

Supporting Information

for

Facile and innovative catalytic protocol for intramolecular Friedel–Crafts cyclization of Morita–Baylis–Hillman adducts: Synergistic combination of chiral (salen)chromium(III)/ BF₃·OEt₂ catalysis

Karthikeyan Soundararajan, Helen Ratna Monica Jeyarajan, Raju Subimol Kamarajapurathu and Karthik Krishna Kumar Ayyanoth

Beilstein J. Org. Chem. 2021, 17, 2186–2193. doi:10.3762/bjoc.17.140

Full experimental details, ¹H and ¹³C NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Materials and methods

The aldehydes and acrylates were purchased from Sigma-Aldrich Chemicals Private Limited, India and Loba Chemie Private Limited, India. The borontrifluoride etherate, stannous chloride, ferric chloride and zinc chloride were purchased from Sisco Research Laboratories Private Limited, India. Aluminum trichloride was purchased from Loba Chemie Private Limited, India. (R,R)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2 cyclohexanediamino chromium(III) chloride, (R,R)-(-)-N,N'-bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride and (R,R)-N,N'-bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediaminoaluminum(III) chloride were purchased from Sigma-Aldrich Chemicals Private Limited, India. The (R,R)-N,N'purchased bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) was from Enantiotech Catalysts Private Limited, India. The catalyst 3b and 3c were donated by Orchid Pharma Limited, India. Solvents were purchased from Sisco Research Laboratories Private Limited, India and Merck Life Science Private Limited, India. The high performance thin-layer chromatography plates were purchased from Merck Life Science Private Limited, India. NMR spectra were recorded using a Bruker Avance III HD Nanobay 400 MHz FT-NMR spectrometer at the Gandhigram Rural Institute, India. NMR spectra were recorded using CDCl₃ as a solvent. The splitting patterns are designated as s (singlet), d (doublet), q (quartet) and m (multiplet) and coupling constants are expressed in Hz. Chemical shifts for protons and carbons are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) and are internal reference of CDCl₃ which resonates at δ 7.26 ppm in ¹H NMR and 77.2 ppm in carbon NMR analysis. The infra-red spectra were recorded using JASCO FT/IR-4000 series in the American College, India. High-resolution mass spectra were recorded on Waters XEVO-G2-XS-QToF at Vellore Institute of Technology, India. Melting points of the synthesized compounds were recorded using melting point apparatus of Technico Laboratory products, India.

Proton NMR of methyl 1*H*-indene-2-carboxylate

Fig. S1 ¹H NMR spectrum of methyl 1*H*-indene-2-carboxylate (6a).

Carbon NMR of methyl 1H-indene-2-carboxylate

Fig. S2 ¹³C NMR spectrum of methyl 1*H*-indene-2-carboxylate (6a).

Proton NMR of 1H-indene-2-carbonitrile

Fig. S3 ¹H NMR spectrum 1*H*-indene-2-carbonitrile (**6b**).

Carbon NMR of 1H-indene-2-carbonitrile

Fig. S4 ¹³C NMR spectrum 1*H*-indene-2-carbonitrile (6b).

Proton NMR of ethyl 1H-indene-2-carboxylate

Fig. S5 ¹H NMR spectrum of ethyl 1*H*-indene-2-carboxylate (6c).

Carbon NMR of ethyl 1H-indene-2-carboxylate

Fig. S6 ¹³C NMR spectrum of ethyl 1*H*-indene-2-carboxylate (6c).

Proton NMR of methyl 6-bromo-1*H*-indene-2-carboxylate

Fig. S7 ¹H NMR spectrum of methyl 6-bromo-1*H*-indene-2-carboxylate (6d).

Carbon NMR of methyl 6-bromo-1H-indene-2-carboxylate

Fig. S8 ¹³C NMR spectrum of methyl 6-bromo-1*H*-indene-2-carboxylate (6d)

Proton NMR of 6-bromo-1H-indene-2-carbonitrile

Fig. S9 ¹H NMR spectrum 6-bromo-1*H*-indene-2-carbonitrile (6e).

Fig. S10 ¹³C NMR spectrum 6-bromo-1*H*-indene-2-carbonitrile (6e).

Proton NMR of ethyl 6-bromo-1H-indene-2-carboxylate

Fig. S11 ¹H NMR spectrum of ethyl 6-bromo-1*H*-indene-2-carboxylate (6f).

