rm ex}$; n is the refractive index of the sample or standard solution.

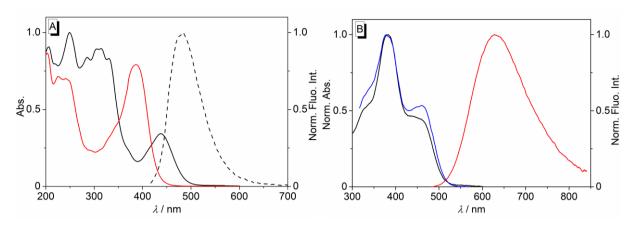
1.2 Synthesis

1.2.1 Synthesis of the 5'-formyl-substituted spirooxazine 1b

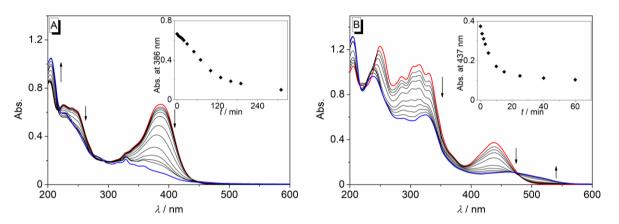
The known 5'-formyl-substituted spirooxazine **1b**^[4] was synthesized by the condensation of 3-(hydroxymethyl)-1-nitroso-2-naphthol (**6**)^[5] with 1,3,3-trimethyl-2-methyleneindoline and subsequent oxidation of the alcohol **1c** with Dess–Martin periodinane (Scheme S1). As the ¹³C NMR data for the spirooxazine **1b** have not been reported in the original literature, they will be presented herein.

Scheme S1: Synthesis of the 5'-formyl-substituted spirooxazine **1b**; reagents and reaction conditions: (i) Dess–Martin periodinane, CH₂Cl₂, rt, 1 h, 51%.

5'-Hydroxymethyl-1,3,3-trimethylspiro[indoline-2-3'-naphtho[2,1-b][1,4]oxazine] (**1c**)

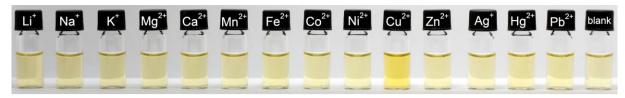

To a solution of 3-(hydroxymethyl)-1-nitroso-2-naphthol (4^[5], 4.00 g, 19.7 mmol) in ketonefree EtOH (200 mL) was added freshly distilled 1,3,3-trimethyl-2-methyleneindoline (3.76 g, 21.7 mmol, 3.8 mL) at 75 °C, and the reaction mixture was stirred under reflux for 4 h. After cooling to rt, the solvent was removed under reduced pressure. The product 1c was isolated by flash column chromatography (SiO₂; eluent: n-hexane/EtOAc 8/2, $R_f = 0.37$), crystallized from EtOH, and obtained as green, crystalline solid (4.43 g, 12.4 mmol, 63%, lit.: 55%[4a]; mp = 141–143 °C (lit.: 141 °C)^[4a] – ¹H NMR (600 MHz, CDCl₃): δ = 1.37 (s, 3 H, 3-CH₃), 1.39 (s, 3 H, 3-CH₃), 2.02 (t, ${}^{3}J = 6$ Hz, 1 H, OH), 2.73 (s, 3 H, N-CH₃), 4.64 (dd, ${}^{2}J = 14$ Hz, ${}^{3}J = 14$ 6 Hz, 1 H, 5'-CH-H), 4.74 (dd, ${}^{2}J$ = 14 Hz, ${}^{3}J$ = 5 Hz, 1 H, 5'-CH-H'), 6.57 (d, ${}^{3}J$ = 8 Hz, 1 H, 7-H), 6.91 (ddd, ${}^{3}J = 8$ Hz, ${}^{3}J = 8$ Hz, ${}^{4}J = 1$ Hz, 1 H, 5-H), 7.10 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 1 H, 4-H), 7.22 (ddd, ${}^{3}J = 9$ Hz, ${}^{3}J = 8$ Hz, ${}^{4}J = 1$ Hz, 1 H, 6-H), 7.43 (ddd, ${}^{3}J = 8$ Hz, ${}^{3}J = 7$ Hz, ${}^{4}J$ = 1 Hz, 1 H, 8'-H), 7.59 (ddd, ${}^{3}J$ = 8 Hz, ${}^{3}J$ = 7 Hz, ${}^{4}J$ = 1 Hz, 1 H, 9'-H), 7.72 (s, 1 H, 6'-H), 7.77 (d. ${}^{3}J = 8$ Hz. 1 H. 7'-H). 7.80 (s. 1 H. 2'-H). 8.55 (d. ${}^{3}J = 8$ Hz. 1 H. 10'-H). $-{}^{13}C$ NMR (150 MHz, CDCl₃): δ = 20.9 (3-Me), 25.4 (3-Me), 29.6 (NMe), 51.5 (C3), 61.1 (5'-CH₂OH), 98.6 (C2/C3'), 107.2 (C7), 120.0 (C5), 121.4 (C5'), 121.5 (C4), 122.9 (C10b'), 124.5 (C8'), 126.9 (C9'), 127.8 (C7'), 127.9 (C6'), 128.1 (C10'), 128.2 (C6), 128.8 (C6a'), 130.3 (C10a'), 135.7 (C3a), 142.1 (C4a'), 147.1 (C7a), 150.4 (C2').

