

Supporting Information

for

Chemical synthesis of C6-tetrazole D-mannose building blocks and access to a bioisostere of mannuronic acid 1-phosphate

Eleni Dimitriou and Gavin J. Miller

Beilstein J. Org. Chem. 2021, 17, 1527-1532. doi:10.3762/bjoc.17.110

Detailed experimental protocols and characterisation data; spectral NMR data (¹H, ¹³C, ³¹P and HSQC NMR for compounds 2–5, 7–14, 16–18, 20 and 21)

The following pages contain representative supporting information and data.

- **S1.** General experimental
- S2. Experimental procedures for compounds 2–21
- S3. HMBC spectrum for N1-protected tetrazole 11
- S4. References
- S5. Spectral Data: 1 H, 13 C, 31 P and HSQC NMR for compounds 2–5, 7–14, 16–18, 20 and 21

S1. General experimental

All reagents and solvents which were available commercially were purchased from Acros, Alfa Aesar, Fisher Scientific, Sigma Aldrich or TCI. All reactions in non-aqueous solvents were conducted in oven dried glassware with a magnetic stirring device under an inert atmosphere of nitrogen passed through a drying column using a vacuum manifold. Solvents were purified by passing through activated alumina columns and used directly from a Pure Solv-MD solvent purification system and were transferred under nitrogen. Reactions were followed by thin layer chromatography (TLC) using Merck silica gel 60F254 analytical plates (aluminium support) and were developed using short wave UV radiation (245 nm) and 5% sulfuric acid in methanol/Δ. Purification via flash column chromatography was conducted manually using Sigma Aldrich silica gel 60 (0.043-0.063 mm) under a positive pressure of compressed air or via automation using a Büchi Reveleris X2 with pre-packed silica cartridges. Purification via strong ion exchange (SAX) chromatography was conducted on a Bio-Rad Biologic LP system using a Bio-Scale Mini UNOsphere Q (strong anion exchange) cartridge (column volume = 5 mL): flow rate (3.0 mL/min), 0 → 100% 1.0 M NH₄HCO₃ over 33 min. Optical activities were recorded on an automatic Rudolph Autopol I or Bellingham and Stanley ADP430 polarimeter (concentration in q/100mL). ¹H NMR spectra were recorded at 400 MHz, ¹³C NMR spectra at 100 MHz and ³¹P NMR spectra at 161 MHz respectively using Bruker AV-III spectrometers. ¹H NMR resonances were assigned with the aid of gDQCOSY. ¹³C NMR resonances were assigned with the aid of gHSQCAD. Coupling constants are reported in Hertz. Chemical shifts (δ , in ppm) are standardised against the deuterated solvent peak. NMR data were analysed using Mestrenova or iNMR software. ¹H NMR splitting patterns were assigned as follows: br. s (broad singlet), s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), app. t (apparent triplet), t (triplet), quartet (q) or m (multiplet and/or multiple resonances). HRMS (ESI) were obtained on Agilent 6530 Q-TOF, LQT Orbitrap XL1 or Waters (Xevo, G2-XS TOF or G2-S ASAP) Micromass LCT spectrometers using a methanol mobile phase in positive/negative ionisation modes, as appropriate.

S2. Experimental procedures for compounds 2-21

S2.1. Compound 2

To a stirred solution of 1 (100 mg, 0.21 mmol, 1.0 equiv), PyBOP (280 mg, 0.53 mmol, 2.5 equiv) and DIPEA (75 μ L, d = 0.742, 0.43 mmol, 2.0 equiv) in CH₂Cl₂ (2 mL), was added 3-aminopropionitrile (24 µL, d = 0.952, 0.32 mmol, 1.5 equiv) in CH₂Cl₂ (0.1 mL) at 0 °C. The mixture was left stirring for 40 min. and was diluted with CH₂Cl₂ (10 mL). The organic layer was washed 1.0 M aq. HCl (2 x 10 mL), sat. aq. NaHCO₃ solution (2 x 10 mL) and brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification using silica gel flash column chromatography, eluting with EtOAc/toluene (0/100, 5/95, 10/90, 20/80) afforded 2 as a white solid (51 mg, 0.1 mmol, 47%). R_f 0.29 (EtOAc/toluene, 3/7); $[\alpha]_D^{22}$ +56.4 (c. 7.5, CHCl₃); mp: 102-105 °C; ¹H NMR (400 MHz; CDCl₃) δ 7.40 - 7.29 (15 H, m, Ar-H), 6.87 (1 H, t, J = 6.1 Hz, $C(O)N(H)CH_2CH_2C\equiv N$), 5.45 (1 H, d, J=1.5 Hz, H_1), 4.88 (1 H, d, J=12.0 Hz, CH_2Ph), 4.72 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.68 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.65 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.65 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.65 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.65 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.65 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.65 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.66 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.67 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.68 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.69 (1 H, d, J = 12.0 Hz, 12.0 Hz, CH_2Ph), 4.53 (1 H, d, J = 9.8 Hz, H_5), 4.38 (1 H, s, C4-OH), 4.26 (1 H, app. t, J $= 9.5 \text{ Hz}, H_4$, 3.94 (1 H, dd, J = 2.8, 1.8 Hz, H₂), 3.77 (1 H, dd, J = 9.3, 3.0 Hz, H₃), 3.64 (1 H, td, J = 12.6, 6.2 Hz, C(O)N(H)C H_2 CH $_2$ C \equiv N), 3.39 (1 H, ddt, J = 13.8, 7.8, 5.9 Hz, $C(O)N(H)CH_2CH_2CN)$, 2.66 (1 H, dd, J = 11.7, 5.0 Hz, $C(O)N(H)CH_2CH_2CN)$, 2.61 – 2.51 (1 H, m, C(O)N(H)CH₂CH₂C \equiv N); ¹³C NMR (101 MHz; CDCl₃) δ 172.1 $(C(O)N(H)CH_2CH_2C\equiv N)$, 138.4 (C_q) , 137.8 (C_q) , 132.8 (C_q) , 132.4, 129.4, 128.5, 128.4, 128.3, 128.0, 127.8, 127.7, 117.4 (C(O)N(H)CH₂CH₂C \equiv N), 86.8 (C1), 78.5 (C3), 77.2 (C2), 73.3 (CH_2Ph), 73.1 (CH_2Ph), 70.9 (C5), 69.8 (C4), 35.1 ($C(O)N(H)CH_2CH_2C\equiv N$), 18.3 (C(O)N(H)CH₂CH₂C \equiv N); **HRMS** (ES⁺) m/z [Found: (M+NH₄)⁺ 536.2217 C₂₉H₃₄N₃O₅S requires (M+NH₄)⁺, 536.2219]; **IR** v_{max}/cm⁻¹ 3401 (w, N-H_{amide}), 2249 (w, C=N), 1655, 1530 (s, C=O_{amide}), 1496, 1454 (m, C=C_{aromatic}), 1102 (C-N).

S2.1.1. Elimination byproduct 3

Elimination by-product **3** was isolated from the crude mixture containing **2** and as a colourless oil (46 mg, 90 µmol, 44%). R_f 0.32 (EtOAc/toluene, 3/7); $[\alpha]_D^{22}$ +72.0 (*c*. 7.5, CHCl₃); ¹**H NMR** (400 MHz; CDCl₃) δ 7.49 – 7.28 (15 H, m, Ar-H), 6.73 (1 H, t, J = 6.2 Hz, C(O)N(H)CH₂CH₂C=N), 6.23 (1 H, dd, J = 3.5, 0.9 Hz, H₄), 5.59 (1 H, d, J = 5.3 Hz, H₁), 4.70 (1 H, d, J = 12.1 Hz, CH₂Ph), 4.69 (1 H, d, J = 12.0 Hz, CH₂Ph), 4.64 (1 H, d, J = 12.1 Hz, CH₂Ph), 4.60 (1 H, d, J = 11.9 CH₂Ph), 4.29 (1 H, app. t, J = 3.8 Hz, H₃), 3.85 (1 H, ddd, J = 5.1, 4.1, 0.9 Hz, H₂), 3.62 – 3.43 (2 H, m, C(O)N(H)CH₂CH₂C=N), 2.69 – 2.52 (2 H, m, C(O)N(H)CH₂CH₂C=N); ¹³C NMR (101 MHz; CDCl₃) δ 161.5 (C(O)N(H)CH₂CH₂C=N), 143.6 (C5), 137.8 (C_q), 137.5 (C_q), 133.4 (C_q), 131.9, 129.4, 128.6, 128.5, 128.5, 128.1, 128.0, 127.9, 127.8, 117.9 (C(O)N(H)CH₂CH₂C=N), 106.1 (C4), 85.1 (C1), 72.81 (C2), 72.5 (CH₂Ph), 71.2 (CH₂Ph), 68.3 (C3), 35. 6 (C(O)N(H)CH₂CH₂C=N), 18.2 (C(O)N(H)CH₂CC=N); HRMS (ES⁺) m/z [Found:

 $(M+NH_4)^+$ 518.2115 $C_{29}H_{32}N_3O_4S$ requires $(M+NH_4)^+$, 518.2114]; **IR** v_{max}/cm^{-1} 3354 (w, N-H_{amide}), 2248 (w, C=N), 1655, 1517 (s, C=O_{amide}), 1454 (m, C=C_{aromatic}), 1057 (C-N).

S2.2. Compound 4

In a manner similar to [1]: to a mixture of 2 (50 mg, 0.1 mmol, 1.0 equiv), imidazole (20 mg, 0.29 mmol, 3.0 equiv) and DMAP (5.9 mg, 50 μmol, 0.5 equiv) in DMF (1 mL) was added TBDMSOTf (66 µL, d = 1.151, 0.29 mmol, 3.0 equiv) dropwise. The reaction mixture was left stirring overnight at room temperature and was guenched with H₂O (0.1 mL). The mixture was concentrated under reduced pressure, and the remaining crude was reconstituted in CH₂Cl₂ (10 mL) and H₂O (5 mL). The organic layer was washed, separated, dried over Na₂SO₄, filtered and concentrated under reduced pressure to furnish a colourless oil. Purification by silica gel flash column chromatography, eluting with EtOAc/hexane (0/100, 10/90, 20/80) afforded 4 as a white solid (50 mg, 79 µmol, 80%). R_f 0.46 (EtOAc/hexane, 1/2); $[\alpha]_D^{26}$ +14.0 (c. 1.0, CHCl₃); mp: 119-122 °C; ¹H NMR (400 MHz; CDCl₃) δ 7.67 - 7.23 (15 H, m, Ar-H), 6.29 (1 H, t, J = 6.1 Hz, $C(O)N(H)CH_2CH_2C\equiv N$), 5.35 (1 H, d, J=7.4 Hz, H_1), 4.57 (1 H, d, J=12.1 Hz, CH_2Ph), 4.56 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.50 (1 H, app. t, J = 3.4 Hz, H_4), 4.49 (1 H, d, J = 11.8Hz, CH_2Ph), 4.47 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.19 (1 H, d, J = 3.9 Hz, H_5), 3.81 (1 H, dd, J = 7.3, 2.6 Hz, H₂), 3.56 (1 H, dd, J = 5.2, 2.6 Hz, H₃), 3.28 (1 H, dq, J = 13.1, 6.6 Hz, C(O)N(H)C H_2 CH₂C=N), 3.19 (1 H, td, J = 13.2, 6.5 Hz, C(O)N(H)C H_2 CH₂C=N), 2.31 $(1 \text{ H}, \text{ dt}, J = 16.6, 6.6 \text{ Hz}, C(O)N(H)CH_2CH_2C\equiv N), 2.25 - 2.12 (1 \text{ H}, m)$ $C(O)N(H)CH_2CH_2C\equiv N)$, 0.80 (9 H, s, $C(CH_3)_3$), 0.00 (3 H, s, $Si(CH_3)_2$), -0.08 (3 H, s, Si(C H_3)₂); ¹³C NMR (101 MHz; CDCl₃) δ 169.3 (C(O)N(H)CH₂CH₂C≡N), 137.9 (C_q), 137.8 (C_q) , 133.5 (C_q) , 133.0, 129.2, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 117.6 $(C(O)N(H)CH_2CH_2C\equiv N)$, 84.1 (C1), 77.5 (C5), 74.2 (C2), 72.4 (CH₂Ph), 72.4 (CH₂Ph), 68.7 (C4), 35.3 (C(O)N(H) $CH_2CH_2C\equiv N$), 25.8 (C(CH_3)₃), 18.0 ($C(CH_3$)₃), -4.8 (Si(CH_3)₂), -5.0 (Si(C H_3)₂); **HRMS** (ES⁺) m/z [Found: (M+NH₄)⁺ 650.3082 C₃₅H₄₈N₃O₅SSi requires $(M+NH_4)^+$, 650.3078]; **IR** v_{max}/cm^{-1} 3217 (w, N-H_{amide}), 2255 (w, C=N), 1678, 1659 (s, C=O_{amide}), 1496, 1455 (m, C=C_{aromatic}), 1243 (s, Si-C), 1096 (s, C-N), 1068 (s, Si-O).

S2.3. Compound 5

Propionitrile **4** (60 mg, 0.11 mmol, 1.0 equiv) was dissolved in toluene (10 mL) and TMSN₃ (84 μ L, d = 0.872, 0.64 mmol, 6.0 equiv) and Bu₂SnO (11 mg, 43 μ mol, 0.4 equiv) were added. The mixture was heated to 120 °C and stirred for 16 h. Upon completion, the mixture was cooled down to room temperature, diluted with EtOAc (50 mL) and washed with 0.1 M aq. HCl solution (50 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of this crude material by silica gel flash column chromatography, eluting with MeOH/CH₂Cl₂ (0/100, 1/99, 2/98) afforded **5** as a brown oil (34 mg, 56 μ mol, 51%). R_f 0.71 (MeOH/CH₂Cl₂, 1/2); [α]_D²² +88.7 (c. 1.75, CHCl₃); ¹**H NMR** (400 MHz; CDCl₃) δ 7.47 – 7.26 (15 H, m, Ar-H), 5.64 (1 H, d,

J = 8.9 Hz, H₅), 5.54 (1 H, d, J = 1.8 Hz, H₁), 4.74 (1 H, d, J = 11.7 Hz, CH_2Ph), 4.73 (1 H, d, J = 11.8Hz, CH_2Ph), 4.69 (1 H, d, J = 11.7 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.41 (1 H, app. t, J = 8.8 Hz, H₄), 4.09 (1 H, app. t, J = 2.6 Hz, H₂), 3.84 (1 H, dd, J = 8.6, 2.8 Hz, H₃), 0.78 (9 H, s, $C(CH_3)_3$), 0.00 (3 H, s, $C(CH_3)_2$), -0.41 (3 H, s, $C(CH_3)_2$); 13C NMR (101 MHz; CDCl₃) δ 155.8 (C_4 tetrazole), 137.6 (C_4), 137.1 (C_4), 132.8 (C_4), 132.2, 129.2, 128.6, 128.5, 128.3, 128.1, 128.0, 86.8 (C1), 79.7 (C3), 76.5 (C2), 73.3 (CC_4), 72.7 (CC_4), 71.0 (CC_4), 68.5 (CC_5), 25.6 (CC_4), 17.9 (CC_5), -5.9 (CC_5), -5.9 (CC_6); HRMS (CC_7) CC_7 0 (CC_7) (CC_7 0) (CC_7 1) (CC_7 1), 70.2 (CC_7 1), 70.2 (CC_7 2), 132.8 (CC_7 3), -5.9 (CC_7 3), 17.9 (CC_7 3), 76.5 (CC_7 3), 17.9 (CC_7 4), 18.5 (CC_7 5), -5.9 (CC_7 6), 18.6 (CC_7 6), 18.6 (CC_7 7), 19.7 (CC_7 7), 19.7 (CC_7 8), 19.9 (CC_7 9), 19.9 (CC_7

S2.4. Compound 7

S2.4.1. Phenyl 2,3-di-*O*-benzyl-6-*O*-benzoyl-1-thio-α-D-mannopyranoside

To a stirred solution of 6° (1.0 g, 2.21 mmol, 1.0 equiv), pyridine (357 µL, d = 0.978, 4.42 mmol, 2.0 equiv), DMAP (81 mg, 0.7 mmol, 0.3 equiv) in CH₂Cl₂ (10 mL) was added BzCl dropwise (269 µL, d = 1.211, 2.32 mmol, 1.05 equiv) at 0 °C. The reaction was left stirring overnight at room temperature, and diluted with CH₂Cl₂ (15 mL). The mixture was washed with 1.0 M ag. HCl (10 mL), sat. ag. NaHCO₃ (10 mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to afford the crude product. Purification by Reveleris® automated silica gel flash column chromatography (liquid injection onto column), eluting with EtOAc/hexane (0/100, 5/95 and 10/90) afforded phenyl 2,3-di-O-benzyl-6-O-benzoyl-1-thio-α-D-mannopyranoside as a colourless oil (1.1 g, 2.0 mmol, 90%). R_f 0.37 (EtOAc/hexane, 1/2); $[\alpha]_{D}^{22}$ +48.2 (c. 7.5, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 8.03 – 7.19 (20 H, m, Ar-H), 5.65 (1 H, d, J = 1.3 Hz, H₁), 4.69 (1 H, d, J = 12.1 Hz, CH_2 Ph-attached to C2), 4.65 – 4.59 (2 H, m, H_{6a,b}), 4.61 (1 H, d, J = 12.7 Hz, CH_2Ph -attached to C2), 4.55 (1 H, d, J = 10.5 Hz, CH_2Ph -attached to C3), 4.52 (1 H, d, J = 10.1 Hz, CH_2Ph -attached to C3), 4.43 (1 H, dt, J = 9.6, 3.9 Hz, H₅), 4.15 (1 H, dd, J = 9.6 Hz, H₄), 4.04 (1 H, dd, J = 3.0, 1.6 Hz, H₂), 3.73 (1 H, dd, J = 9.5, 3.0 Hz, H₃), 2.64 (1 H, br. s, C4-OH); ¹³C NMR (101 MHz; CDCl₃) δ 166.7 (C(O)Ph), 137.8 (C_q), 137.7 (C_q), 134.1 (C_q), 133.0 (C_q), 131.5, 130.1, 129.8, 129.1, 128.6, 128.4, 128.3, 128.1, 128.0, 127.8, 127.5, 85.7 (C1), 79.6 (C3), 75.7 (C2), 72.1 (CH₂Ph), 71.9 (CH₂Ph), 71.7 (C5), 66.9 (C4), 64.1 (C6); **HRMS** (ES⁺) m/z [Found: $(M+NH_4)^+$ 574.2257 $C_{33}H_{32}O_6SNH_4$ requires $(M+NH_4)^+$, 574.2258]; **IR** v_{max}/cm^{-1} 3477 (br. s, C4-OH), 1718 (s, C=Oester), 1273 (s, C-Oester), 1070 (s, C-Oether), 1025 (s, C-OH).