Carbon NMR of ethyl 6-bromo-1H-indene-2-carboxylate

Fig. S12 ¹³C NMR spectrum of ethyl 6-bromo-1*H*-indene-2-carboxylate (6f).

Proton NMR of methyl 6-chloro-1H-indene-2-carboxylate

Fig. S13 ¹H NMR spectrum of methyl 6-chloro-1*H*-indene-2-carboxylate (6g).

Carbon NMR of methyl 6-chloro-1*H*-indene-2-carboxylate

Fig. S14 ¹³C NMR spectrum of methyl 6-chloro-1*H*-indene-2-carboxylate (6g).

Proton NMR of 6-chloro-1H-indene-2-carbonitrile

Fig. S15 ¹H NMR spectrum 6-chloro-1*H*-indene-2-carbonitrile (**6h**).

Carbon NMR of 6-chloro-1H-indene-2-carbonitrile

Fig. S16 ¹³C NMR spectrum 6-chloro-1*H*-indene-2-carbonitrile (6h).

Proton NMR of ethyl 6-chloro-1H-indene-2-carboxylate

Fig. S17 ¹H NMR spectrum of ethyl 6-chloro-1*H*-indene-2-carboxylate (6i).

Carbon NMR of ethyl 6-chloro-1H-indene-2-carboxylate

Fig. S18 ¹³C NMR spectrum of ethyl 6-chloro-1*H*-indene-2-carboxylate (6i).

Fig. S19 ¹H NMR spectrum of methyl 6-fluoro-1*H*-indene-2-carboxylate (6j).

Carbon NMR of methyl 6-fluoro-1*H*-indene-2-carboxylate

Fig. S20 ¹³C NMR spectrum of methyl 6-fluoro-1*H*-indene-2-carboxylate (6j).

Proton NMR of 6-fluoro-1H-indene-2-carbonitrile

Fig. S21 ¹H NMR spectrum of 6-fluoro-1*H*-indene-2-carbonitrile (6k).

Carbon NMR of 6-fluoro-1H-indene-2-carbonitrile

Fig. S22 ¹³C NMR spectrum of 6-fluoro-1*H*-indene-2-carbonitrile (6k).

Proton NMR of ethyl 6-fluoro-1H-indene-2-carboxylate

Fig. S23 ¹H NMR spectrum of ethyl 6-fluoro-1*H*-indene-2-carboxylate (6l).

Carbon NMR of ethyl 6-fluoro-1*H*-indene-2-carboxylate

Fig. S24 ¹³C NMR spectrum of ethyl 6-fluoro-1*H*-indene-2-carboxylate (6l).

Fig. S25 ¹H NMR spectrum of 1-benzylidene-3-oxopyrazolidin-1-ium-2-ide (7a).

Carbon NMR spectrum of 1-benzylidene-3-oxopyrazolidin-1-ium-2-ide

Fig. S26 ¹³C NMR spectrum of 1-benzylidene-3-oxopyrazolidin-1-ium-2-ide (7a).

Proton NMR spectrum of compound 8a

Fig. S27 ¹H NMR spectrum of compound 8a.

Carbon NMR spectrum of compound 8a

Fig. S28 ¹³C NMR spectrum of compound 8a.

Proton NMR spectrum of compound 8b

Fig. S29 ¹H NMR spectrum of compound 8b.

Carbon NMR spectrum of compound 8b

Fig. S30 ¹³C NMR spectrum of compound 8b.

Methyl 1H-indene-2-carboxylate (6a) [1]

Yield: 160 mg (81%); white solid; mp 85-87 °C.

IR (cm⁻¹): 3062, 2953, 2884, 1947, 1735, 1640, 1548, 1470, 1442, 1215, 734.

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ = 7.99 (s, 1H, Alkene-CH), 7.64-7.41 (m, 4H, Aro-H), 4.41 (s, 2H, -CH₂), 3.87 (s, 3H, COOCH₃). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C}$ = 168.03, 145.31, 134.67, 130.11, 129.53, 128.62, 128.25, 64.78, 52.24.

HRMS: m/z Calculated for $C_{11}H_{10}O_2$ [M+H⁺]: 174.0681; found: 174.0706

<u>1H-Indene-2-carbonitrile (6b)</u>[2]

Yield: 105 mg (58%); white solid; mp 45-47 °C.

IR (cm⁻¹): 3086, 2965, 2849, 2158, 1938, 1627, 1462, 1440, 730.