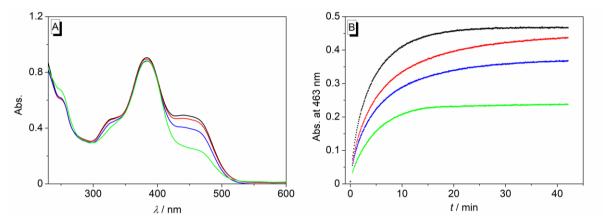
5'-Formyl-1,3,3-trimethylspiro[indoline-2-3'-naphtho[2,1-b][1,4]oxazine] (**1b**)


To a solution of the alcohol **1c** (1.10 g, 3.07 mmol) in anhydrous CH_2CI_2 (90 mL) was added Dess–Martin periodinane (1.56 g, 3.68 mmol) under an argon atmosphere. The solution was stirred for 1 h at rt, washed with saturated NaHCO₃ solution (2 × 40 mL), dried with Na₂SO₄, and filtered from the drying agent. The solvent was removed under removed pressure. The product **1b** was isolated by flash column chromatography (SiO₂; eluent: *n*-hexane/EtOAc 85/15, $R_i = 0.48$), crystallized from EtOAc/*n*-hexane at -25 °C, and obtained as yellow, amorphous solid (555 mg, 1.56 mmol, 51%, lit.: 65–67%[^{4b,4c]}); mp = 182–184 °C (lit.: 176 °C[^{4b]}). – ¹H NMR (400 MHz, CDCI₃): $\delta = 1.40$ (s, 3 H, 3-CH₃), 1.41 (s, 3 H, 3-CH₃), 2.81 (s, 3 H, N-CH₃), 6.60 (d, ${}^3J = 8$ Hz, 1 H, 7-H), 6.92 (ddd, ${}^3J = 8$ Hz, ${}^3J = 8$ Hz, ${}^4J = 1$ Hz, 1 H, 5-H), 7.10 (dd, ${}^3J = 7$ Hz, ${}^4J = 1$ Hz, 1 H, 4-H), 7.23 (ddd, ${}^3J = 9$ Hz, ${}^3J = 8$ Hz, ${}^4J = 1$ Hz, 1 H, 6-H), 7.46 (ddd, ${}^3J = 8$ Hz, ${}^3J = 7$ Hz, ${}^4J = 1$ Hz, 1 H, 8'-H), 7.69 (ddd, ${}^3J = 9$ Hz, ${}^3J = 7$ Hz, ${}^4J = 1$ Hz, 1 H, 9'-H), 7.86 (s, 1 H, 2'-H), 7.89 (d, ${}^3J = 8$ Hz, 1 H, 7'-H), 8.32 (s, 1 H, 6'-H), 8.58