S2.4.2. Phenyl 2,3-di-O-benzyl-4-O-tert-butyldimethylsilyl-6-O-benzoyl-1-thio- α -D-mannopyranoside

In a manner similar to [1]: To a mixture of phenyl 2,3-di-O-benzyl-6-O-benzoyl-1-thio- α -D-mannopyranoside (900 mg, 1.62 mmol, 1.0 equiv), imidazole (330 mg, 4.85 mmol, 3.0 equiv) and DMAP (99 mg, 0.81 mmol, 0.5 equiv) in DMF (10 mL) was added TBDMSOTf (1.1 mL, d = 1.151, 4.85 mmol, 3.0 equiv) dropwise. The reaction mixture

was left stirring overnight at room temperature and was guenched with H₂O (2 mL). The mixture was concentrated under reduced pressure, and the remaining crude was reconstituted in CH₂Cl₂ (50 mL) and H₂O (30 mL). The organic layer was washed, separated, dried over MgSO₄, filtered and concentrated under reduced pressure to furnish a colourless oil. Purification by silica gel flash column chromatography, eluting with EtOAc/hexane (0/100, 5/95, 10/90) afforded phenyl 2,3-di-O-benzyl-4-O-tertbutyldimethylsilyl-6-O-benzoyl-1-thio-α-D- mannopyranoside, as a colourless oil (846 mg, 1.27 mmol, 78%). R_f 0.75 (EtOAc/hexane, 1/2); $[\alpha]_D^{26}$ +57.8 (c. 1.37, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.96 – 7.10 (20 H, m, Ar-H), 5.54 (1 H, d, J = 1.7, H₁), 4.61 (1 H, dd, J = 11.6, 1.8 Hz, H_{6b}), 4.57 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.57 (1 H, s, J = 11.9 Hz, CH_2Ph), 4.52 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.50 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.39 (1 H, dd, J = 12.0 Hz, J11.6, 5.8 Hz, H_{6a}), 4.35 – 4.29 (1 H, m, H_5), 4.19 (1 H, t, J = 9.1 Hz, H_4), 3.91 (1 H, dd, J= 2.7, 2.0 Hz, H₂), 3.61 (1 H, dd, J = 8.9, 2.9 Hz, H₃), 0.82 (9 H, s, C(CH₃)₃), 0.00 (6 H, d, J = 1.5 Hz, Si(C H_3)₂); ¹³C NMR (101 MHz; CDCl₃) δ 166.4 (C(O)Ph), 138.1 (C_q), 138.1 (C_q) , 132.8 (C_q) , 131.3 (C_q) , 130.1, 129.7, 129.0, 128.3, 128.3, 127.9, 127.6, 127.6, 127.5, 127.3, 85.7 (C1), 80.3 (C3), 76.2 (C2), 72.6 (C5), 72.1 (CH₂Ph), 71.8 (CH₂Ph), 68.2 (C4), 64.2 (C6), 26.0 (C(CH₃)₃), 18.2 (C(CH₃)₃), -3.8 (Si(CH₃)₂), -5.0 (Si(CH₃)₂); **HRMS** (ES⁺) m/z [Found: (M+NH₄)⁺ 688.3127 C₃₉H₅₀NO₆SSi requires (M+NH₄)⁺, 688.3123]; **IR** v_{max}/cm⁻¹ 1713 (s, C=O_{ester}), 1276 (m, C-O_{ester}), 1253 (m, Si-C), 1096 (s, Si-O), 1024 (m, C-Oether).

S2.4.3. Compound 7

In a manner similar to [1]: To a stirred solution of phenyl 2,3-di-O-benzyl-4-O-tertbutyldimethylsilyl-6-O-benzoyl-1-thio-α-D- mannopyranoside (800 mg, 1.19 mmol, 1.0 equiv) in anhydrous MeOH and THF (7 mL, 1/1 v/v), Na (14 mg, 0.60 mmol, 0.5 equiv) dissolved in anhydrous MeOH (2 mL) was added dropwise at room temperature. The mixture was stirred overnight, then neutralised with ion exchange Amberlite 120 (H⁺) resin (approximately 0.7 g, 10 min), filtered, and concentrated under reduced pressure. Purification by silica gel flash column chromatography, eluting with Et₂O/hexane (0/100, 5/95, 10/90) afforded **7** as a colourless oil (596 mg, 1.07 mmol, 90%). R_f 0.69 (EtOAc/hexane, 1/2); $[\alpha]_D^{26}$ +81.3 (c. 1.0, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.35 – 7.13 (15 H, m, Ar-H), 5.37 (1 H, d, J = 1.8 Hz, H₁), 4.51 (2 H, d, J = 12.5 Hz, C H_2 Ph), 4.49 $(1 \text{ H}, d, J = 11.8 \text{ Hz}, CH_2Ph), 4.44 (1 \text{ H}, d, J = 11.9 \text{ Hz}, CH_2Ph), 4.02 - 3.96 (1 \text{ H}, m, H_4),$ 3.96 - 3.91 (1 H, m, H₅), 3.82 (1 H, dd, J = 2.8, 2.0 Hz, H₂), 3.72 (1 H, ddd, J = 11.5, 6.6, 2.4 Hz, H_{6b}), 3.64 (1 H, ddd, J = 11.6, 6.5, 5.2 Hz, H_{6a}), 3.53 (1 H, dd, J = 8.4, 2.9 Hz, H_{3}), 1.70 (1 H, t, J = 6.6 Hz, C6-OH), 0.78 (9 H, s, C(CH₃)₃), 0.00 (3 H, s, Si(CH₃)₂), -0.05 (3 H, s, Si(C H_3)₂); ¹³C NMR (101 MHz; CDCl₃) δ 138.1 (C_q), 138.0 (C_q), 134.0 (C_q), 132.0, 129.1, 128.4, 128.3, 127.9, 127.7, 127.7, 127.6, 86.2 (C1), 80.4 (C3), 76.4 (C2), 74.8 (C5), 72.5 (CH_2Ph), 72.0 (CH_2Ph), 67.9 (C4), 62.2 (C6), 26.0 ($C(CH_3)_3$), 18.2 ($C(CH_3)_3$), -3.8 (Si(CH₃)₂), -4.9 (Si(CH₃)₂); **HRMS** (ES⁺) m/z [Found: (M+NH₄)⁺ 584.2875

 $C_{32}H_{46}NO_5SSi$ requires (M+NH₄)⁺, 584.2850]; **IR** v_{max}/cm^{-1} 1454 (w, C=C_{aromatic}), 1248 (m, C-Si), 1084 (s, Si-O).

S2.5. C-6 oxime thioglycoside 8

S2.5.1. C6-aldehyde thioglycoside intermediate

To a stirred solution of 7 (60 mg, 0.11 mmol, 1.0 equiv) in DMSO (1 mL) was added Et₃N (44 μ L, d = 0.726, 0.32 mmol, 3.0 equiv) and sulfur trioxide pyridine complex (51 mg, 0.32 mmol, 3.0 equiv) at room temperature. The reaction mixture was left stirring for 1 h before it was diluted with EtOAc (30 mL) and H₂O (20 mL). The whole was extracted with EtOAc (3 x 15 mL) and the extracts were washed with H₂O (6 x 20 mL) and brine (20 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude aldehyde was obtained as a colourless oil (60 mg, 0.11 mmol, 98%) and was used immediately in the next step, without further purification. Rf 0.684 (EtOAc/hexane, 1/2); $[\alpha]_D^{22}$ -14.4 (c. 0.33, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 9.77 (1 H, s, CHO), 7.56 - 7.25 (15 H, m, Ar-H), 5.56 (1 H, d, J = 6.4 Hz, H₁), 4.57 (1 H, d, J = 11.9 Hz, CH_2Ph), 4.52 (2 H, s, CH_2Ph), 4.43 (1 H, d, J = 11.9 Hz, CH_2Ph), 4.26 – 4.20 (2 H, m, H₄, H₅), 3.83 (1 H, dd, J = 6.2, 2.3 Hz, H₂), 3.60 (1 H, dd, J = 5.8, 2.5 Hz, H₃), 0.82 (9 H, s, C(C H_3)₃), 0.00 (3 H, s, Si(C H_3)₂), -0.07 (3 H, s, Si(C H_3)₂); ¹³C NMR (101 MHz; CDCl₃) δ 198.0 (CHO), 137.8 (C_q), 137.6 (C_q), 133.5 (C_q), 132.4, 131.8, 129.0, 128.5, 128.4, 128.0, 127.9, 127.8, 127.5, 83.8 (C1), 81.15 (C5), 77.2 (C3), 73.8 (C2), 72.5 (CH₂Ph), 72.3 (CH₂Ph), 68.9 (C4), 25.7 (C(CH₃)₃), 18.0 (C(CH₃)₃), -4.6 (Si(CH₃)₂), -5.0 (Si(CH₃)₂); HRMS (ES⁺) m/z [Found: (M+NH₄)⁺ 582.2723 C₃₂H₄₄NO₅SSi requires (M+NH₄)+, 582.2704].

S2.5.2. C-6 oxime thioglycoside 8

The crude C-6 aldehyde (4.5 g, 7.97 mmol, 1.0 equiv) was dissolved in THF (790 mL) and a solution of H₂NOH·HCl (554 mg, 7.97 mmol, 1.0 equiv) dissolved in H₂O (15 mL) was added dropwise. The mixture was cooled to 0 °C and a solution of Na₂CO₃ (1.0 g, 9.56 mmol, 1.2 equiv) dissolved in H₂O (9.5 mL) was added dropwise. The solution was slowly warmed to room temperature and stirred for 24 h. The mixture was diluted with H₂O (30 mL) and then extracted with EtOAc (4 × 300 mL). The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The obtained crude oil was purified using silica gel flash column chromatography, eluting with Et₂O/petroleum ether (0/100, 5/95, 10/90, 20/80) to furnish **8** as a colourless oil. *Cis* and *trans* (1/6.7) were isolated separately (major isomer: 2.82 g, 4.86 mmol, 71%, minor isomer: 416 mg, 0.72 mmol, 9%) and both were used in the next step; Major isomer R_f 0.78; minor isomer R_f 0.68; (EtOAc/petroleum ether, 1/2); major: $[\alpha]_D^{22}$ +57.7 (*c*. 0.46, CHCl₃); minor: $[\alpha]_D^{22}$ +41.3 (*c*. 1.0, CHCl₃); ¹H NMR (400 MHz; CDCl₃) Major isomer δ 7.46 – 7.17 (16 H, m, Ar-H, *H*C=N), 5.40 (1 H, d, *J* = 1.8 Hz, H₁), 4.58 (1 H, d, *J* = 10.5 Hz, C*H*₂Ph), 4.57 (1 H, m, H₅), 4.55 (1 H, d, *J* = 10.1 Hz, C*H*₂Ph), 4.54 (1 H, d, *J* = 12.4

Hz, C H_2 Ph), 4.50 (1 H, d, J = 11.9 Hz, C H_2 Ph), 4.06 (1 H, app. t, J = 9.0 Hz, H₄), 3.89 – 3.86 (1 H, m, H₂), 3.59 (1 H, dd, J = 8.9, 2.9 Hz, H₃), 0.81 (9 H, s, C(C H_3)₃), 0.00 (3 H, s, Si(C H_3)₂), -0.01 (3 H, s, Si(C H_3)₂); ¹³C NMR (101 MHz; CDCl₃) δ 149.3 (HC=N), 138.1 (C_q), 137.9 (C_q), 134.0 (C_q), 131.9, 129.1, 128.4, 128.4, 127.9, 127.85, 127.8, 127.7, 127.6, 86.3 (C1), 79.8 (C3), 76.3 (C2), 72.5 (C5), 72.5 (CH₂Ph), 72.2 (CH₂Ph), 69.8 (C4), 25.8 (C(CH₃)₃), 18.1 (C(C H_3)₃), -4.0 (Si(CH₃)₂), -4.6 (Si(CH₃)₂); **HRMS** (ES⁺) m/z [Found: (M+NH₄)⁺ 597.2815 C₃₂H₄₅N₂O₅SSi requires (M+NH₄)⁺, 597.2813].

S2.6. C-6 nitrile thioglycoside 9

Oxime 8 (120 mg, 0.21 mmol, 1.0 equiv) was dissolved in dry acetonitrile (21 mL) and POCl₃ (19 μ L, d = 1.645, 0.21 mmol, 1.0 equiv) was added at room temperature. The solution was stirred for 5 min. at room temperature, heated up to 65 °C and then stirred for 3 h. The reaction was guenched with sat. ag. NaHCO₃ solution (20 mL) and extracted with EtOAc (3 x 60 mL). The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with Et₂O/petroleum ether (0/100, 5/95, 10/90, 20/80) to furnish **9** as a yellow oil (47 mg, 84 µmol, 40%). Rf 0.90 (EtOAc/hexane, 1/2); $[\alpha]_D^{22}$ +39.4 (c. 0.53, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.44 – 7.21 (15 H, m, Ar-H), 5.45 (1 H, d, J = 3.0 Hz, H₁), 4.76 (1 H, d, J = 8.3 Hz, H₅), 4.60 (1 H, d, J = 11.9 Hz, CH_2Ph), 4.58 (1 H, d, J = 12.1 Hz, CH_2Ph), 4.55 (1 H, d, J = 12.1 Hz, CH_2Ph), 4.53 (1 H, d, J = 12.0 Hz, CH_2Ph), 4.21 (1 H, app. t, J = 8.2 Hz, H_4), 3.84 (1 H, app. t, J = 2.9 Hz, H₂), 3.49 (1 H, dd, J = 8.2, 2.9 Hz, H₃), 0.89 (9 H, s, C(CH₃)₃), 0.18 (3 H, s, Si(CH₃)₂), 0.05 (3 H, s, Si(C H_3)₂); ¹³C NMR (101 MHz; CDCl₃) δ 137.5 (C_q), 137.1 (C_q), 132.9 (C_q), 131.5, 129.4, 129.3, 129.1, 128.5, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.9, 127.6, 127.2, 124.4, 117.0 (C≡N), 85.9 (C1), 78.8 (C3), 75.3 (C2), 72.6 (CH₂Ph), 72.5 (CH₂Ph), 69.4 (C4), 64.7 (C5), 25.8 (C(CH_3)₃), 18.0 ($C(CH_3)_3$), -4.1 (Si(CH_3)₂), -4.8 (Si(CH_3)₂); **HRMS** (ES+) m/z [Found: (M+NH₄)+ 579.2732 C₃₂H₄₃N₂O₄SSi requires (M+NH₄)+, 579.2707].