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H} = 7.82-7.43$ (m, 4H, Aro-H), 7.42 (s, 1H, Alkene-CH), 4.35 (s, 2H, -CH₂). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C} = 145.86$, 132.80, 131.00, 129.19, 129.02, 117.66, 107.18, 71.69.

HRMS: m/z Calculated for $C_{10}H_7N$ [M+H⁺]: 141.0578; found: 141.0603

Ethyl 1H-indene-2-carboxylate (6c) [3]

Yield: 165 mg (67%); Colourless oil.

IR (cm⁻¹): 3034, 2945, 2864, 1938, 1740, 1638, 1534, 1469, 1452, 1228, 732.

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ = 7.98 (s, 1H, Alkene-CH), 7.65-7.40 (m, 4H, Aro-H), 4.42 (s, 2H, -CH₂), 4.36-4.29 (q, *J* = 6Hz, 2H, COOCH₂CH₃), 1.38-1.34 (t, *J* = 6Hz, 3H, COOCH₂CH₃). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C}$ = 167.57, 144.93, 134.77, 130.11, 129.44, 128.63, 128.60, 64.79, 61.06, 14.39.

HRMS: m/z Calculated for $C_{12}H_{12}O_2$ [M+H⁺]: 188.0837; found: 188.0866

Methyl 6-bromo-1H-indene-2-carboxylate (6d)

Yield: 187 mg (74%); white solid; mp 128-130 °C.

IR (cm⁻¹): 3088, 2969, 2842, 1928, 1730, 1648, 1532, 1460, 1427, 1210, 786.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 7.90$ (s, 1H, Alkene-CH), 7.58-7.48 (m, 3H, Aro-H), 4.34 (s, 2H, -CH₂), 3.87 (s, 3H, COOCH₃). ¹³C NMR (CDCl₃, 400 MHz): $\delta_{\rm C} = 168.02$, 144.43, 133.83, 132.29, 132.00, 129.01, 124.54, 65.05, 52.74.

HRMS: m/z Calculated for C11H9BrO2 [M+H⁺]: 251.9786; found: 251.9812

6-Bromo-1H-indene-2-carbonitrile (6e)

Yield: 132 mg (60%); white solid; mp 116-118 °C.

IR (cm⁻¹): 3100, 2912, 2825, 2182, 1920, 1648, 1455, 1431, 791.

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ = 7.69-7.57 (m, 3H, Aro-H), 7.20 (s, 1H, Alkene-CH), 4.34 (s, 2H, -CH₂). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C}$ = 144.33, 132.30, 131.55, 130.53, 125.45, 117.26, 107.82, 71.64.

HRMS: m/z Calculated for C₁₀H₆BrN [M+H⁺]: 218.9684; found: 218.9711

Ethyl 6-bromo-1H-indene-2-carboxylate (6f)

Yield: 181 mg (68%); white solid; mp 98-100 °C.

IR (cm⁻¹): 3092, 2945, 2821, 1918, 1720, 1618, 1514, 1472, 1419, 1216, 776.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 7.89 (s, 1H, Alkene-CH), 7.57-7.48 (m, 3H, Aro-H), 4.36 (s, 2H, -CH₂), 4.33-4.27 (q, *J* = 8Hz, 2H, COOCH₂CH₃), 1.38-1.34 (t, *J* = 8Hz, 3H, COOCH₂CH₃). ¹³C NMR (CDCl₃, 400 MHz): $\delta_{\rm C}$ = 167.19, 143.67, 133.56, 131.88, 131.64, 129.02, 124.07, 64.68, 61.22, 14.39.

HRMS: m/z Calculated for C₁₂H₁₁BrO₂ [M+H⁺]: 265.9942; found: 265.9970

Methyl 6-chloro-1H-indene-2-carboxylate (6g) [2]

Yield: 167 mg (80%); white solid; mp 108-110 °C.

IR (cm⁻¹): 3082, 2974, 2848, 1944, 1738, 1637, 1540, 1478, 1430, 1216, 802.

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H} = 7.92$ (s, 1H, Alkene-CH), 7.58-7.39 (m, 3H, Aro-H), 4.35 (s, 2H, -CH₂), 3.87 (s, 3H, COOCH₃). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C} = 168.04$, 144.37, 136.13, 133.39, 131.80, 129.31, 128.88, 65.05, 52.72.