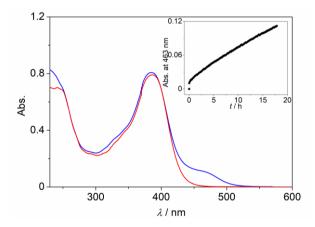
(d, 3J = 9 Hz, 1 H, 10'-H), 10.36 (s, 1 H, 5'-CHO). - 13 C NMR (100 MHz, CDCI₃): δ = 21.2 (3-Me), 25.4 (3-Me), 29.6 (NMe), 52.0 (C3), 98.9 (C2/C3'), 107.2 (C7), 120.2 (C5), 121.4 (C4), 121.8 (C10'), 123.2 (C5'), 123.7 (C10b'), 125.3 (C8'), 127.9 (C6a'), 128.1 (C6), 129.9 (C9'), 130.1 (C6'), 130.1 (C7'), 133.8 (C10a'), 135.4 (C3a), 144.5 (C4a'), 147.1 (C7a), 151.8 (C2'), 188.6 (5'-CHO).

2 Additional spectroscopic data


Figure S1: A: Absorption spectra ($c = 20 \, \mu\text{M}$ in MeCN, solid lines) of the derivatives **3a** (red) and **3b** (black) and normalized emission spectrum of **3b** (Abs = 0.10 at $\lambda_{\text{ex}} = 400 \, \text{nm}$, dashed line). B: Normalized absorption ($c = 20 \, \mu\text{M}$, black), emission ($c = 5 \, \mu\text{M}$, $\lambda_{\text{ex}} = 470 \, \text{nm}$, red), and fluorescence excitation spectrum ($c = 5 \, \mu\text{M}$, $\lambda_{\text{em}} = 600 \, \text{nm}$, blue) of **4a** in MeCN.


Figure S2: Spectral changes during the irradiation of **3a** ($c = 17 \,\mu\text{M}$) (A) and **3b** ($c = 20 \,\mu\text{M}$) (B) in MeCN with 420 nm light. The arrows indicate the changes of absorption upon irradiation. Red: Spectra of the pure ligand solutions; blue: spectra at the end of the irradiation. Insets: Plot of the absorption vs the irradiation time t.

$$\frac{h \nu (\lambda = 420 \text{ nm}), O_2}{\text{MeCN, r.t., } 60 \text{ min}}$$


Scheme S2: Formation of the pyrroloquinolizinium derivative 7 by irradiation of 3b (cf. Figure S2B).

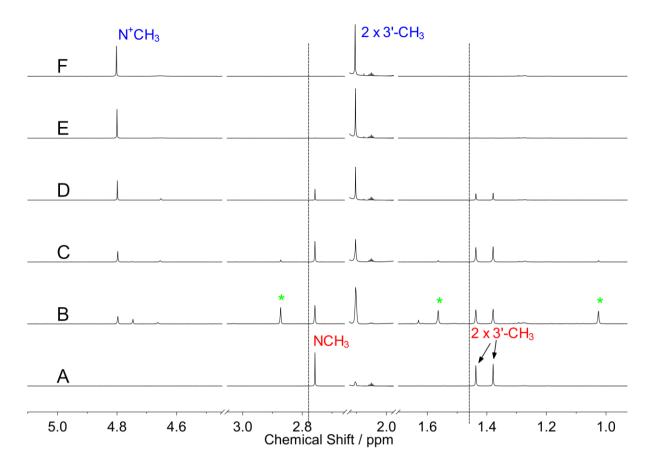

Figure S3: Colors of solutions resulting from the addition of metal ions ($c = 50 \, \mu\text{M}$) to derivative **3a** ($c = 20 \, \mu\text{M}$ in MeCN); $t = 1 \, \text{h}$.

Figure S4: A: Absorption spectra of **3a** in MeCN ($c = 20 \,\mu\text{M}$) 40 min after the addition of 1.0 (green), 1.5 (blue), 2.0 (red) and 3.0 equiv (black) of Cu²⁺. B: Plot of the absorbance at 463 nm vs the time t after the addition of Cu²⁺.