S2.6.1. 4-postion deprotected byproduct 10

Alcohol **10** was also isolated as a yellow oil (24 mg, 54 µmol, 26%) from the crude mixture containing **9**. R_f 0.82 (EtOAc/hexane, 1/2); $[\alpha]_D^{22}$ +15.4 (c. 0.95, CHCl₃); ¹**H NMR** (400 MHz; CDCl₃) δ 7.41 – 7.28 (15 H, m, Ar-H), 5.51 (1 H, d, J = 1.7 Hz, H₁), 4.87 (1 H, d, J = 9.8 Hz, H₅), 4.66 (1 H, d, J = 12.0 Hz, C H_2 Ph), 4.60 (1 H, d, J = 12.0 Hz, C H_2 Ph), 4.57 (1 H, d, J = 12.2 Hz, C H_2 Ph), 4.55 (1 H, d, J = 11.8 Hz, C H_2 Ph), 4.32 (1 H, app. t, J = 9.6 Hz, H₄), 3.96 (1 H, dd, J = 2.7, 2.0 Hz, H₂), 3.57 (1 H, dd, J = 9.3, 2.9 Hz, H₃), 2.92 (1 H, br. s, C4-OH); ¹³**C NMR** (101 MHz; CDCl₃) δ 137.3 (C_q), 137.2 (C_q), 132.7 (C_q), 131.5, 129.4, 128.7, 128.6, 128.3, 128.3, 128.1, 128.0, 128.0, 116.6 (C=N), 86.6 (C1), 78.4 (C3), 75.4 (C2), 72.5 (CH₂Ph), 72.4 (CH₂Ph), 68.3 (C4), 63.1 (C3); **HRMS** (ES⁺) m/z [Found: (M+NH₄)⁺ 465.1857 C₂₆H₂₉N₂O₄S requires (M+NH₄)⁺, 465.1843].

S2.7. PMB-protected C-6 tetrazole thioglycosides 11 and 12

To a stirred solution of **5** (130 mg, 0.21 mmol, 1.0 equiv) in DMF (2 mL) was added successively, KI (53 mg, 0.32 mmol, 1.5 equiv), K₂CO₃ (44 mg, 0.32 mmol, 1.5 equiv) and PMBCI (58 μ L, d = 1.155, 0.43 mmol, 2.0 equiv). The reaction was left stirring for 4 h and was diluted with CH₂Cl₂ (10 mL). The organic layer was washed with 10% aq. Na₂S₂O₃ solution (10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with acetone/toluene (1/250, 1/150, 1/100) to furnish isomers **11** and **12** (80 mg, 0.11 mmol, 53%) as oils.

S2.7.1. Compound 11

N₁-regioisomer **11** was isolated as a yellow oil (42 mg, 58 µmol, 28%). R_f 0.42 (acetone/toluene, 1/50); $[\alpha]_D^{22}$ +25.4 (c. 0.53, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.56 -7.39 (16 H, m, Ar-H), 7.36 (2 H, d, J = 8.7 Hz, Ar-H PMB), 6.82 (2 H, d, J = 8.8 Hz, Ar-H PMB), 5.76 (1 H, d, J = 1.8 Hz, H₁), 5.68 (1 H, d, J = 9.4 Hz, H₅), 5.66 (1 H, d, J = 15.0Hz, C H_2 Ph-PMB), 5.63 (1 H, d, J = 15.0 Hz, C H_2 Ph-PMB), 4.83 (1 H, d, J = 11.6 Hz, CH_2 Ph-attached to C2), 4.81 (1 H, d, J = 12.0 Hz, CH_2 Ph-attached to C3), 4.78 (1 H, d, J= 11.1 Hz, CH_2 Ph-attached to C2), 4.75 (1 H, d, J = 11.7 Hz, CH_2 Ph-attached to C3), 4.59 (1 H, app. t, J = 9.4 Hz, H₄), 4.22 - 4.19 (1 H, m, H₂), 3.87 (3 H, s, OCH₃), 3.86 - 3.84 (1 H, m, H₃), 0.79 (9 H, s, C(C H_3)₃), 0.00 (3 H, s, Si(C H_3)₂), -0.53 (3 H, s, Si(C H_3)₂); ¹³C **NMR** (101 MHz; CDCl₃) δ 159.7 (C_q PMB), 152.0 (C_q tetrazole), 137.8 (C_q), 137.5 (C_q), 133.5 (C_q), 131.1 (C_q), 129.9, 129.2, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 125.7, 114.1, 86.5 (C1), 80.1 (C3), 76.4 (C2), 72.9 (CH₂Ph-attached to C2), 72.1 (CH₂Ph-attached to C3), 70.0 (C4), 67.7 (C5), 55.2 (CH₂Ph PMB), 50.8 (OCH₃), 25.6 $(C(CH_3)_3)$, 17.8 $(C(CH_3)_3)$, -4.5 $(Si(CH_3)_2)$, -6.1 $(Si(CH_3)_2)$; ¹³C-GATED (101 MHz; CDCl₃): 86.5 (${}^{1}J_{C1-H1}$ =172 Hz, C1); **HRMS** (ES+) m/z [Found: (M+H)+ 725.3177 C₄₀H₄₉N₄O₅SSi requires (M+H)+, 725.3187].

S2.7.2. Compound 12

N1-regioisomer **12** was isolated as a yellow oil (38 mg, 52 µmol, 25%). R_f 0.48 (acetone/toluene, 1/50); $[\alpha]_D^{22}$ +40.6 (*c*. 0.86, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.43 – 7.21 (18 H, m, Ar-H), 6.87 (2 H, d, J = 8.7 Hz, Ar-H PMB), 5.67 (1 H, d, J = 14.1 Hz, C H_2 Ph-PMB), 5.62 (1 H, d, J = 14.0 Hz, C H_2 Ph-PMB), 5.56 (1 H, d, J = 1.9 Hz, H₁), 5.40 (1 H, d, J = 9.2 Hz, H₅), 4.67 (1 H, d, J = 12.3 Hz, C H_2 Ph-attached to C2), 4.60 (1 H, app. t, J = 9.1 Hz, H₄), 4.57 (1 H, d, J = 12.4 Hz, C H_2 Ph-attached to C3), 4.56 (1 H, d, J = 12.9 Hz, C H_2 Ph-attached to C3), 4.52 (1 H, d, J = 12.0 Hz, C H_2 Ph-attached to C3), 4.01 – 3.99 (1 H, m, H₂), 3.79 (3 H, s, OC H_3), 3.70 (1 H, dd, J = 8.9, 2.9 Hz, H₃), 0.50 (9H, s, C(C H_3)₃), -0.11 (3 H, s, Si(C H_3)₂), -0.55 (3 H, s, Si(C H_3)₂); ¹³C NMR (101 MHz; CDCl₃) δ 164.4 (Cq tetrazole), 160.1 (Cq PMB), 138.0 (Cq), 133.9 (Cq), 131.8 (Cq), 130.6 (Cq), 129.0, 128.3,

128.3, 127.8, 127.7, 127.6, 127.5, 125.0, 114.3, 86.5 (C1), 80.2 (C3), 75.7 (C2), 72.1 (CH₂Ph-attached to C2), 71.6 (CH₂Ph-attached to C3), 70.4 (C4), 69.1 (C5), 56.5 (CH₂Ph PMB), 55.3 (OCH₃), 25.5 (C(CH_3)₃), 17.7 ($C(CH_3)$ ₃), -4.1 (Si(CH_3)₂), -5.9 (Si(CH_3)₂); 13**C-GATED** (101 MHz; CDCl₃): 86.5 ($^1J_{C_1-H_1}$ = 168 Hz, C1); **HRMS** (ES⁺) m/z [Found: (M+H)⁺ 725.3192 C₄₀H₅₀N₄O₅SSi requires (M+H)⁺, 725.3187].

S2.8. Compound 11 triethylammonium salt

To a stirred solution of **5** (75 mg, 0.12 mmol, 1.0 equiv) in CH₂Cl₂ (1 mL) was added Et₃N (17 µL, d = 0.726, 0.12 mmol, 1.0 equiv). The reaction was left stirring for 1 h and then was dried *in vacuo*, giving the title compound as a yellow oil (80 mg, 0.11 mmol, 94%). [α] $_D^{22}$ -42.4 (*c*. 0.46, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.51 – 7.26 (15 H, m, Ar-H), 5.62 (1 H, d, J = 9.3 Hz, H₅), 5.56 (1 H, d, J = 1.5 Hz, H₁), 4.77 (1 H, d, J = 11.9 Hz, CH₂Ph), 4.74 (1 H, d, J = 11.8 Hz, CH₂Ph), 4.71 (1 H, d, J = 12.0 Hz, CH₂Ph), 4.67 (1 H, d, J = 11.3 Hz, CH₂Ph), 4.53 (1 H, app. t, J = 9.1 Hz, H₄), 4.13 (1 H, app. t, J = 2.2 Hz), 3.86 (1 H, dd, J = 8.9, 2.9 Hz, H₃), 3.05 (6 H, q, J = 7.3 Hz, N(CH₂CH₃)₃), 1.23 (9 H, t, J = 7.3 Hz, N(CH₂CH₃)₃), 0.75 (9 H, s, C(CH₃)₃), 0.00 (3 H, s, Si(CH₃)₂), -0.43 (3 H, s, Si(CH₃)₂); ¹³C NMR (101 MHz; CDCl₃) δ 159.6 (C_q tetrazole), 138.2 (C_q), 138.1 (C_q), 134.3 (C_q), 131.9, 128.9, 128.4, 128.3, 128.1, 127.9, 127.8, 127.6, 127.4, 86.9 (C1), 81.0 (C3), 77.2 (C2), 73.1 (CH₂Ph), 72.3 (CH₂Ph), 71.7 (C4), 69.8 (C5), 45.2 (N(CH₂CH₃)₃), 25.7 (C(CH₃)₃), 17.9 (C(CH₃)₃), 8.5 (N(CH₂CH₃)₃), -4.4 (Si(CH₃)₂), -5.9 (Si(CH₃)₂).

S2.9. Benzyl-protected C-6 tetrazole thioglycosides 13 and 14

To a stirred solution of compound 11 triethylammonium salt (80 mg, 0.11 mmol, 1.0 equiv) in DMF (1.1 mL) was added BnBr (20 μ L, d = 1.438, 0.17 mmol, 1.5 equiv). The reaction was left stirring for 3 h and was diluted with CH₂Cl₂ (10 mL). The organic layer was washed with brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with acetone/toluene (1/250, 1/150, 1/100) to furnish the inseparable isomers 13 and 14 as colourless oil in 1/1.2 ratio (24 mg, 34 µmol, 31%). Rf 0.80 (EtOAc/petroleum ether, 1/50); ¹H NMR (400 MHz; CDCl₃) δ 7.41 – 7.18 (40 H, m, Ar-H), 5.73 (1 H, d, J = 14.3 Hz, CH_2 Ph benzyl tetrazole, N_2 -isomer), 5.68 (1 H, d, J =14.2 Hz, C H_2 Ph benzyl tetrazole, N₂-isomer), 5.57 (1 H, d, J = 2.7 Hz, H₁ N₁-isomer), 5.56 (1 H, d, J = 2.4 Hz, H₁ N₂-isomer), 5.54 (2 H, d, J = 1.9 Hz, CH_2 Ph benzyl tetrazole, N_1 -isomer), 5.50 (1 H, d, J = 9.5 Hz, H_5 N_1 -isomer), 5.40 (1 H, d, J = 9.2 Hz, H_5 N_2 -isomer), 4.67 (1 H, d, J = 12.2 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.63 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.64 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.6 Hz, J = 112.2 Hz, CH_2Ph), 4.61 (1 H, d, J = 11.9 Hz, CH_2Ph), 4.60 (1 H, m, H_4 N_2 -isomer) 4.59 (1 H, d, J = 11.7 Hz, CH_2Ph), 4.57 (1 H, d, J = 12.3 Hz, CH_2Ph), 4.54 (2 H, s, CH_2Ph), 4.43 (1 H, app. t, J = 9.1 Hz, H₄ N₁-isomer), 4.04 (1 H, app. t, J = 2.8 Hz, H₂ N₁-isomer), 4.00 (1 H, app. t, J = 2.6 Hz, H₂ N₂-isomer), 3.70 (1 H, dd, J = 8.9, 2.9 Hz, H₃ N₁ and N_2 -isomers), 0.63 (9 H, s, $C(CH_3)_3$), 0.51 (9 H, s, $C(CH_3)_3$), -0.11 (3 H, s, $Si(CH_3)_2$), -0.17 (3 H, s, Si(C H_3)₂), -0.54 (3 H, s, Si(C H_3)₂), -0.68 (3 H, s, Si(C H_3)₂); ¹³**C NMR** (101 MHz; CDCl₃) 164.5 (C_q tetrazole, N₂-isomer), 152.3 (C_q tetrazole, N₁-isomer), 138.0 (C_q), 137.9 (C_q), 137.8 (C_q), 137.5 (C_q), 134.5 (C_q), 133.9 (C_q), 133.6 (C_q), 133.5 (C_q), 132.8, 131.8, 131.0, 129.2, 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.3, 128.3, 128.0, 127.9, 127.8, 127.7, 127.7, 127.6, 127.5, 86.5 (C1, N₁ or N₂-isomer), 86.4 (C1, N₁ or N₂-isomer), 80.2 (C3, N₁ or N₂-isomer), 80.1 (C3, N₁ or N₂-isomer), 76.3 (C2, N₁-isomer), 75.7 (C2, N₂-isomer), 72.9 (CH₂Ph), 72.1 (2C, CH₂Ph), 71.6 (CH₂Ph), 70.4 (C4, N₂-isomer), 69.9 (C4, N₁-isomer), 69.1 (C5, N₂-isomer), 67.8 (C5, N₁-isomer), 56.9 (CH₂Ph tetrazole, N₂-isomer), 51.2 (CH₂Ph tetrazole, N₁-isomer), 25.6 (C(CH_3)₃), 25.5 (C(CH_3)₃), 17.8 (CCH_3)₃), 17.7 (CCH_3)₃), -4.2 (Si(CH_3)₂), -4.5 (Si(CH_3)₂), -5.9 (Si(CH_3)₂), -6.0 (Si(CH_3)₂); ¹³**C-GATED** (101 MHz; CDCl₃): 86.5 and 86.4 (¹ JC_1 - H_1 = 168 Hz, C1); **HRMS** (ES⁺) m/z [Found: (M+H)⁺ 695.3084 C₃₉H₄₇N₄O₄SSi requires (M+H)⁺, 695.3082].

