

Supporting Information

for

A two-phase bromination process using tetraalkylammonium hydroxide for the practical synthesis of α-bromolactones from lactones

Yuki Yamamoto, Akihiro Tabuchi, Kazumi Hosono, Takanori Ochi, Kento Yamazaki, Shintaro Kodama, Akihiro Nomoto and Akiya Ogawa

Beilstein J. Org. Chem. 2021, 17, 2906–2914. doi:10.3762/bjoc.17.198

Evaluation of the stability of *α*-bromo-*δ*-valerolactone (3a, Table S1), characterization data of compounds (3a, 3b, 3d, 5, and 6), and copies of ¹H NMR and ¹³C{¹H} NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (<u>https://creativecommons.org/</u> <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

CONTENTS

page

Table S1 . Evaluation of the stability of α -bromo- δ -valerolactone 3a	S2
Characterization data of the compounds 3a, 3b, 3d, 5, and 6	S2–S3
Copies of ¹ H NMR and ¹³ C NMR spectra of compounds 3a , 3b , 3d , 5 , and 6	S4–S8

[Method] Initially, 3a was synthesized following the general procedure (eq 1).

After extracting with CHCl₃, washing with H₂O, and removing the solvent under reduced pressure, the crude mixture of **3a** was stored at -30 °C (in a freezer) with shading. The purity of **3a** (i.e. the relative recovery of **3a** based on the initial production) was confirmed by ¹H NMR spectroscopy using 1,3,5-trioxane as the internal standard (solvent: CDCl₃).

·Characterization data

3-Bromotetrahydro-2*H***-pyran-2-one (3a, entry 1 in Table 4)**. [CAS no. 55974-69-1].¹ Purified by gel permeation chromatography (see the reference [44]), colorless oil, 35.2 mg, 20%; ¹H NMR (400MHz, CDCl₃): δ 4.62-4.56 (m, 2H), 4.44-4.38 (m, 1H), 2.52-2.43 (m, 1H), 2.39-2.20 (m, 2H), 1.95-1.86 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.9, 70.0, 40.9, 30.3, 20.0.

3-Bromodihydrofuran-2(3*H***)-one (3b, entry 2 in Table 4)**. [CAS no. 5061-21-2].² Light yellow oil, 101.5 mg, 61%; ¹H NMR (400MHz, CDCl₃): δ 4.55-4.49 (m, 1H), 4.48-4.42 (m, 2H), 2.89-2.79 (m, 1H), 2.55-2.48 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.3, 67.1, 37.7, 33.7.

3,3-Diphenyldihydrofuran-2(3*H***)-one (3d, Scheme 3b)**. [CAS no. 956-89-8].³ White solid, 170.9 mg, 72%; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.21 (m, 10H), 4.19 (t, *J* = 6.3 Hz, 2H), 2.91 (t, *J* = 6.6 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.9, 140.8, 128.8, 127.7, 127.6, 65.4, 56.5, 37.6.

3-(Phenylthio)dihydrofuran-2(3*H***)-one (5, Scheme 4)**. [CAS no. 35998-30-2].⁴ Light yellow oil, 349.1 mg, 75%; ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.51 (m, 2H), 7.33-7.31 (m, 3H), 4.24-4.14 (m, 2H), 3.89-3.85 (m, 1H), 2.68-2.59 (m, 1H), 2.26-2.17 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.3, 133.4, 132.0, 129.4, 128.8, 128.7, 128.5, 66.7, 44.4, 30.0.

3-(Phenylthio)tetrahydro-2*H***-pyran-2-one (6, Scheme 5)**. [CAS no. 89036-08-8].⁵ Light yellow oil, 129.9 mg, 52%; ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.49 (m, 2H), 7.37-7.27 (m, 3H), 4.45-4.29 (m, 2H), 3.92 (t, *J* = 7.0 Hz, 1H), 2.35-2.26 (m, 1H), 2.06-1.97 (m, 2H), 1.91-1.81 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.9, 133.4, 132.9, 129.3, 128.5, 69.2, 46.7, 26.7, 21.3.

References

- 1. Chavda, J.K.; Procopiou, P. A.; Horton, P. N.; Coles, S. J.; Porter, M. J. *Eur. J. Org. Chem.* **2014**, 129–139.
- 2. Yang, H.; Gao, Y.; Qiao, X.; Xie, L.; Xu, X. Org. Lett. 2011, 13, 3670–3673.
- 3. Bartalucci, N.; Marchetti, F.; Zacchini, S.; Pampaloni, G. Dalton Trans. 2019, 48, 5725–5734.
- Chen, K.; Zhang, S-Q.; Brandenberg, O. F.; Hong, X.; Arnold, F. H. J. Am. Chem. Soc.
 2018, 140, 16402–16407.
- 5. Kato, M.; Ouchi, A.; Yoshikoshi, A. Bull. Chem. Soc. Jpn. 1991, 64, 1479–1486.

Figure S1. ¹H and ¹³C{¹H} NMR spectra of compound 3a

Figure S2. ¹H and ¹³C{¹H} NMR spectra of compound 3b

0 -10.0 -20.0

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

173.251

X : parts per Million : Carbon13

Figure S3. ¹H and ¹³C{¹H} NMR spectra of compound 3d

Figure S4. ¹H and ¹³C{¹H} NMR spectra of compound 5

Figure S5. ¹H and ¹³C{¹H} NMR spectra of compound 6