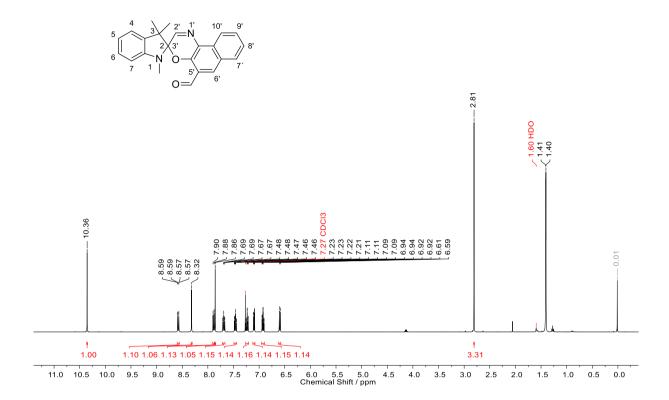

Figure S5: A: Absorption spectra of **3a** in MeCN ($c = 20 \, \mu\text{M}$) in the absence (red) and in the presence of 3.0 equiv Hg²⁺ ca. 18 h after the addition (blue). Inset: Plot of the absorbance at 463 nm vs the time t after the addition of Hg²⁺.

Figure S6: ¹H NMR spectra (600 MHz, 0.8–5.2 ppm) of **3a** (c = 2.0 mM) in the absence (A) and in the presence (B–F) of Cu²⁺ (B: 0.50 mM, C: 1.0 mM, D: 2.0 mM, E: 3.0 mM, F: 4.0 mM) in CD₃CN (cf. Scheme 2).

Scheme S3: Formation of the 2'-hydroxy-substituted oxazole derivative **5**.

3 ¹H and ¹³C NMR spectra

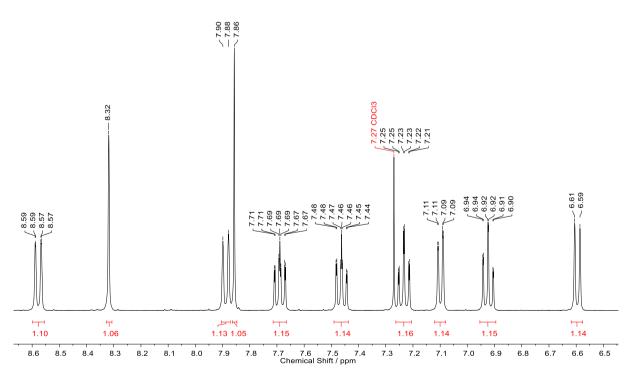
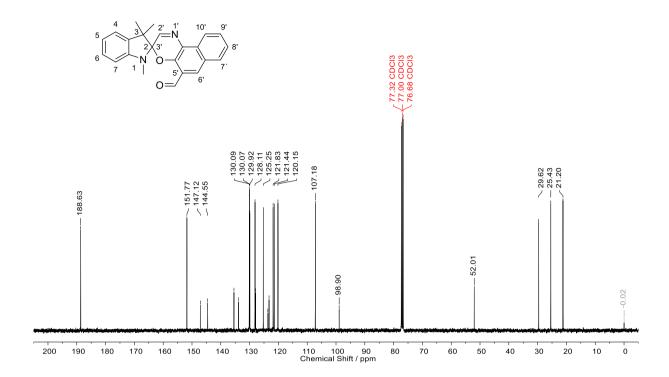



Figure S7: ¹H NMR spectrum (400 MHz) of derivative 1b in CDCl₃ (top) with expansion (bottom).