S2.10. C-6 nitrile thioglycoside 16

S2.10.1. C-6 aldehyde thioglycoside intermediate

To a stirred solution of 15² (420 mg, 0.77 mmol, 1.0 equiv) in dimethyl sulfoxide (7.7 mL) was added Et₃N (323 µL, d = 0.726, 2.32 mmol, 3.0 equiv) and sulfur trioxide pyridine complex (369 mg, 2.32 mmol, 3.0 equiv) at room temperature. The reaction mixture was left stirring for 1 h before it was diluted with EtOAc (25 mL) and H₂O (20 mL). The whole was extracted with EtOAc (3 x 20 mL) and the extracts were washed with H2O (5 × 30 mL) and brine (2 × 30 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude aldehyde was obtained as a yellow oil (400 mg, 0.74 mmol, 96%) and was carried on the next step without further purification. R_f 0.83 (EtOAc/hexane, 1/2); $[\alpha]_D^{22}$ +40.5 (c. 1.0, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 9.73 (1 H, s, CHO), 7.49 - 7.27 (20 H, m, Ar-H), 5.59 (1 H, t, J = 6.3 Hz, H₁), 4.69 (1 H, d, J = 12.9 Hz, CH_2Ph), 4.63 (1 H, d, J = 12.8 Hz, CH_2Ph), 4.59 (2 H, d, J = 12.0 Hz, CH_2Ph), 4.55 (1 H, d, J = 11.9 Hz, CH_2Ph), 4.54 (1 H, d, J = 12.5 Hz, CH_2Ph), 4.49 (1 H, d, J = 7.7 Hz, H₅), 4.08 (1 H, app. t, J = 7.7 Hz, H₄), 3.94 – 3.91 (1 H, m, H₂), 3.87 (1 H, dd, J = 7.6, 2.8 Hz, H₃); ¹³C NMR (101 MHz; CDCl₃) δ 197.6 (CHO), 137.6 (C_q), 137.6 (C_q) , 137.6 (C_q) , 133.5 (C_q) , 131.6, 129.1, 128.5, 128.4, 128.0, 128.0, 128.0, 127.9, 127.9, 127.9, 127.6, 84.9 (C1), 77.4 (C3), 77.2 (C5), 75.0 (C2), 74.7 (C4), 74.3 (CH₂Ph), 72.3 (CH₂Ph), 72.2 (CH₂Ph). These data were consistent with literature values.²

S2.10.2. C-6 oxime thioglycoside intermediate

The crude aldehyde from the previous step (4.72 g, 8.73 mmol, 1.0 equiv) was dissolved in THF (873 mL) and a solution of H₂NOH.HCl (606 mg, 8.73 mmol, 1.0 equiv) dissolved in H₂O (17.5 mL) was added dropwise. The mixture was cooled to 0 °C and a solution of Na₂CO₃ (1.1 g, 10.5 mmol, 1.2 equiv) dissolved in H₂O (10.5 mL) was added dropwise. The solution was slowly warmed to room temperature and stirred for 24 h. The mixture was diluted with H₂O (200 mL) and then extracted with EtOAc (4 × 400 mL). The

organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The obtained crude oil was purified using silica gel flash column chromatography, eluting with Et₂O/petroleum ether (0/100, 5/95, 10/90, 20/80) to furnish the title compound as a colourless oil. Cis and trans (1/7) isomers were isolated separately (major isomer: 3.8 g, 6.54 mmol, 78%, minor isomer: 550 mg, 0.99 mmol, 11%) and both were used for the next step. Major isomer Rf 0.70; minor isomer Rf 0.62 (EtOAc/petroleum ether, 1/2); major: $[\alpha]_D^{22}$ +87.7 (c. 3.1, CHCl₃); ¹H NMR (400 MHz; CDCl₃) major isomer δ 7.46 (1 H, d, J = 6.5 Hz, HC = N), 7.47 - 7.25 (20 H, m, Ar-H), 5.49 (1 H, d, J = 1.5 Hz, H₁), 4.86 (1 H, d, J = 10.9 Hz, CH_2Ph), 4.73 (1 H, dd, J = 10.5, 5.6 Hz, H₅), 4.68 (1 H, d, J = 12.4 Hz, CH_2Ph), 4.66 (1 H, d, J = 11.7 Hz, CH_2Ph), 4.65 (1 H, d, J = 10.7 Hz, CH_2Ph), 4.64 (1 H, d, J = 12.3 Hz, CH_2Ph), 4.61 (1 H, d, J = 11.7 Hz, CH_2Ph), 4.01 (1 H, app. t, J = 9.4 Hz, H_4), 4.01–3.98 (1 H, m, H_2), 3.87 (1 H, dd, J = 9.2, 2.9 Hz, H₃); ¹³C NMR (101 MHz; CDCl₃) δ 148.7 (HC=N), 138.1 (C_q), 137.7 (C_q), 133.9 (C_0) , 131.7 (C_0) , 129.1, 128.4, 128.4, 128.3, 128.5, 128.0, 127.8, 127.8, 127.8, 127.6, 86.1 (C1), 79.5 (C3), 76.4 (1 C, C2 or C4), 76.3 (1 C, C2 or C4), 75.1 (CH₂Ph), 72.4 (CH_2Ph) , 72.3 (CH_2Ph) , 70.6 (C5); **HRMS** (ES^+) m/z [Found: $(M+Na)^+$ 578.1993 C₃₃H₃₃NO₅SNa requires (M+Na)⁺, 578.1977].

S2.10.3 C-6 nitrile thioglycoside 16

The previously synthesised oxime (4.35 g, 7.83 mmol, 1.0 equiv) was dissolved in dry MeCN (783 mL) and POCl₃ (729 µL, d = 1.645, 7.83 mmol, 1.0 equiv) was added at room temperature. The solution was stirred for 5 min. at room temperature, heated up to 65 °C and then stirred for 3 h. The reaction was guenched with sat. ag. NaHCO₃ solution (20 mL) and extracted with EtOAc (3 x 300 mL). The organic layers were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with EtOAc/petroleum ether (0/100, 5/95, 10/90, 20/80) to furnish **16** as a yellow oil (2.5 g, 4.65 mmol, 59%). Rf 0.76 (EtOAc/hexane, 1/2); $[\alpha]_D^{22}$ +71.0 (c. 0.93, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.38 – 7.28 (20 H, m, Ar-H), 5.48 (1 H, d, J = 2.2 Hz, H₁), 4.88 (1 H, d, J = 12.9 Hz, C H_2 Ph), 4.88 (1H, d, J = 9.7 Hz, H₅), 4.68 (1 H, d, J = 12.1 Hz, C H_2 Ph), 4.66 (2 H, d, J = 11.6 Hz, CH_2Ph), 4.63 (1 H, d, J = 11.9 Hz, CH_2Ph), 4.60 (1 H, d, J = 11.7 Hz, CH_2Ph), 4.19 (1 H, app.t, J = 9.2 Hz, H_4), 3.93 (1 H, app. t, J = 2.6 Hz, H_2), 3.71 (1 H, dd, J = 8.9, 2.9 Hz, H₃); ¹³C NMR (101 MHz; CDCl₃) δ 137.5 (C_q), 137.3 (C_q), 137.2 (C_q), 132.7 (C_q), 131.5 (C_0) , 129.3, 128.5, 128.5, 128.5, 128.4, 128.2, 128.1, 128.0, 128.0, 127.9, 117.1 $(C \equiv N)$. 86.2 (C1), 78.4 (C3), 76.1 (C4), 75.8 (C2 or CH₂Ph), 75.7 (C2 or CH₂Ph), 72.7 (CH₂Ph), 72.6 (CH₂Ph), 62.2 (C5); **HRMS** (ES⁺) m/z [Found: (M+H)⁺ 538.2068 C₃₃H₃₃NO₄S requires (M+H)+, 358.2052].

S2.11. Compound 17

C6-nitrile thioglycoside 16 (2.5 g, 4.65 mmol, 1.0 equiv) was dissolved in toluene (465 mL) and TMSN₃ (3.7 mL, d = 0.872, 27.9 mmol, 6.0 equiv) and Bu₂SnO (463 mg, 1.86 mmol, 0.4 equiv) were added. The mixture was heated to 120 °C and stirred for 16 h. Upon completion, the mixture was cooled down to room temperature, diluted with EtOAc (400 mL) and washed with 0.1 M aq. HCl (250 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude product. Purification of the crude material by silica gel flash column chromatography, eluting with MeOH/CH₂Cl₂ (0/100, 2/98, 5/95) afforded **17** as a brown oil (1.5 g, 2.58 mmol, 55%). R_f 0.65 (MeOH/CH₂Cl₂, 1/9); $[\alpha]_D^{22}$ +95.0 (c. 1.96, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.37 – 7.08 (20 H, m, Ar-H), 5.61 (1 H, d, J = 9.7 Hz, H₅), 5.54 (1 H, d, J= 1.7 Hz, H₁), 4.71 (2 H, d, J = 11.9 Hz, CH_2Ph), 4.70 (1 H, d, J = 10.5 Hz, CH_2Ph), 4.65 $(2 \text{ H}, d, J = 11.8 \text{ Hz}, CH_2\text{Ph}), 4.38 (1 \text{ H}, d, J = 10.7 \text{ Hz}, CH_2\text{Ph}), 4.19 (1 \text{ H}, app. t, J = 9.4)$ Hz, H₄), 4.08 (1 H, dd, J = 2.7, 2.1 Hz, H₂), 3.99 (1 H, dd, J = 9.2, 2.9 Hz, H₃); ¹³C NMR (101 MHz; CDCl₃) δ 155.0 (C_q tetrazole), 137.6 (C_q), 137.1 (C_q), 137.0 (C_q), 132.8 (C_q), 132.0, 129.3, 128.7, 128.6, 128.6, 128.4, 128.4, 128.4, 128.1, 128.1, 128.0, 127.9, 86.8 (C1), 79.4 (C3), 76.6 (C2 and C4), 75.0 (CH₂Ph), 73.3 (CH₂Ph), 72.8 (CH₂Ph), 66.5 (C5); HRMS (ES+) m/z [Found: (M+H)+ 581.2251 C₃₃H₃₄N₄O₄S requires (M+H)+, 581.2223].

S2.12. PMB-protected C-6 tetrazole thioglycosides 18 and 19

To a stirred solution of **17** (920 mg, 1.37 mmol, 1.0 equiv) in DMF (10 mL) was added successively, KI (341 mg, 2.06 mmol, 1.5 equiv), K_2CO_3 (227 mg, 1.65 mmol, 1.2 equiv) and PMBCI (279 μ L, d = 1.155, 2.06 mmol, 1.5 equiv). The reaction was left stirring for 16 h and was diluted with CH_2CI_2 (30 mL). The organic layer was washed with 10% aq. $Na_2S_2O_3$ solution (30 mL) and brine (30 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified using silica gel flash column chromatography, eluting with EtOAc/petroleum ether (5/95, 10/90, 15/85) to furnish isomers **18** and **19** (732 mg, 1.04 mmol, 76%) as colourless oils.

S2.12.1. Compound 18

N₁-regioisomer **18** was isolated as a yellow oil (374 mg, 0.53 mmol, 39%). R_f 0.72 (EtOAc/petroleum ether, 1/2); $[\alpha]_D^{22}$ +48.5 (c. 2.75, CHCl₃); ¹H NMR (400 MHz; CDCl₃) δ 7.39 – 6.95 (21 H, m, Ar-H), 7.00 (2 H, d, J = 8.8 Hz, Ar-H PMB), 6.65 (2 H, d, J = 8.8 Hz, Ar-H PMB), 5.61 (1 H, d, J = 1.6 Hz, H₁), 5.45 (1 H, d, J = 9.9 Hz, H₅), 5.28 (1 H, d, J = 15.0 Hz, CH₂Ph-PMB), 5.19 (1 H, d, J = 15.0 Hz, CH₂Ph-PMB), 4.72 (2 H, d, J = 12.5 Hz, CH₂Ph), 4.70 (1 H, d, J = 11.7 Hz, CH₂Ph), 4.67 (1 H, d, J = 11.0 Hz, CH₂Ph), 4.65 (1 H, d, J = 12.3 Hz, CH₂Ph), 4.45 (1 H, app. t, J = 9.6 Hz, H₄), 4.33 (1 H, d, J = 10.6 Hz, CH₂Ph), 4.08 (1 H, dd, J = 2.7, 2.0 Hz, H₂), 3.93 (1 H, dd, J = 9.2, 2.8 Hz, H₃), 3.70 (3 H, s, OCH₃); ¹³C NMR (101 MHz; CDCl₃) δ 159.6 (C_q PMB), 152.2 (C_q tetrazole), 137.8 (C_q),

137.5 (C_q), 137.5 (C_q), 133.3 (C_q), 130.7 (C_q), 129.3, 129.3, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.8, 127.7, 125.6, 114.1, 86.3 (C1), 79.7 (C3), 76.4 (C2), 76.0 (C4), 75.1 (CH_2Ph), 72.8 (CH_2Ph), 72.5 (CH_2Ph), 65.6 (C5), 55.2 (OCH_3), 50.5 (CH_2Ph) PMB); ¹³**C-GATED** (101 MHz; CDCl₃): 86.3 ($^1J_{C1-H1}$ =172 Hz, C1); **HRMS** (ES⁺) m/z [Found: (M+H)+ 701.2829 C₄₁H₄₂N₄O₄S requires (M+H)+, 701.2798].

S2.12.2. Compound 19

N₂-regioisomer **19** was isolated as a yellow oil (355 mg, 0.51 mmol, 37%). R_f 0.73 (EtOAc/petroleum ether, 1/2); ¹**H NMR** (400 MHz; CDCl₃) δ 7.38 – 7.13 (21 H, m, Ar-H), 6.84 (2 H, d, J = 8.0 Hz, Ar-H PMB), 6.76 (2 H, d, J = 8.7 Hz, Ar-H PMB), 5.57 (1 H, d, J = 1.3 Hz, H₁), 5.52 (1 H, d, J = 9.9 Hz, H₅), 5.27 (1 H, d, J = 15.0 Hz, CH₂Ph-PMB), 5.18 (1 H, d, J = 15.0 Hz, CH₂Ph-PMB), 4.63 (1 H, d, J = 11.5 Hz, CH₂Ph), 4.63 (1 H, d, J = 11.6 Hz, CH₂Ph), 4.59 (1 H, d, J = 11.9 Hz, CH₂Ph), 4.58 (1 H, app. t, J = 9.9 Hz, H₄), 4.56 (1 H, d, J = 11.5 Hz, CH₂Ph), 4.08 – 4.06 (1 H, m, H₂), 3.94 (1 H, dd, J = 9.3, 1.2 Hz, H₃), 4.33 (1 H, d, J = 10.7 Hz, CH₂Ph), 4.23 (1 H, d, J = 10.8 Hz, CH₂Ph), 3.67 (1 H, s, OCH₃); ¹³C NMR (101 MHz; CDCl₃) δ 164.3 (C_q tetrazole), 160.0 (C_q PMB), 138.1 (C_q), 138.1 (C_q), 137.8 (C_q), 133.8 (C_q), 132.0 (C_q), 129.4, 129.3, 128.6, 128.5, 128.3, 128.1, 127.9, 127.8, 127.7, 125.3, 114.3, 86.6 (C1), 79.8 (C3), 76.3 (C2), 76.0 (C4), 75.1 (CH₂Ph), 72.4 (CH₂Ph), 72.2 (CH₂Ph), 67.1 (C5), 56.5 (CH₂Ph PMB), 55.3 (OCH₃); ¹³C-GATED (101 MHz; CDCl₃): 86.6 ($^{1}J_{C1-H1}$ = 168 Hz, C1); HRMS (ES⁺) m/z [Found: (M+H)⁺ 701.2829 C₄₁H₄₂N₄O₄S requires (M+H)⁺, 701.2798].