HRMS: m/z Calculated for C₁₁H₉ClO₂ [M+H⁺]: 208.0291; found: 208.0319

6-Chloro-1H-indene-2-carbonitrile (6h)

Yield: 114 mg (65%); white solid; mp 78-80 °C.

IR (cm⁻¹): 3095, 2952, 2875, 2193, 1916, 1637, 1442, 1428, 813.

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H} = 7.76-7.41$ (m, 3H, Aro-H), 7.21 (s, 1H, Alkene-CH), 4.35 (s, 2H, -CH₂). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C} = 144.27$, 137.02, 131.14, 130.39, 129.32, 117.29, 107.67, 71.63.

HRMS: m/z Calculated for $C_{10}H_6ClN$ [M+H⁺]: 175.0189; found: 175.0218

Ethyl 6-chloro-1*H*-indene-2-carboxylate (6i) [4]

Yield: 160 mg (72%); white solid; mp 80-82 °C.

IR (cm⁻¹): 3062, 2954, 2836, 1932, 1735, 1630, 1528, 1452, 1420, 1212, 806.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 7.91 (s, 1H, Alkene-CH), 7.58-7.39 (m, 3H, Aro-H), 4.37 (s, 2H, -CH₂), 4.35-4.30 (q, *J* = 8Hz, 2H, COOCH₂CH₃), 1.38-1.34 (t, *J* = 8Hz, 3H, COOCH₂CH₃). ¹³C NMR (CDCl₃, 400 MHz): $\delta_{\rm C}$ = 167.22, 143.64, 135.67, 133.12, 131.44, 128.91, 64.68, 61.20, 14.38.

HRMS: m/z Calculated for $C_{12}H_{11}ClO_2$ [M+H⁺]: 222.0448; found: 222.0476

Methyl 6-fluoro-1H-indene-2-carboxylate (6j) [2]

Yield: 163 mg (85%); white solid; mp 113-115 °C.

IR (cm⁻¹): 3094, 2983, 2892, 1965, 1740, 1628, 1558, 1462, 1449, 1242, 812.

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ = 7.95 (s, 1H, Alkene-CH), 7.66-7.09 (m, 3H, Aro-H), 4.38 (s, 2H, -CH₂), 3.87 (s, 3H, COOCH₃). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C}$ = 167.75, 165.19, 144.23, 132.33, 132.22, 130.73, 127.76, 115.93, 115.65, 64.69, 52.28.

HRMS: m/z Calculated for C₁₁H₉FO₂ [M+H⁺]: 192.0587; found: 192.0617.

6-Fluoro-1H-indene-2-carbonitrile (6k)

Yield: 110 mg (69%); white solid; mp 105-107 °C.

IR (cm⁻¹): 3098, 2968, 2884, 2199, 1928, 1646, 1456, 1436, 820.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 7.82$ (s, 1H, Alkene-CH), 7.22-7.12 (m, 3H, Aro-H), 4.35 (s, 2H, -CH₂). ¹³C NMR (DMSO-D₆, 300 MHz): $\delta_{\rm C} = 167.24$, 149.43, 136.17, 136.09, 134.06, 122.31, 120.97, 120.75, 111.85, 76.30.

HRMS: m/z Calculated for C₁₀H₆FN [M+H⁺]: 159.0484; found: 159.0513

Ethyl 6-fluoro-1H-indene-2-carboxylate (6l)

Yield: 156 mg (76%); white solid; mp 110-112 °C.

IR (cm⁻¹): 3092, 2984, 2896, 1962, 1738, 1662, 1542, 1478, 1446, 1245, 816.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 7.97 (s, 1H, Alkene-CH), 7.75-7.57 (m, 3H, Aro-H), 5.31 (s, 2H, -CH₂), 4.31-4.23 (q, *J* = 8Hz, 2H, COOCH₂CH₃), 1.34-1.30 (t, *J* = 8Hz, 3H, COOCH₂CH₃). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C}$ = 166.80, 144.69, 132.83, 132.62, 131.65, 124.90, 123.42, 62.17, 56.78, 14.60.

HRMS: m/z Calculated for C₁₂H₁₁FO₂ [M+H⁺]: 206.0743; found 206.0773.

Synthesis of 1-benzylidene-3-oxopyrazolidin-1-ium-2-ide (7a) [5, 6]

Scheme. 1 Synthesis of 1-Benzylidene-3-oxopyrazolidin-1-ium-2-ide (7a).