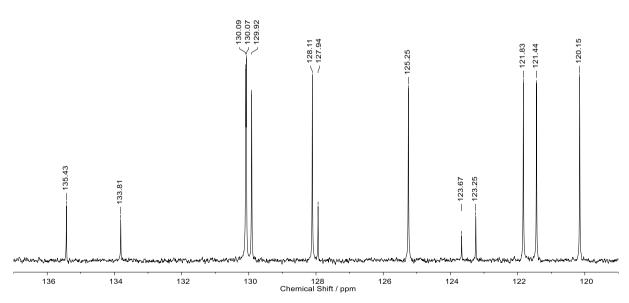
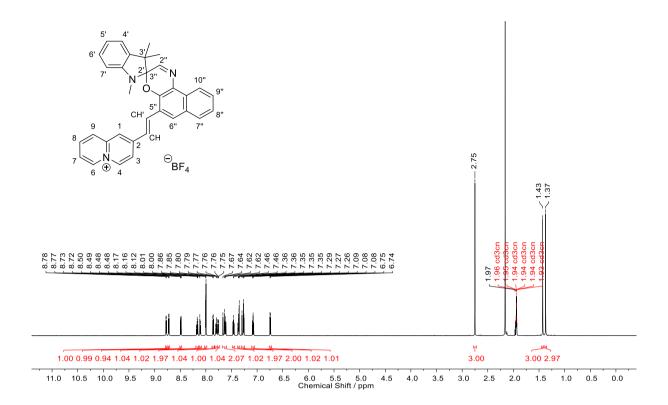



Figure S8: ¹³C NMR spectrum (100 MHz) of derivative 1b in CDCl₃ (top) with expansion (bottom).

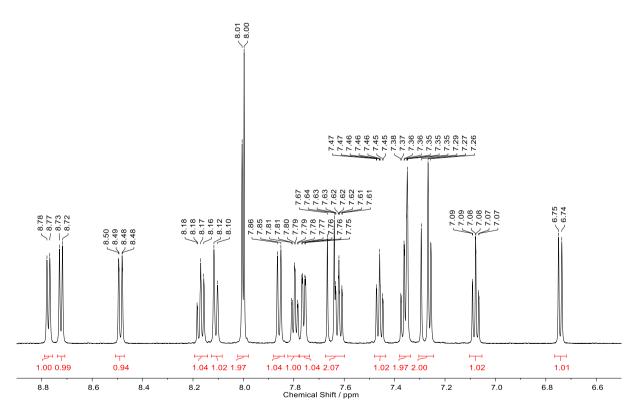
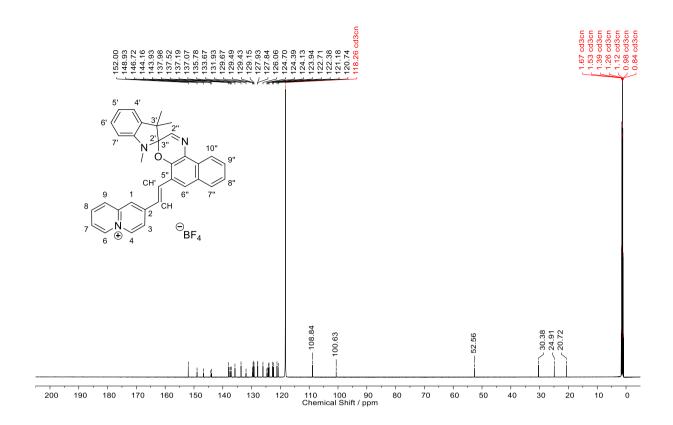



Figure S9: ¹H NMR spectrum (500 MHz) of derivative **3a** in CD₃CN (top) with expansion (bottom).