S2.13. Compound 20

S2.13.1. Protected aminopropyl derivative

A solution of **18** and **19** (290 mg, 0.41 mmol, 1.0 equiv) 3-(benzyloxycarbonylamino)-1-propanol (259 mg, 1.24 mmol, 3.0 equiv) in in CH₂Cl₂ (4.1 mL) was stirred over activated MS 4Å for 1 h before NIS (139 mg, 0.62 mmol, 1.5 equiv) was added. The mixture was cooled to -40 °C before AgOTf (53 mg, 0.21 mmol, 0.5 equiv) was added. The reaction was warmed up to 0 °C and stirred for 3 h. Upon completion, Et₃N was added until pH = 7, and subsequently diluted with CH₂Cl₂ (20 mL). The organic layer was washed with 10% ag. Na₂S₂O₃ solution (20 mL), brine (20 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Flash column chromatography, eluting with EtOAc/petroleum (30/70, 40/60 and 50/50) afforded the title compound as a colourless oil in an anomeric mixture of $\alpha/\beta = 3/1$ ratio (110 mg, 0.14) mmol, 34%). Rf 0.66 (EtOAc/toluene, 3/7); ¹H NMR (400 MHz; CDCl₃) 7.40 – 7.22 (23 H, m, Ar-H), 7.19 – 7.09 (6 H, m, Ar-H PMB), 6.83 – 6.73 (4 H, m, Ar-H PMB), 5.65 (1 H, d, J = 14.4 Hz, C H_2 Ph PMB), 5.60 (1 H, d, J = 14.6 Hz, C H_2 Ph PMB), 5.60 (1 H, d, J = 14.6 HzHz, C H_2 Ph PMB), 5.55 (1 H, d, J = 14.4 Hz, C H_2 Ph PMB), 5.09 (1 H, d, J = 12.0 Hz, CH_2Ph), 5.03 (1 H, d, J = 12.4 Hz, CH_2Ph), 4.96 (1 H, d, J = 12.6 Hz, CH_2Ph), 4.92 (1 H, d, J = 9.9 Hz, H₅ α -anomer), 4.85 (1 H, d, J = 2.2 Hz, H₁ α -anomer), 4.83 (1 H, d, J = 12.6 Hz, CH_2Ph), 4.78 (1 H, d, J = 12.5 Hz, CH_2Ph), 4.73 (1 H, d, J = 11.2 Hz, CH_2Ph), 4.69 $(2 \text{ H}, d, J = 10.7 \text{ Hz}, CH_2Ph), 4.63 (2 \text{ H}, d, J = 11.8 \text{ Hz}, CH_2Ph), 4.62 (1 \text{ H}, d, J = 9.6 \text{ Hz},$ H₅ β-anomer), 4.59 (1 H, d, J = 11.7 Hz, CH_2Ph), 4.55 (1 H, d, J = 3.0 Hz, H_1 β-anomer), 4.53 (1 H, d, J = 12.8 Hz, C H_2 Ph), 4.49 (2 H, app. t, J = 9.7 Hz, H_4 α and β-anomer), 4.47 (1 H, d, J = 12.8 Hz, CH_2Ph), 4.28 (1 H, d, J = 10.7 Hz, CH_2Ph), 4.24 (1 H, d, J = 10.7Hz, C H_2 Ph), 3.96 (1 H, d, J = 2.7 Hz, H₂ β-anomer), 3.95 (1 H, dd, J = 9.4, 2.9 Hz, H₃ α -anomer), 3.93 – 3.88 (1 H, m, OC H_2 CH $_2$ CH $_2$ NHCbz α -anomer), 3.90 – 3.79 (2 H, m, H $_2$ α-anomer, OC H_2 CH₂CH₂NHCbz β-anomer), 3.72 (3 H, s, OC H_3 α-anomer), 3.70 (3 H, s, OC H_3 β -anomer), 3.59 (1 H, dd, J = 9.4, 2.7 Hz, H_3 β -anomer), 3.56 - 3.50 (1 H, m, $OCH_2CH_2CH_2CH_2NHCbz$ α -anomer), 3.47 – 3.40 (1 H, m, $OCH_2CH_2CH_2NHCbz$ β -anomer), 3.28 (4 H, m, OCH₂CH₂CH₂NHCbz α and β -anomer), 1.78 (4 H, dt, J = 12.9, 6.9 Hz, OCH₂CH₂CH₂NHCbz α and β-anomer); ¹³C NMR (101 MHz; CDCl₃) δ 164.5 (C_q tetrazole α -anomer), 164.0 (C_g tetrazole β-anomer), 160.0 (C_g PMB), 156.4 (C=O CBz), 138.6 (C_g), $138.4 (2 C, C_q), 138.2 (2 C, C_q), 138.1 (C_q), 138.1 (C_q), 136.6 (C_q), 130.0 (C_q), 130.0 (C_q),$ 129.1, 128.5, 128.5, 128.4, 128.4, 128.1, 128.1, 128.0, 127.7, 127.7, 127.7, 127.6, 127.6, 127.4, 114.3, 102.2 (C1 β-anomer), 98.9 (C1 α-anomer), 81.8 (C3 β-anomer), 79.9 (C3 α-anomer), 77.2 (2 C, C4, α and β-anomer), 75.0 (C2 α-anomer), 74.8 (CH₂Ph), 74.2 (CH₂Ph), 74.2 (C2 β-anomer), 74.1 (CH₂Ph), 72.9 (CH₂Ph), 72.5 (2 C, CH₂Ph), 71.7 (CH₂Ph), 69.8 (C5 β-anomer), 67.6 (OCH₂CH₂CH₂NHCbz α-anomer), 66.6 (CH₂Ph), 66.4 (C5 α-anomer), 65.8 (OCH₂CH₂CH₂NHCbz β-anomer), 56.4 (2 C, CH₂Ph PMB), 55.2 (2 C, OCH₃), 38.4 (OCH₂CH₂CH₂NHCbz α-anomer), 38.2 (OCH₂CH₂CH₂NHCbz β-anomer), 29.7 (OCH₂CH₂CH₂NHCbz β-anomer), 29.5 (OCH₂CH₂CH₂NHCbz α-anomer); ¹³C-GATED (101 MHz; CDCl₃): 102.2 (${}^{1}J_{C1-H1}$ =156 Hz, C1 β-anomer); **HRMS** (ES+) m/z[Found: (M+H)+ 800.3693 C₄₆H₅₁N₅O₈ requires (M+H)+, 800.3659].

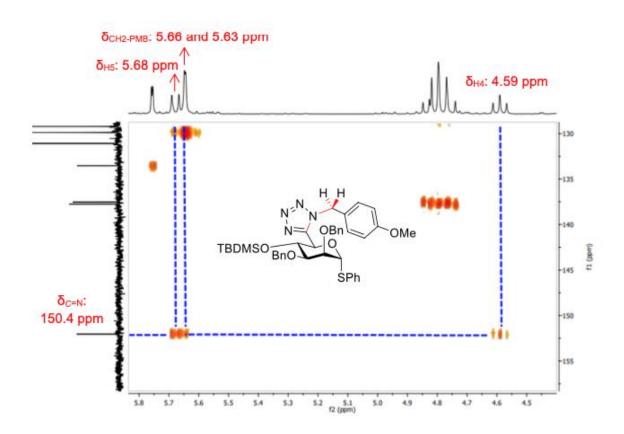
S2.13.2. Compound 20

Protected aminopropyl derivative (30 mg, 38 µmol, 1.0 equiv) was dissolved in a mixture of EtOH/THF (0.6 mL, 1.5/1 v/v), after which Pd/C (10%) (20 mg, 19 µmol, 0.5 equiv), Pd(OH) $_2$ /C (20%) (13 mg, 19 µmol, 0.5 equiv) and 0.1 M aq. HCI (380 µL, 38 µmol, 1.0 equiv) were added. The mixture was stirred for 56 h under an atmosphere of hydrogen (1 atm, balloon) at room temperature. TLC analysis (hexane/EtOAc, 1/2) showed complete conversion of starting material to a lower Rf spot. The reaction mixture was filtered through Celite®, followed by solvent removal *in vacuo* to give white powder **20** in an anomeric mixture of α / β = 3/1 (11 mg, 36 µmol, 96%). Rf 0.27 (H $_2$ O/MeCN, 1/2); 1 H NMR (400 MHz; D $_2$ O) δ 4.86 (1 H, s, H $_1$ α -anomer), 4.82 (1 H, d, J = 9.8 Hz, H $_5$), 4.74 (1 H, s, H $_1$ β -anomer), 4.61 (1 H, d, J = 9.9 Hz, H $_5$ β -anomer), 4.15 (1 H, app. t, J = 9.9 Hz, H $_4$ α -anomer), 4.08 (app. t, J = 9.9 Hz, H $_4$ β -anomer), 4.03 (1 H, d, J = 3.2 Hz, H $_2$ β -anomer), 4.01 – 3.98 (1 H, m, H $_2$ α -anomer), 3.87 (1 H, dd, J = 9.8, 3.4 Hz, H $_3$ α -anomer), 3.84 – 3.76 (2 H, m, OC $_2$ CH $_2$ CH $_2$ CH $_3$ CH $_3$ CH $_4$

α and β-anomer), 3.17 - 3.07 (2 H, m, OCH₂CH₂CH₂NH₃.Cl α-anomer), 3.02 (2 H, td, J =12.6, 7.2 Hz, OCH₂CH₂CH₂NH₃.Cl β -anomer), 1.99 (2 H, dq, J = 13.6, 6.7 Hz, OCH₂CH₂CH₂NH₃.Cl α -anomer), 1.91 – 1.82 (2 H, m, OCH₂CH₂CH₂NH₃.Cl β -anomer); ¹³C NMR (101 MHz; D₂O) δ 160.1 (2 C, C₀ tetrazole), 100.6 (C1 β-anomer), 100.5 (C1 α -anomer), 72.7 (C3 β-anomer), 70.5 (C3 α-anomer), 70.5 (C2 β-anomer), 70.2 (C5 β -anomer), 70.0 (C2 α-anomer), 69.6 (C4 β -anomer), 69.5 (C4 α-anomer), 67.6 $(OCH_2CH_2CH_2NH_3.CI \beta$ -anomer), 66.6 (C5 α -anomer), 65.3 $(OCH_2CH_2CH_2NH_3.CI$ (OCH₂CH₂CH₂NH₃.Cl β-anomer), 37.4 α-anomer), 37.6 (OCH₂CH₂CH₂NH₃.CI 26.7 (OCH₂CH₂CH₂NH₃.Cl α -anomer), α-anomer). 26.6 (OCH₂CH₂CH₂NH₃,Cl β-anomer); ¹³**C-GATED** (101 MHz; D₂O): 100.5 (${}^{1}J_{C1-H1}$ = 172 Hz, C1 α-anomer); **HRMS** (ES⁺) m/z [Found: (M+H)⁺ 276.1309 C₉H₁₉N₅O₅ requires (M+H)⁺, 276.1308].

S2.14. Compound 21

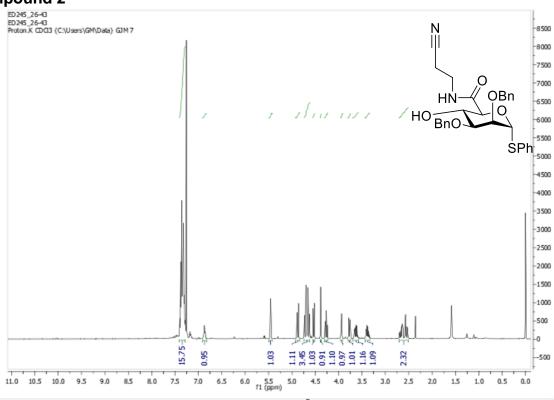
S2.14.1. Fully protected C-6 tetrazole 1-phosphates

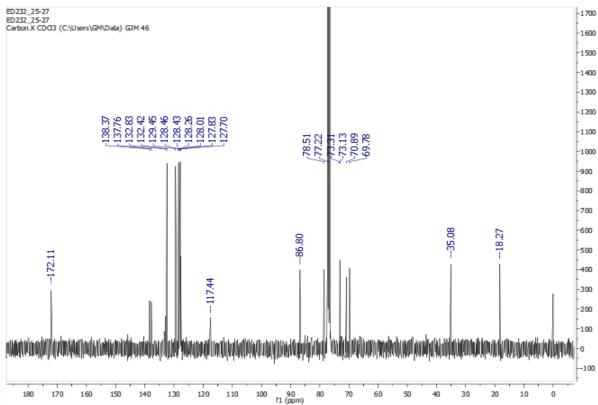

A mixture of 18 and 19 (730 mg, 1.04 mmol, 1.0 equiv) was stirred with activated MS4Å for 1h in CH₂Cl₂ (10 mL). Dibenzyl phosphate (580 mg, 2.08 mmol, 2.0 equiv) was added, and the solution was stirred for further 30 min. before being cooled down to -30 °C. NIS (350 mg, 1.56 mmol, 1.5 equiv) and AgOTf (133 mg, 0.52 mmol, 0.5 equiv) were added successively and the reaction mixture was stirred for further 3.5 h, allowing the temperature to reach 0 °C. When TLC analysis indicated conversion to a lower R_f value, the reaction was guenched by the addition of Et₃N (1.4 mL, d = 0.726, 10.4 mmol, 10.0 equiv) and diluted with CH₂Cl₂ (50 mL). The organic layer was washed with 10% ag. Na₂S₂O₃ solution (30 mL), brine (30 mL), dried over MqSO₄, filtered and concentrated under reduced pressure. Flash column chromatography, eluting with EtOAc/toluene (5/95, 10/90 and 30/70) afforded the protected 1-phosphate regioniomeric mixture as a colourless oil in a 50/50 ratio (650 mg, 0.75 mmol, 72%). Rf 0.66 (EtOAc/toluene, 3/7); ¹H **NMR** (400 MHz; CDCl₃) δ 7.38 – 7.27 (35 H, m, Ar-H), 7.14 (2 H, d, J = 7.2 Hz, Ar-H PMB), 7.07 (2 H, d, J = 8.7 Hz, Ar-H PMB), 6.93 (2 H, d, J = 6.7 Hz, Ar-H), 6.82 (2 H, d, J = 6.5 Hz, Ar-H), 6.75 (2 H, d, J = 8.8 Hz, Ar-H PMB), 6.65 (2 H, d, J = 8.8 Hz, Ar-H PMB), 5.76 (1 H, dd, J = 6.3, 1.8 Hz, H₁ N₂-isomer), 5.69 (1 H, dd, J = 6.3, 2.1 Hz, H₁ N_1 -isomer), 5.65 (1 H, d, J = 14.0 Hz, CH_2 Ph PMB), 5.61 (1 H, d, J = 14.2 Hz, CH_2 Ph PMB), 5.33 (1 H, d, J = 15.0 Hz, CH_2Ph PMB), 5.16 (1 H, d, J = 13.4 Hz, CH_2Ph PMB), 5.15 (1 H, d, J = 10.0 Hz, H₅ N₁-isomer or N₂-isomer), 5.12 (1 H, d, J = 9.7 Hz, H₅ N_1 -isomer or N_2 -isomer), 5.04 (2 H, d, J = 8.6 Hz, $OP(O)OCH_2Ph$), 4.96 (2 H, d, J = 8.3Hz, OP(O)OC H_2 Ph), 4.95 (2 H, d, J = 8.3 Hz, OP(O)OC H_2 Ph), 4.94 (2 H, d, J = 8.3 Hz, $OP(O)OCH_2Ph)$, 4.72 (1 H, d, J = 11.9 Hz, $CH_2Ph)$, 4.71 (1 H, d, J = 11.0 Hz, $CH_2Ph)$, 4.69 (1 H, d, J = 11.2 Hz, CH_2Ph), 4.64 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.64 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.65 (1 H, d, J = 11.8 Hz, 10.1 Hz, CH_2Ph), 4.60 (1 H, d, J = 11.8 Hz, CH_2Ph), 4.57 (1 H, d, J = 10.6 Hz, CH_2Ph), 4.54 (2 H, d, J = 11.7 Hz, CH_2Ph), 4.53 (1 H, app. t, J = 9.6 Hz, H_4 N_2 -isomer), 4.49 (1 H, d, J = 11.6 Hz, CH_2Ph), 4.39 (1 H, app. t, J = 9.8 Hz, H_4 N_1 -isomer), 4.29 (1 H, d, J = 10.6

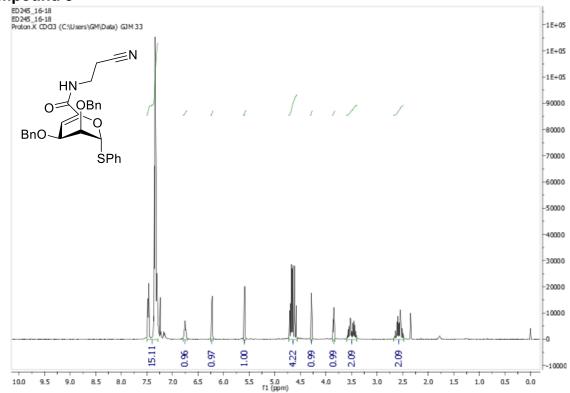
Hz, CH_2Ph), 4.21 (1 H, d, J = 10.7 Hz, CH_2Ph), 3.89 (1 H, dd, J = 9.6, 3.2 Hz, H_3 N_2 -isomer), 3.86 (1 H, dd, J = 9.6, 3.0 Hz, H_3 N_1 -isomer), 3.78 (1 H, dd, J = 4.8, 2.2 Hz, H_2 N_2 -isomer), 3.74 - 3.72 (1 H, m, H_2 N_1 -isomer), 3.71 (3 H, s, OCH_3), 3.70 (3 H, s, OC H_3); ¹³C NMR (101 MHz; CDCl₃) δ 163.8 (C_q tetrazole N₂-isomer), 160.0 (C_q PMB), 159.7 (C_q PMB), 151.5 (C_q tetrazole N₁-isomer), 138.1 (C_q), 138.0 (C_q), 137.9 (C_q), 137.7 (C_q) , 137.4 (C_q) , 137.4 (C_q) , 135.6 $(d, J = 6.7 \text{ Hz}, C_q \text{ OP(O)OBn})$, 135.5 $(d, J = 6.7 \text{ Hz}, C_q \text{ OP(O)OBn})$ OP(O)OBn), 135.2 (d, J = 6.2 Hz, $C_q OP(O)OBn)$, 135.1 (d, J = 6.4 Hz, $C_q OP(O)OBn)$, $130.0 \ (C_q), \ 129.6 \ (C_q), \ 128.9, \ 128.7, \ 128.7, \ 128.6, \ 128.6, \ 128.6, \ 128.5, \ 128.4, \ 128$ 128.3, 128.2, 128.2, 128.2, 128.1, 128.1, 128.0, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 127.7, 127.6, 127.6, 127.4, 125.8, 125.2, 114.3, 114.2, 96.2 (d, J = 6.1 Hz, C1 N₂-isomer), 96.1 (d, J = 6.1 Hz, C1 N₁-isomer), 78.6 (C3 N₁-isomer or N₂-isomer), 78.4 (C3 N₁-isomer or N₂-isomer), 76.4 (C4 N₂-isomer), 75.1 (2 C, CH_2Ph), 76.0 (C4 N₁-isomer), 74.5 (d, J =9.6 Hz, C2 N₁-isomer), 74.3 (d, J = 9.3 Hz, C2 N₂-isomer), 73.5 (CH_2Ph), 72.9 (CH_2Ph), 72.6 (CH₂Ph), 72.5 (CH₂Ph), 70.1 (d, J = 5.6 Hz, OP(O)OCH₂Ph, 70.0 (d, J = 5.7 Hz, $OP(O)OCH_2Ph)$, 69.7 (d, J = 5.4 Hz, $OP(O)OCH_2Ph)$, 69.6 (d, J = 5.5 Hz, OP(O)OCH₂Ph), 67.9 (C5 N₂-isomer), 66.5 (C5 N₁-isomer), 56.5 (CH₂Ph PMB), 55.2 (2 C, OCH₃), 50.4 (CH₂Ph PMB); ³¹P NMR δ P (162 MHz, CDCl₃) -2.88 (s), -2.79 (s); HRMS (ES+) m/z [Found: (M+H)+ 869.3370 C₄₉H₅₁N₄O₉P requires (M+H)+, 869.3315].