1-Benzylidene-3-oxopyrazolidin-1-ium-2-ide (7a)

Yield: 132 mg (67%); Off white solid; mp 194-196 °C. IR (cm⁻¹): 1674, 1652, 1582, 1568, 1454, 1278, 1117 ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 8.31$ -7.46 (m, 5H, Aro-H), 7.14 (s, 1H, N=CH), 4.56-4.50 (t, *J* = 8Hz, 2H, CO-CH₂), 2.84-2.79 (t, *J* = 8Hz, 2H, N-CH₂). ¹³C NMR (CDCl₃, 400 MHz): $\delta_{\rm C} = 185.12$ (1C, C=O), 133.02- 128.83 (6C, Aro-C), 57.92 (1C, N-CH₂), 29.38 (1C, CO-CH₂). HRMS: m/z Calculated for C₁₀H₁₀N₂O [M+H⁺]: 174.0793; found: 174.0818.

Cycloaddition compound 8a

Yield: 192mg (61%); yellowish oil.

IR (cm⁻¹): 2972, 2254, 1954, 1562, 1671, 1455, 1245.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ = 7.80-7.06 (m, 9H, Aro-*H*), 5.90 (s, 1H, *H*C-N-CO), 4.36-4.21 (m, 2H, Aro-C*H*₂), 3.99-3.95 (m, 1H, Aro-C*H*-N-N), 3.44-3.30 (m, 2H, N-C*H*₂-C*H*₂), 3.05-2.82 (m, 2H, N-CH₂-C*H*₂). ¹³C NMR (CDCl₃, 400 MHz): $\delta_{\rm C}$ = 165.36, 146.49, 136.10, 133.70, 131.16, 129.66, 129.22, 129.05, 128.94, 128.87, 128.68, 128.21, 127.61, 117.92, 71.69, 68.63, 58.86, 50.22, 45.64, 36.75.

HRMS: m/z Calculated for $C_{20}H_{17}N_3O$ [M+H⁺]: 315.1372; found: 315.1397.

Cycloaddition compound 8b

Yield: 260 mg (72%); yellowish oil.

IR (cm⁻¹): 2984, 1962, 1676, 1585, 1463, 1453, 1320, 1257.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 7.67-7.17$ (m, 9H, Aro-*H*), 5.78 (s, 1H, *H*C-N-CO), 4.27-4.21 (q, *J* = 8Hz, 2H, -COOC*H*₂CH₃), 3.83 (s, 1H, Aro-*CH*-N-N), 3.78-3.69 (m, 2H, Aro-*CH*₂), 3.38-3.32 (m, 2H, N-C*H*₂-CH₂), 2.94-2.57 (m, 2H, N-CH₂-C*H*₂), 1.36-1.32 (t, *J* = 8Hz, 2H, -COOCH₂C*H*₃). ¹³C NMR (CDCl₃, 300 MHz): $\delta_{\rm C} = 170.22$, 167.17, 142.98, 133.93, 131.78, 131.44, 131.18, 130.23, 128.66, 128.18, 124.01, 71.72, 61.36, 61.18, 60.13, 35.73, 29.71, 22.70, 14.33.

HRMS: m/z Calculated for $C_{22}H_{22}N_2O_3$ [M+H⁺]: 362.1630; found: 362.1657.

References

1. Chang, K. -J.; Rayabarapu, D. K.; Cheng, C. –H. J. Org. Chem., **2004**, *69*, 4781-4787. DOI: 10.1021/jo049506g

2. Das, B. G.; Chirila, A.; Tromp, M.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc., **2016**, *138*, 8968-8975. DOI: 10.1021/jacs.6b05434

3. Seomoon, D.; Lee, K.; Kim, H.; Lee, P. H. *Chem. Eur. J.*, **2007**, *13*, 5197-5206. DOI: 10.1002/chem.200601338

4. Sruthi, P. R.; Saranya, T. V.; Anas, S. *ChemistrySelect* **2020**, *5*, 1648-1654.5. DOI: 10.1002/slct.201903515

5. Shintani, R.; Fu, G. C. J. Am. Chem. Soc., 2003, 125, 10778-10779. DOI: 10.1021/ja036922u

6. Keller, M.; Sido, A. S. S.; Pale, P.; Sommer, J. *Chem. Eur. J.*, **2009**, *15*, 2810-2817. DOI: 10.1002/chem.200802191