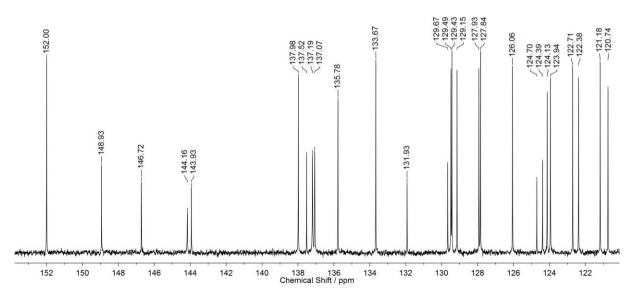
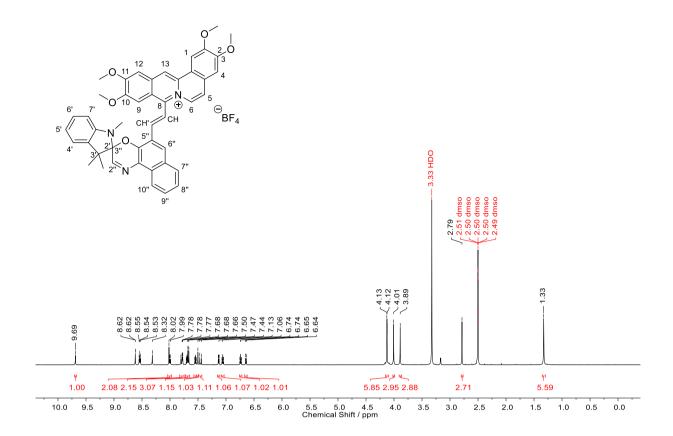
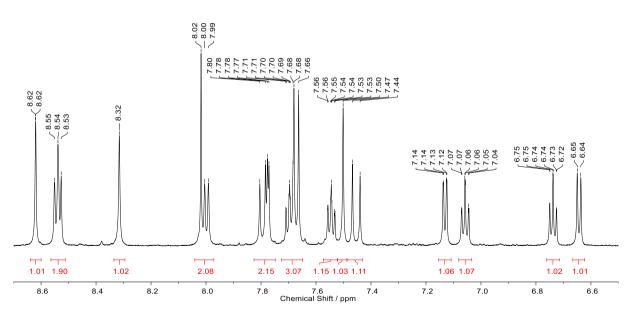
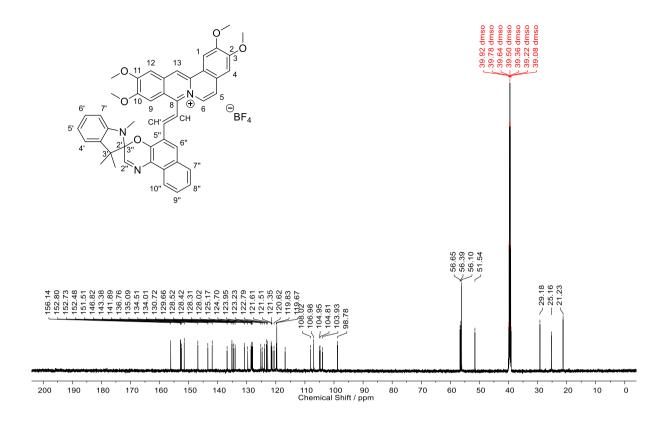





Figure S10: ¹³C NMR spectrum (125 MHz) of derivative 3a in CD₃CN (top) with expansion (bottom).

Figure S11: ¹H NMR spectrum (600 MHz) of derivative **3b** in DMSO-*d*₆ (top) with expansion (bottom).

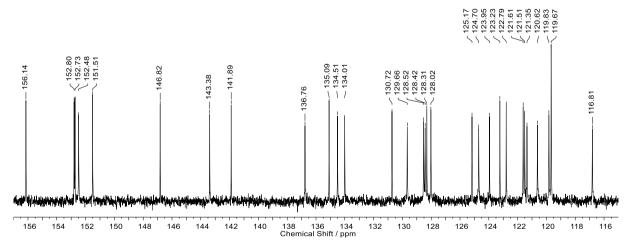
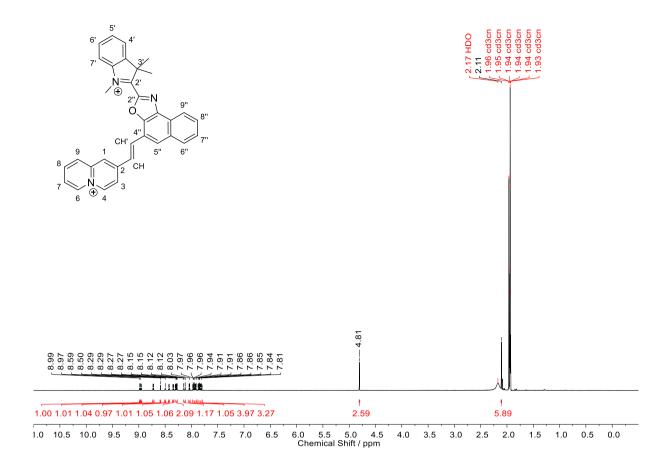



Figure S12: ¹³C NMR spectrum (150 MHz) of derivative **3b** in DMSO-*d*₆ (top) with expansion (bottom).