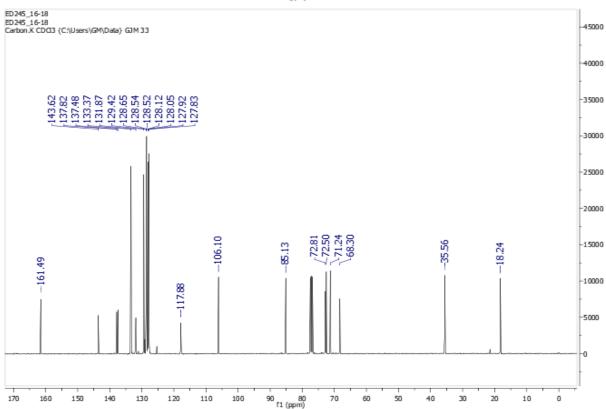
S2.14.2. Compound 21

A suspension of the protected 1-phosphate regiosiomeric mixture (190 mg, 0.22 mmol, 1.0 equiv), 10% Pd/C (140 mg, 0.13 mmol, 0.6 equiv), 20% Pd(OH)₂/C (92 mg, 0.13 mmol, 0.6 equiv) and 5% aq. NaHCO₃ (739 μL, 0.44 mmol, 2.0 equiv) in a mixture of EtOH/THF (4.4 mL, 1.5/1 ν / ν) was stirred under an atmosphere of hydrogen (1 atm, balloon) at room temperature for 24 h. TLC analysis (hexane/EtOAc, 1/2) showed complete conversion of starting material to a lower R_f spot. The reaction mixture was filtered through Celite[®], followed by solvent removal *in vacuo*. Purification *via* strong anion exchange chromatography was conducted manually using a Bio-ScaleTM Mini UNOsphereTM Q (strong anion exchange) cartridge) and lyophilisation afforded **21** as a white powder (53 mg, 0.16 mmol, 72%). R_f 0.42 (H₂O/MeCN, 1/2); [α]_D²² -3.0 (c. 1.0, H₂O); ¹H NMR (400 MHz; D₂O) δ 5.41 (1 H, dd, J = 7.9, 1.7 Hz, H₁), 5.08 (1 H, d, J = 9.7 Hz, H₅), 4.05 (1 H, app. t, J = 9.6 Hz, H₄), 4.02 – 3.97 (2 H, m, H₂ and H₃); ¹³C NMR (101 MHz; D₂O) δ 160.8 (C_q tetrazole), 96.1 (C1), 70.5 (C2), 69.7 (C3), 69.4 (C4), 67.1 (C5); ³¹P NMR δ P (162 MHz, D₂O) -2.15 (s); HRMS (ES-) m/z [Found: (M-H)- 297.0236 C₆H₁₀N₄O₈P requires (M-H)-, 297.0233].


S3. HMBC spectrum for N₁-protected tetrazole 11




S4. References

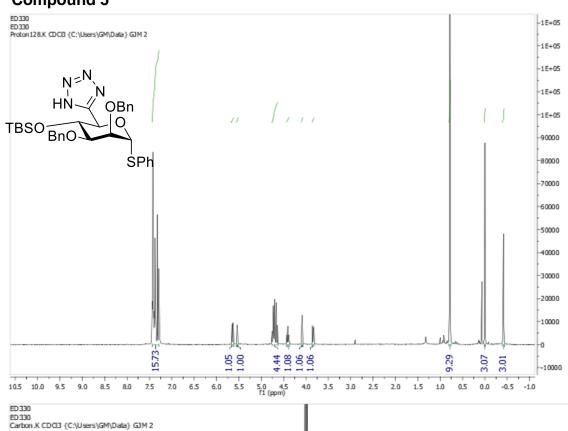

- (1) Dimitriou, E.; Miller, G. J. Org. Biomol. Chem. 2019, 17, 9321-9335.
- (2) Ahmadipour, S.; Pergolizzi, G.; Rejzek, M.; Field, R. A.; Miller, G. J. *Org. Lett.* **2019**, *21*, 4415–4419.

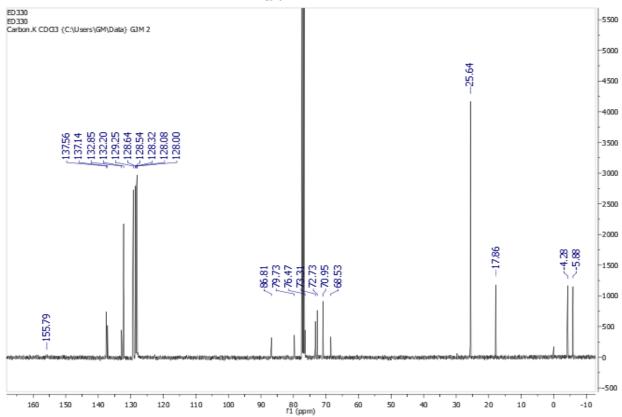
S5. Spectral Data: ¹H, ¹³C, ³¹P and HSQC NMR for compounds 2-5, 7-14, 16-18 and 20-21

170

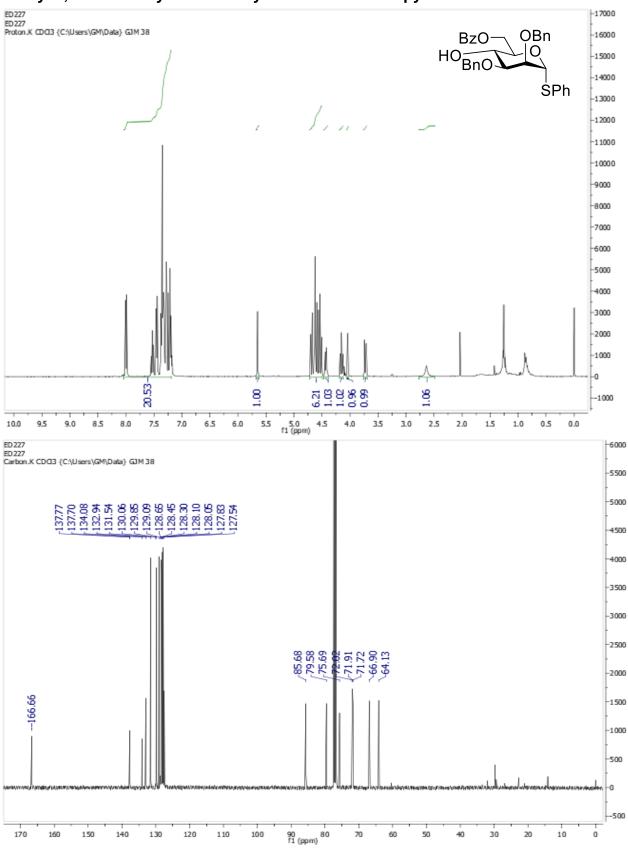
160

150

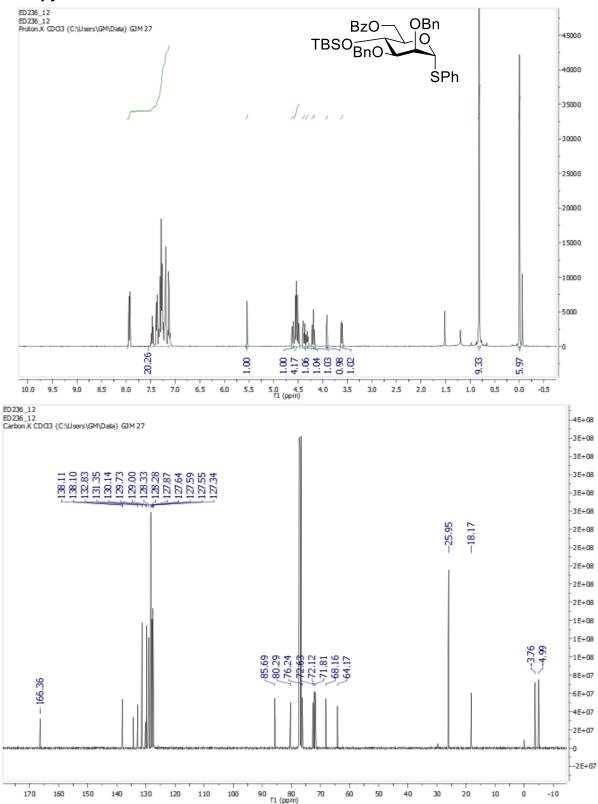

140

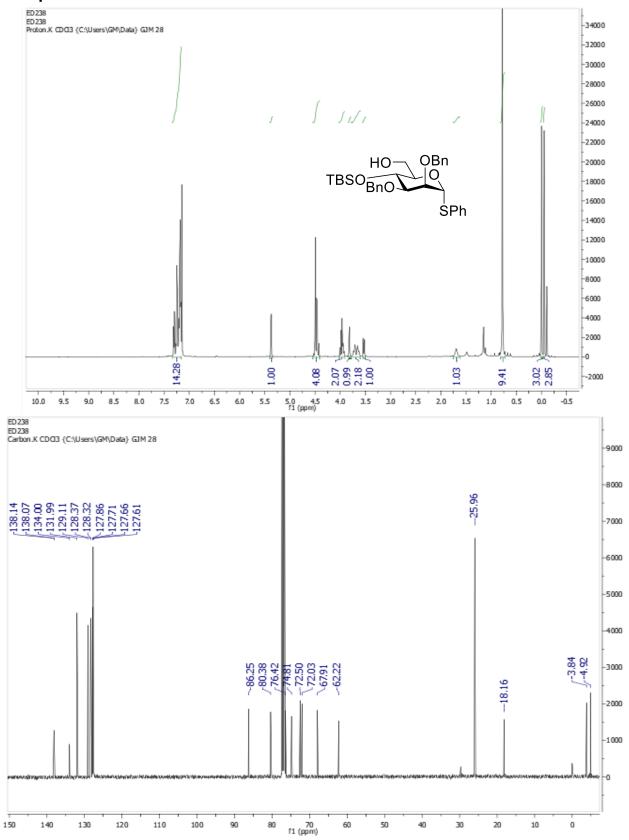

130

120 110

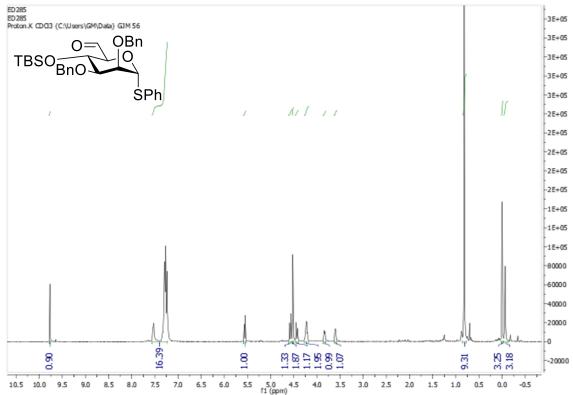


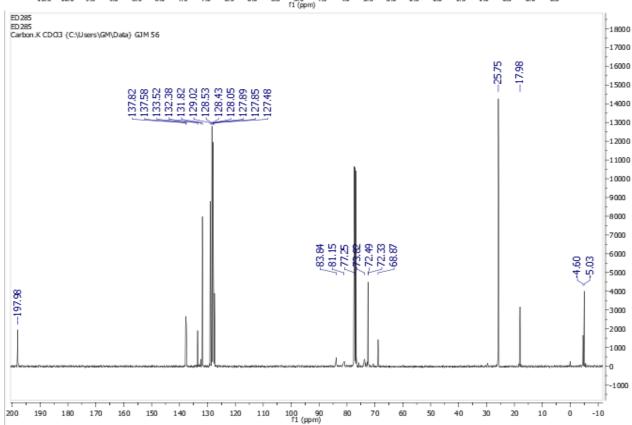
80 f1 (ppm) -10

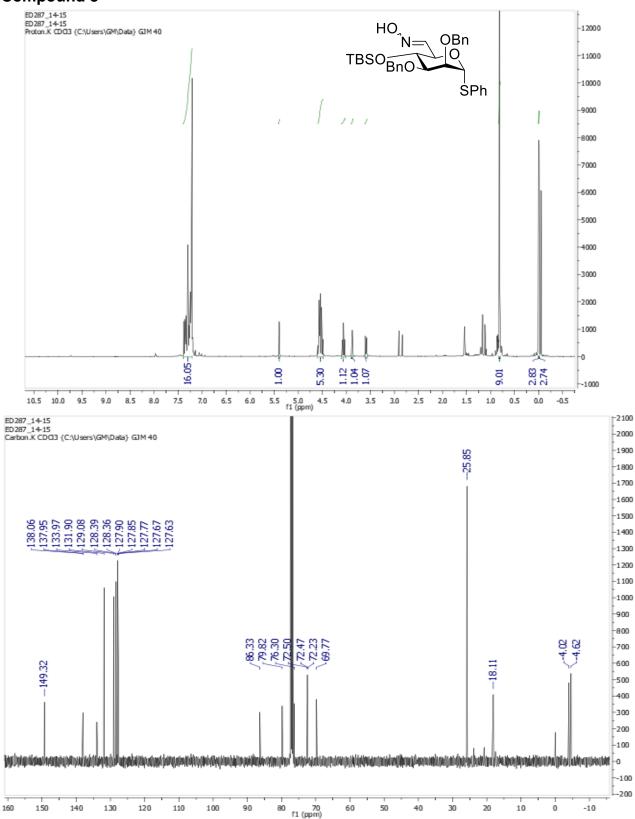


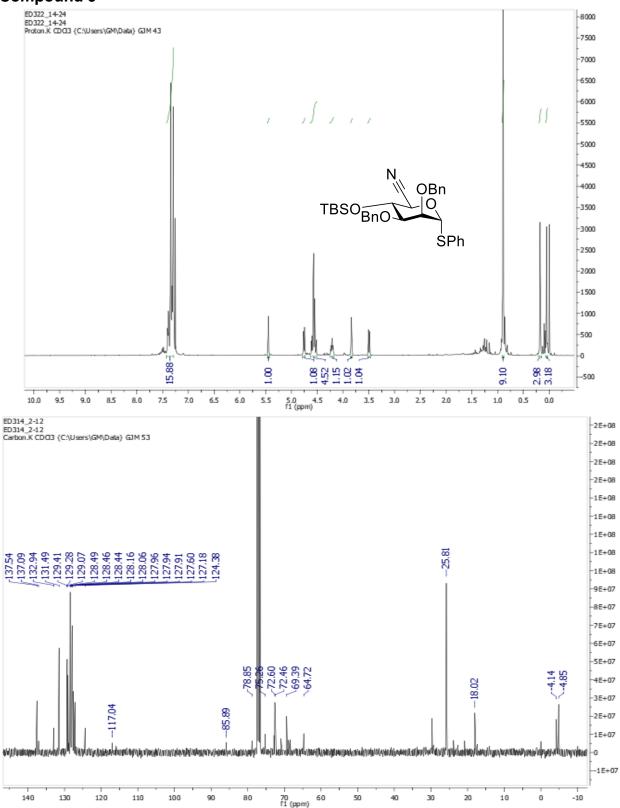


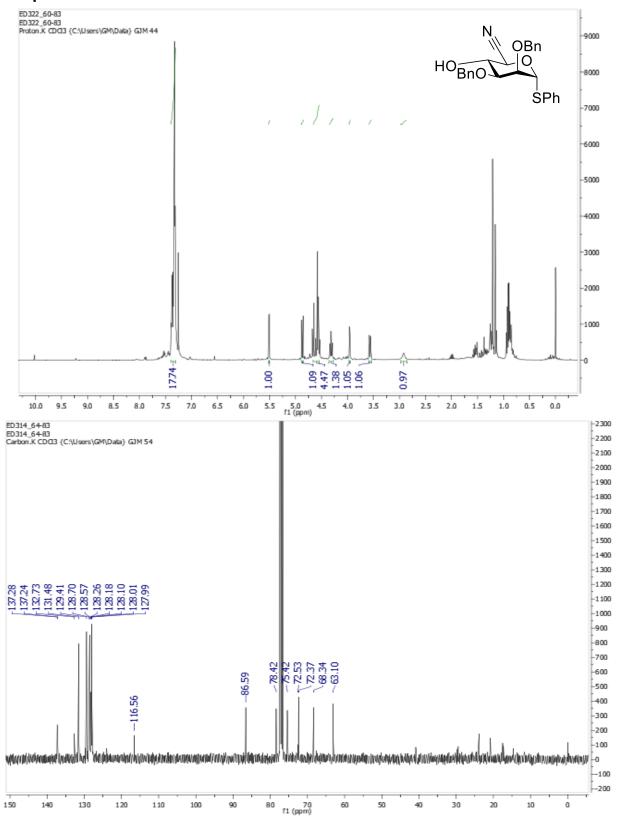
Phenyl 2,3-di-O-benzyl-6-O-benzoyl-1-thio-α-D-mannopyranoside