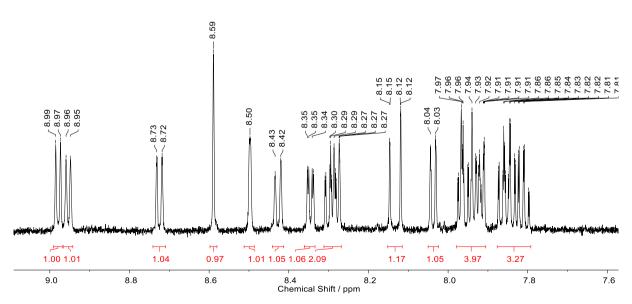


Figure S13: ¹H NMR spectrum (600 MHz) of derivative 4a in CD₃CN (top) with expansion (bottom).

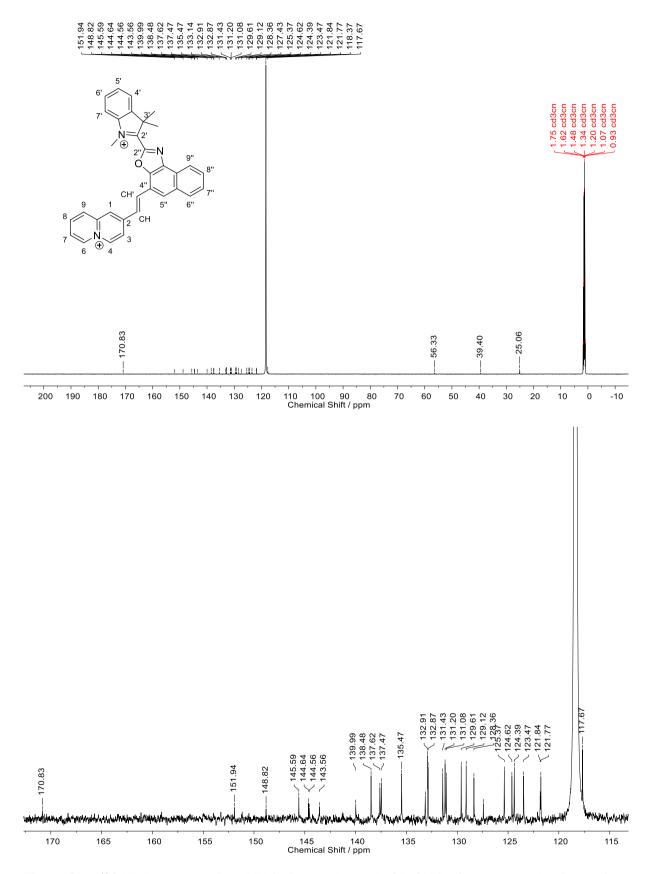
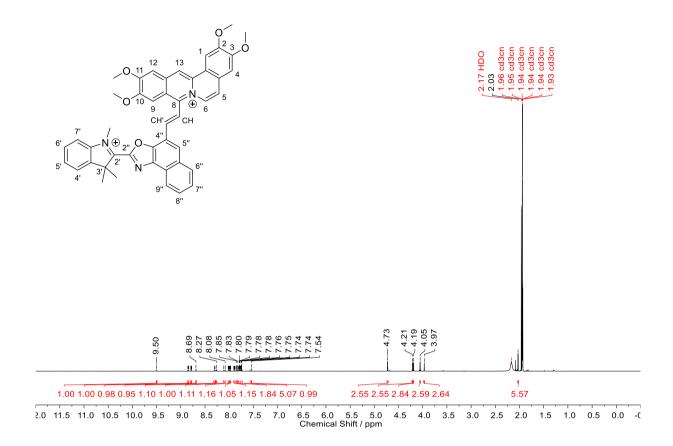



Figure S14: ¹³C NMR spectrum (150 MHz) of derivative 4a in CD₃CN (top) with expansion (bottom).

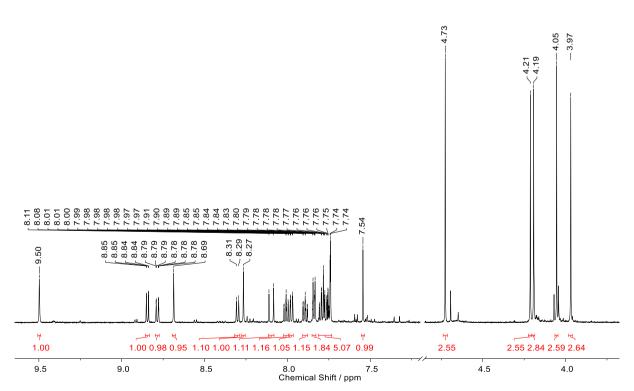
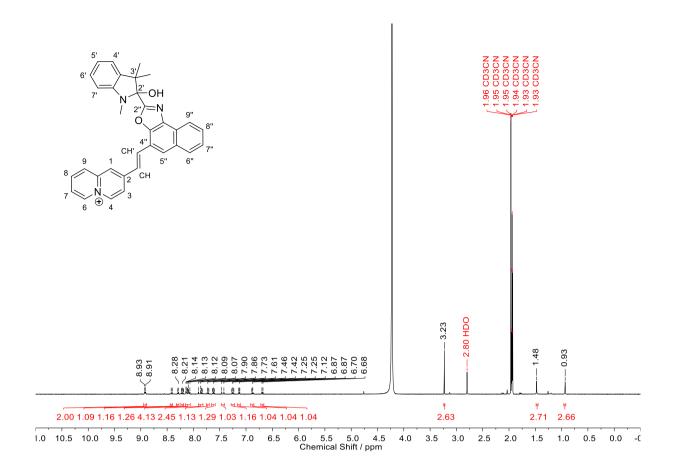



Figure S15: ¹H NMR spectrum (600 MHz) of derivative 4b in CD₃CN (top) with expansion (bottom).

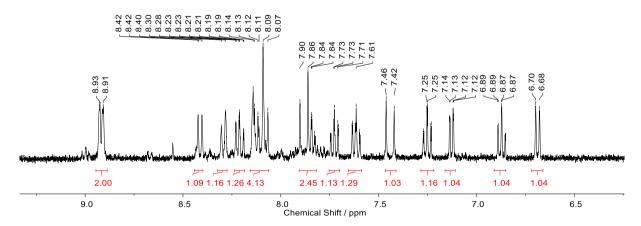


Figure S16: ^{1}H NMR spectrum (400 MHz) of derivative 5 in CD₃CN/D₂O 1/1 (top) with expansion (bottom).

4 References

- [1] G. Jones, W. R. Jackson, C. Y. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 294–300.
- [2] D. Magde, R. Wong, P. G. Seybold, Chem. Phys. Lett. 2002, 75, 327-334.
- [3] a) G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991–1024; b) B. Valeur, M. N. Berberan-Santos, Molecular Fluorescence. Principles and Applications, Wiley-VCH, Weinheim, 2012.
- [4] a) A. Samat, V. Lokshin, K. Chamontin, D. Levi, G. Pepe, R. Guglielmetti, *Tetrahedron* 2001, 57, 7349–7359; b) V. Lokshin, K. Chamontin, R. Guglielmetti, A. Samat, U.S. Patent 6,019,914, 2000; c) M. Campredon, R. Guglielmetti, B. Luccioni-Houzé, G. Pèpe, A. Alberti, D. Macciantelli, *Free Radical Res.* 1997, 26, 529–536.
- [5] a) L. E. Miller, W. W. Hanneman, W. L. St. John, R. R. Smeby, *J. Am. Chem. Soc.* 1954, 76, 296–297; b) P. E. Georghiou, M. Ashram, H. J. Clase, J. N. Bridson, *J. Org. Chem.* 1998, 63, 1819–1826; c) K. Chamontin, V. Lokshin, A. Samat, R. Guglielmetti, R. Dubest, J. Aubard, *Dyes Pigm.* 1999, 43, 119–125.