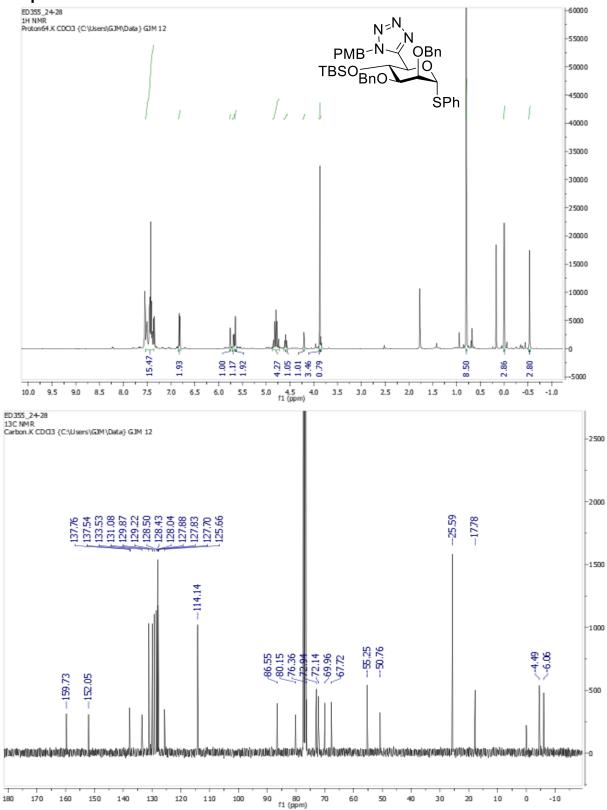


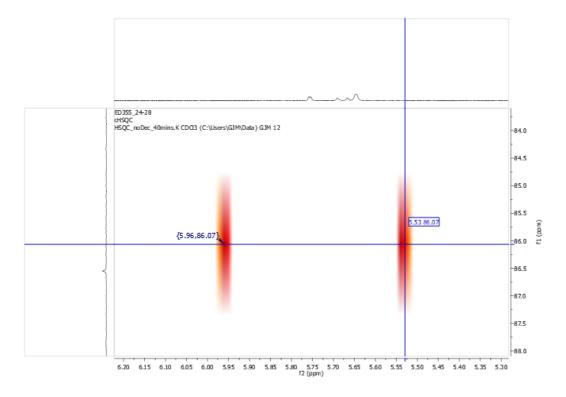

Phenyl 2,3-di- \emph{O} -benzyl-4- \emph{O} -tert-butyldimethylsilyl-6- \emph{O} -benzoyl-1-thio- α -D-mannopyranoside

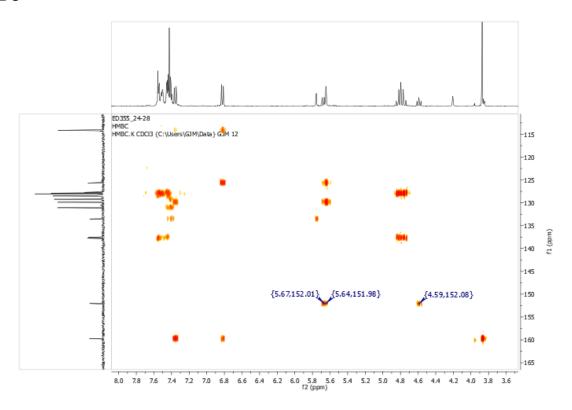


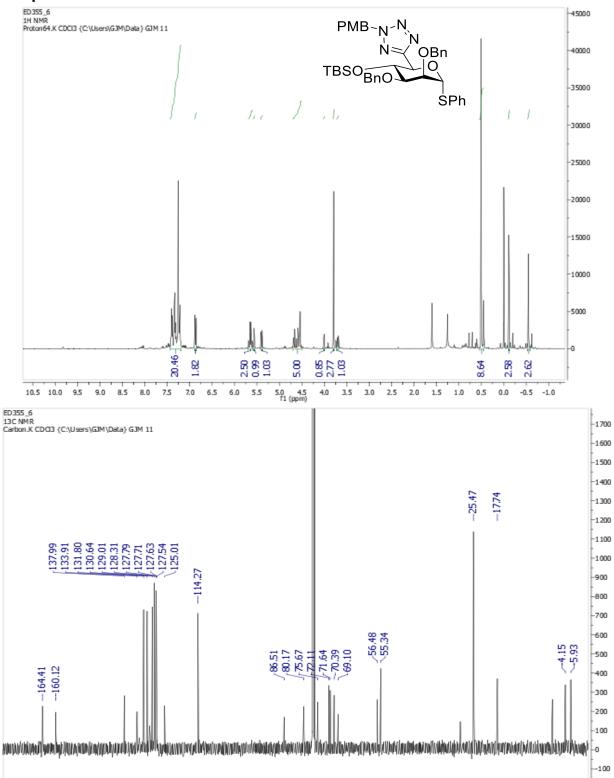



C6 aldehyde thioglycoside intermediate



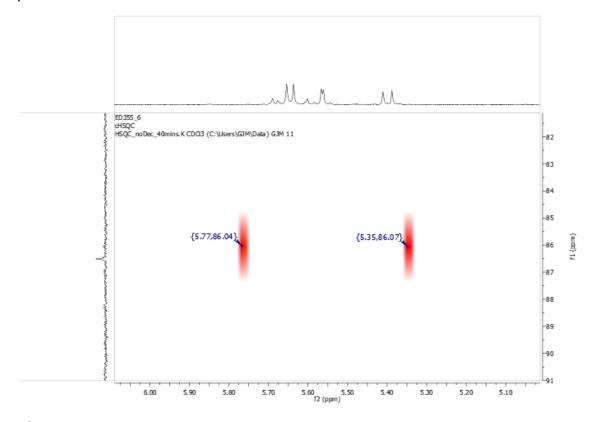


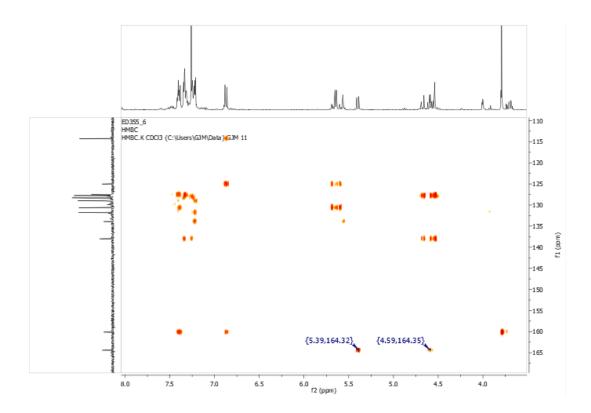




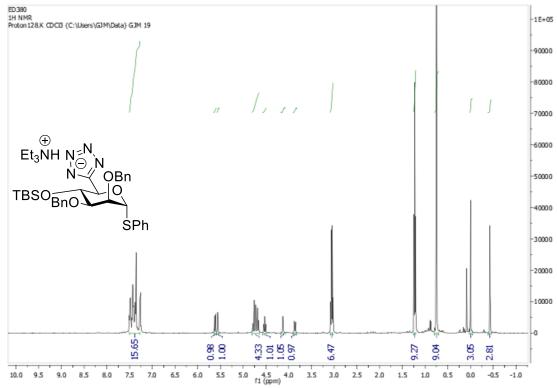
Coupled HSQC

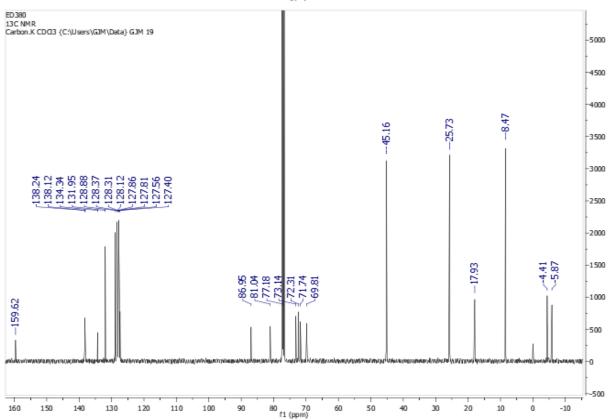
HMBC



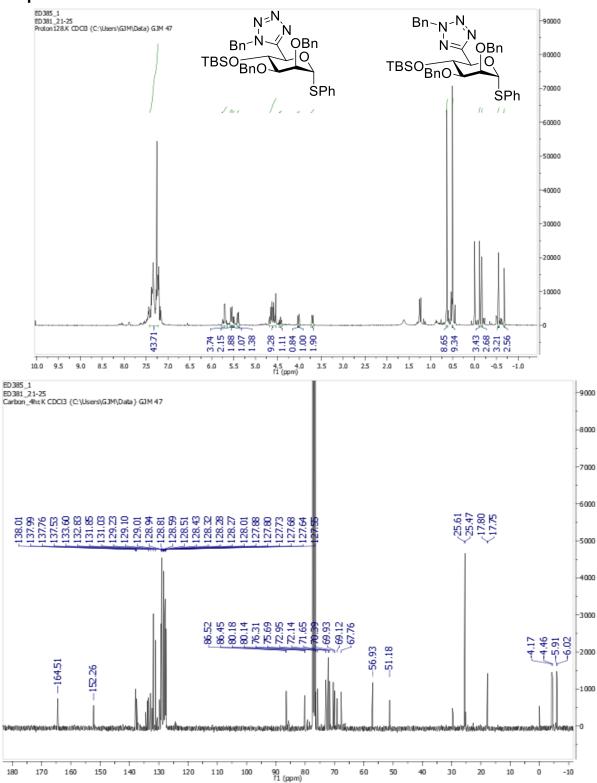

-10

90 80 f1 (ppm)

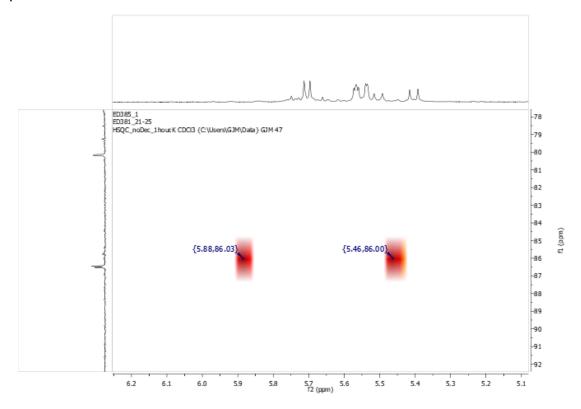

Coupled HSQC

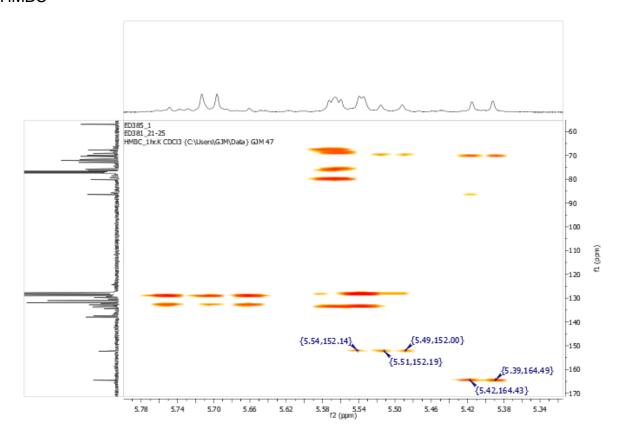


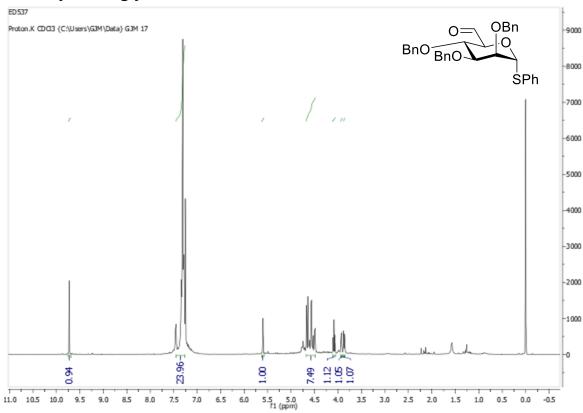
HMBC

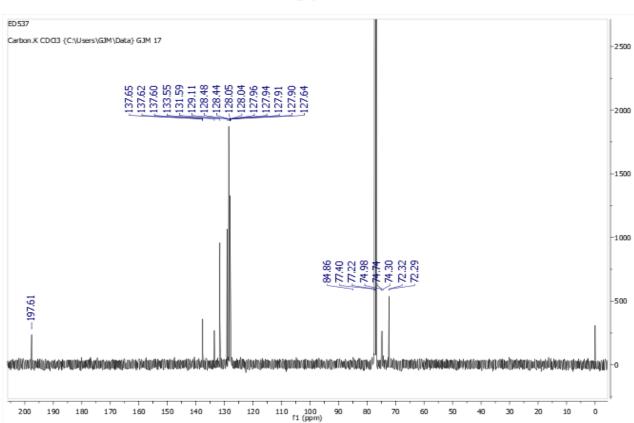


Phenyl 2,3-di-O-benzyl-4-O-tert-butyldimethylsilyl-6-C-(1H-tetrazolyl)-1-thio- α -D-mannopyranoside triethylammonium salt

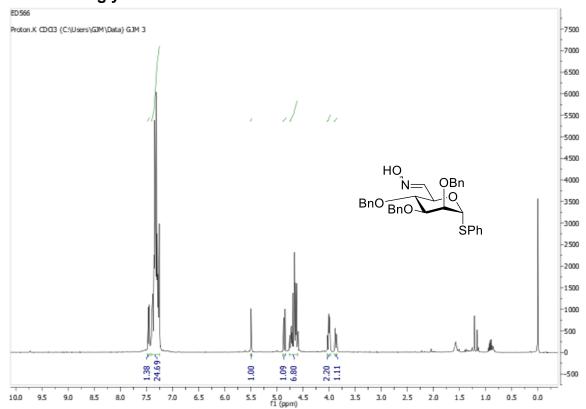


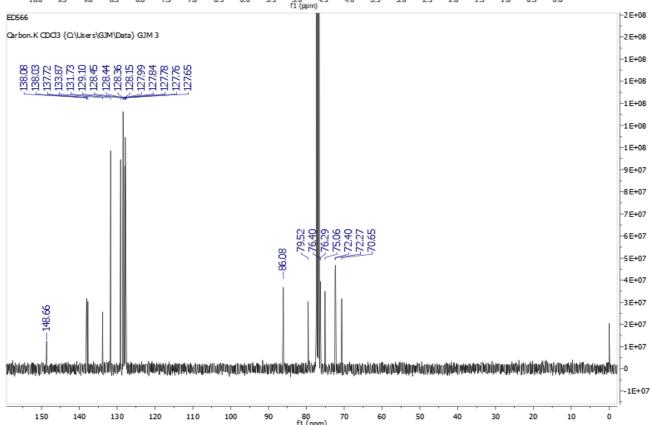

Compounds 13 and 14

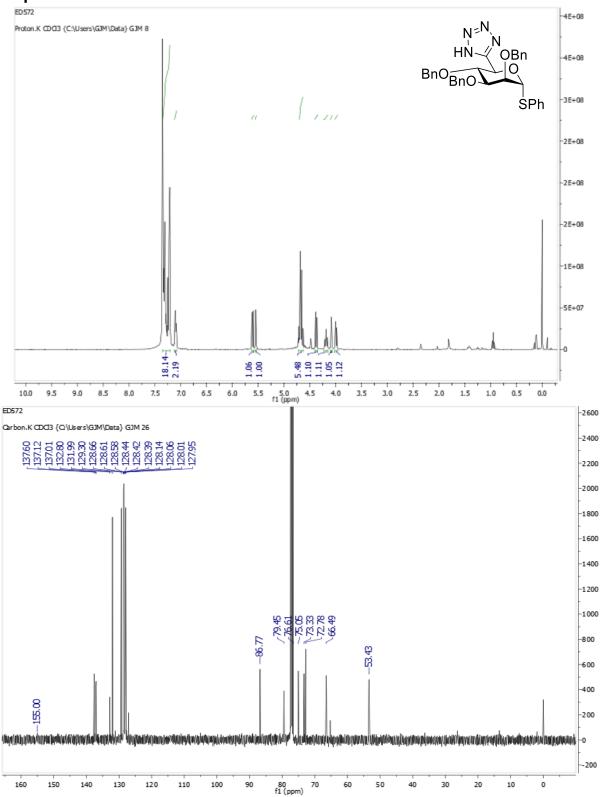

Coupled HSQC

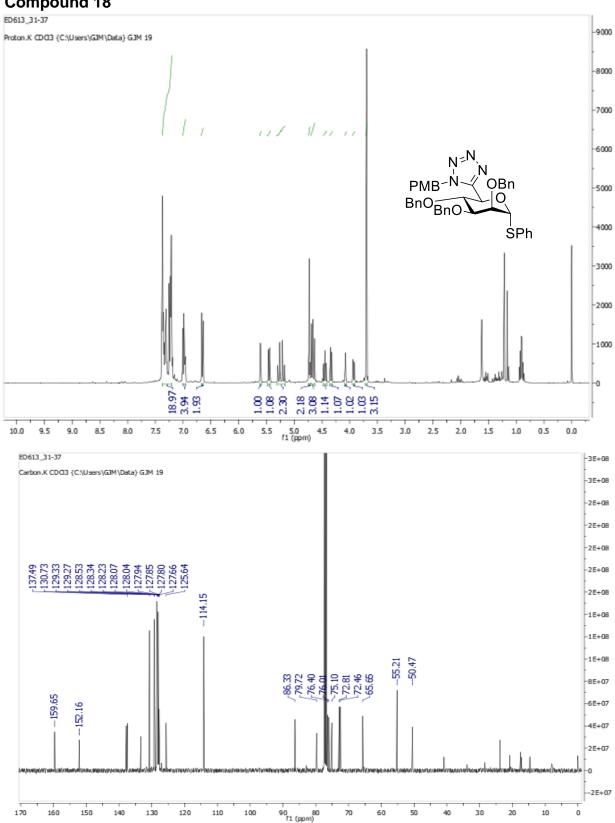


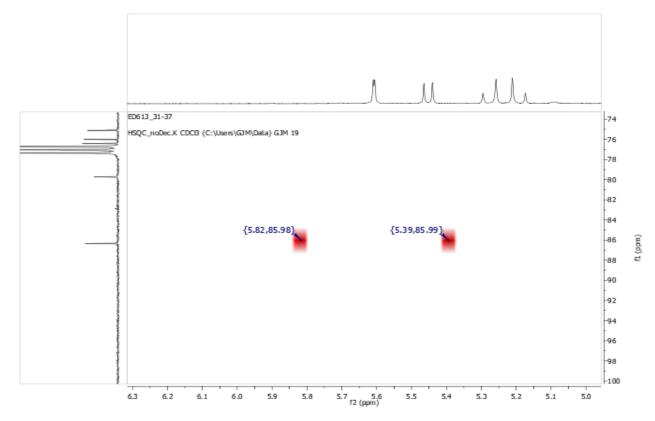
HMBC

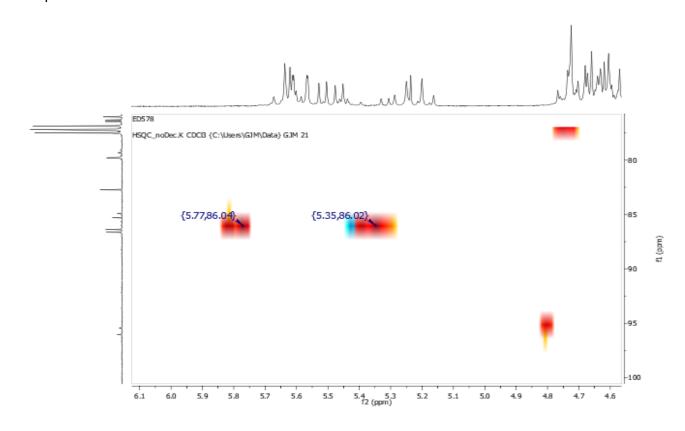


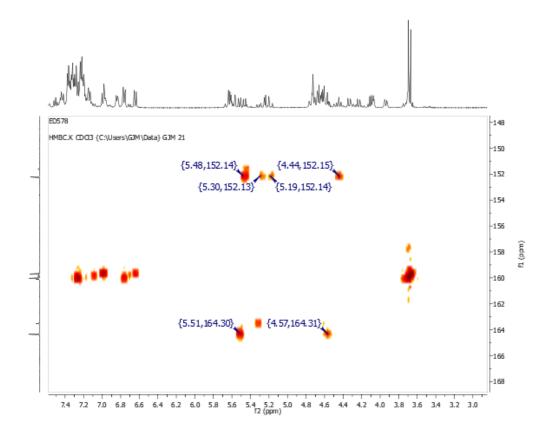

C-6 Aldehyde thioglycoside intermediate

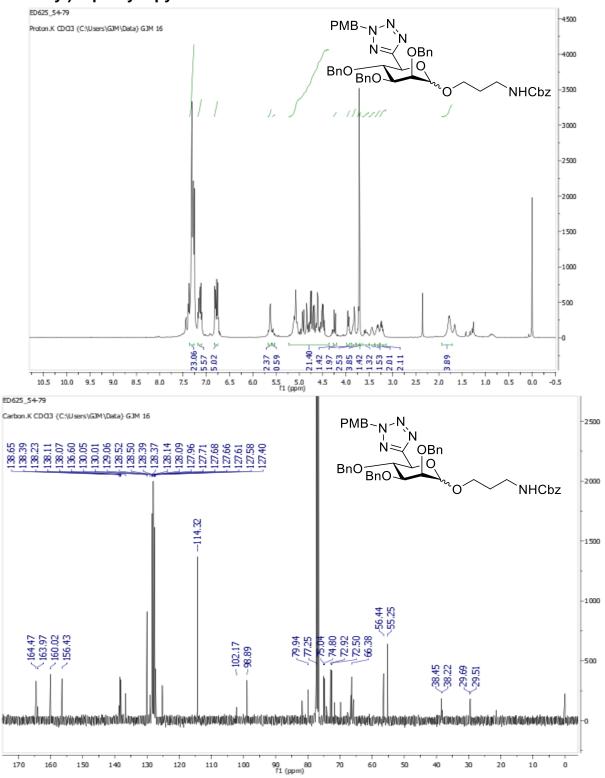

C-6 Oxime thioglycoside intermediate

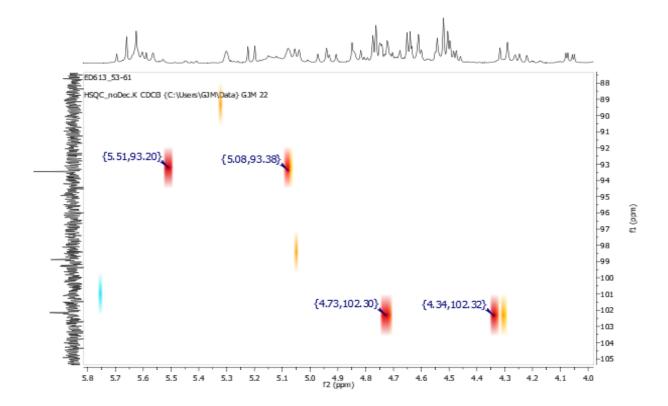


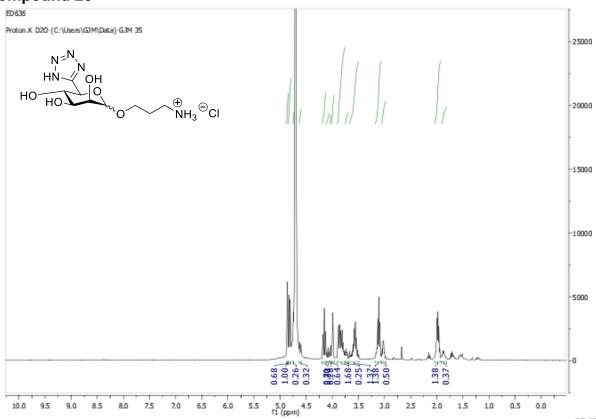

C-6 nitrile thioglycoside 16

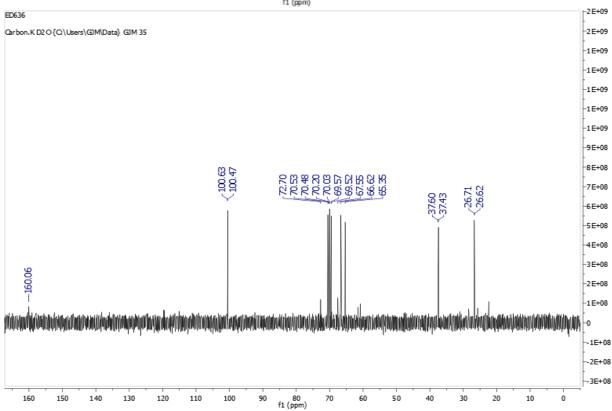


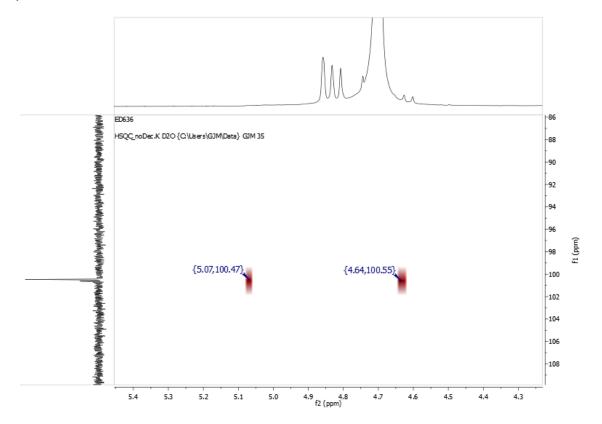

Coupled HSQC of N1-isomer

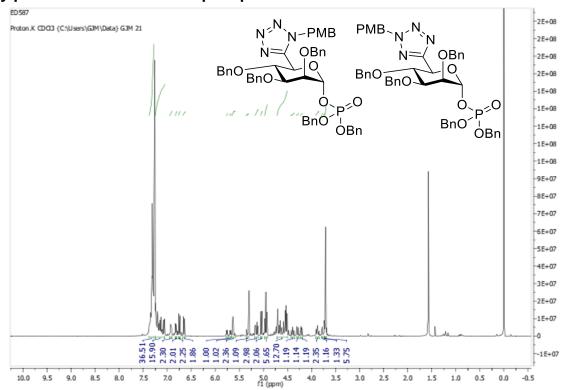

Coupled HSQC of N2-isomer

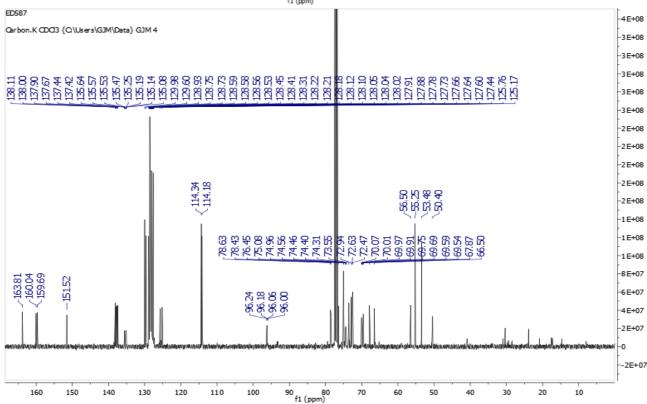

HMBC of both isomers



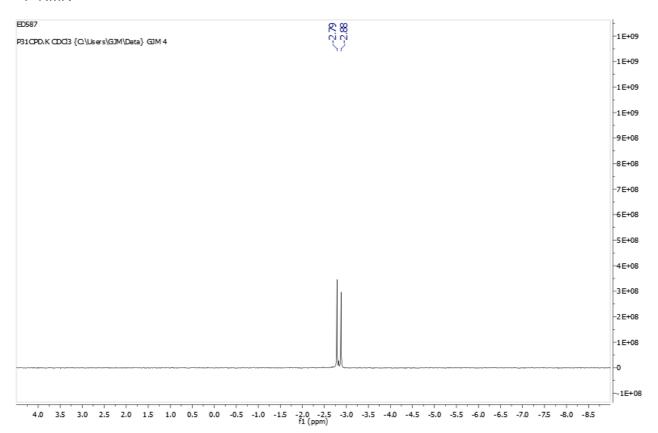

3-(Benzyloxycarbonylamino)propyl (2,3,4-tri-O-benzyl-6-C-(2-para-methoxybenzyl-tetrazolyl)- α/β -D-lyxopyranoside

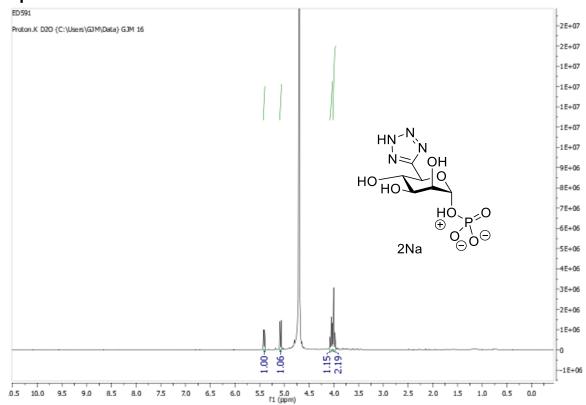

Coupled HSQC (showing only β -anomer ${}^{1}J_{\text{C1-H1}}$ coupling)

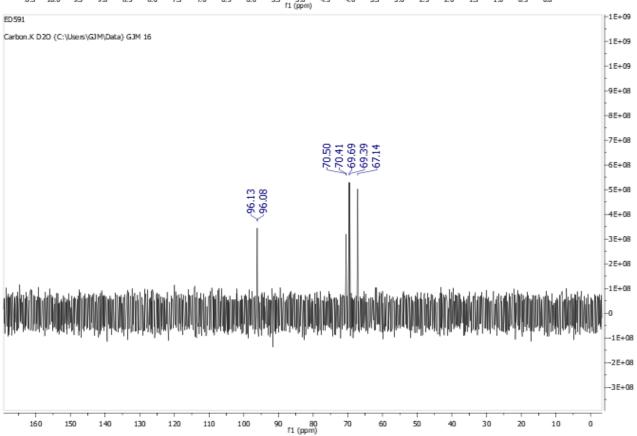


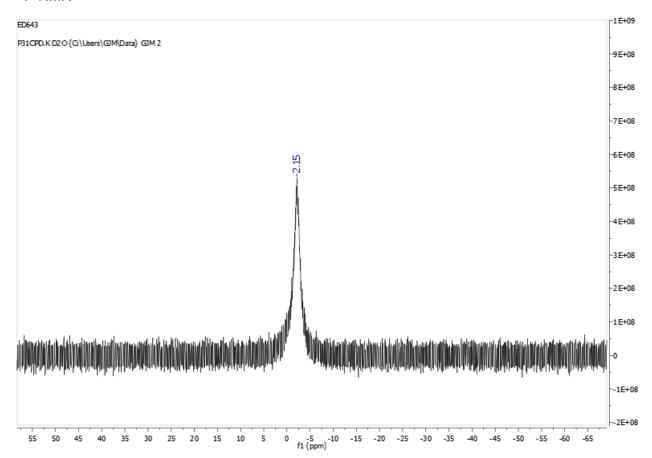


Coupled HSQC




Fully protected C6-tetrazole 1-phosphates




³¹P NMR

³¹P NMR

