

Supporting Information

for

Hydrazides in the reaction with hydroxypyrrolines: less nucleophilicity – more diversity

Dmitrii A. Shabalin, Evgeniya E. Ivanova, Igor A. Ushakov, Elena Yu. Schmidt and Boris A. Trofimov

Beilstein J. Org. Chem. 2021, 17, 319–324. doi:10.3762/bjoc.17.29

Experimental methods, compound characterization data, and copies of ¹H and ¹³C NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

General information	S2
General procedure for the synthesis of 1,4,5,6-tetrahydropyridazines 3	S3
¹ H and ¹³ C NMR spectra of 1,4,5,6-tetrahydropyridazines 3	S5
General procedure for the synthesis of 1,4-dihydropyridazines 4 and tricycles 5	S10
¹ H and ¹³ C NMR spectra of 1,4-dihydropyridazines 4 and tricycles 5	S13

General information

All chemicals and solvents were purchased from commercial sources and used without further purification. Commercial acetonitrile was dried with 4 Å MS before use. The starting 5-hydroxy- Δ^1 -pyrrolines **1a-e** were prepared by a literature method.¹ Thin layer chromatography was carried out on Merck silica gel 60 F₂₅₄ precoated aluminum foil sheets and were visualized using UV light (254 nm). Column chromatography was carried out using slurry packed Sigma Aldrich silica gel (SiO₂), 70–230 mesh, pore size 60 Å, eluent – hexane/diethyl ether 1:1 (v/v). NMR spectra were recorded from solutions in CDCl₃ or DMSO-d₆ on Bruker DPX-400 and AV-400 spectrometers (400.1 MHz for ¹H and 100.6 MHz for ¹³C). Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peak, δ_H 7.27 and δ_C 77.10 for CDCl₃, δ_H 2.50 and $\delta_{\rm C}$ 39.50 for DMSO- d_6 , was used as a reference. Coupling constants (J) are reported in hertz (Hz). The multiplicity abbreviations used are: s singlet, d doublet, dd doublet of doublet, t triplet, q quartet, m multiplet, br broad signal. Signals were assigned through analysis of 2D COSY, NOESY, HMBC, and HSQC experiments, if required. High-resolution mass spectra were recorded from acetonitrile solutions with 0.1% HFBA on HPLC Agilent 1200/Agilent 6210 TOF instrument equipped with an electrospray ionization (ESI) source. Melting points (uncorrected) were measured on a digital melting point apparatus Electrothermal IA 9200.

¹ a) D. A. Shabalin, M. Yu. Dvorko, E. Yu. Schmidt, I. A. Ushakov, B. A. Trofimov, *Tetrahedron* **2016**, *72*, 6661-6667; b) D. A. Shabalin, M. Yu. Dvorko, E. Yu. Schmidt, N. I. Protsuk, B. A. Trofimov, *Tetrahedron Lett.* **2016**, *57*, 3156-3159.

General procedure for the synthesis of 1,4,5,6-tetrahydropyridazines 3

A mixture of 5-hydroxy- Δ^1 -hydroxypyrroline **1** (0.5 mmol), hydrazide **2** (1.0 mmol), acetonitrile (3 mL), and trifluoroacetic acid (4 μ L, 0.05 mmol, 10 mol %) was placed in a 10-mL roundbottomed flask with a stirring bar, equipped with reflux condenser, and heated for 3 h at 80 °C (silicon oil bath). The residue after solvent evaporation was treated with diethyl ether or diethyl ether/hexane 1:1 (v/v) mixture to afford after filtration the desired 1,4,5,6-tetrahydropyridazine **3** as a powder.

N'-(2-Benzoyl-5,5-dimethyl-6-phenyl-2,3,4,5-tetrahydropyridazin-3-yl)benzohydrazide

(3aa). Following the general procedure, 3aa was prepared from 3,3-dimethyl-5-hydroxy-2-phenyl- Δ^1 -pyrroline (1a, 95 mg, 0.5 mmol) and benzohydrazide (2a, 136 mg, 1.0 mmol); 3aa was isolated as a white powder (199 mg, 93% yield), mp 162-164 °C. ¹H NMR (400.1 MHz, DMSO-d₆): $\delta = 10.02$ (d, J = 5.8 Hz, 1H, NH), 7.80 (d, J = 7.5 Hz, 2H, Ph), 7.55-7.52 (m, 3H, Ph), 7.47-7.45 (m, 2H, Ph), 7.35-7.31 (m, 8H, Ph), 5.97-5.95 (m, 1H, NH), 5.86 (dd, J = 6.2 Hz, J = 4.5 Hz, 1H, CH), 2.29 (dd, J = 14.4 Hz, J = 4.5 Hz, 1H, CH₂), 2.08 (dd, J = 14.4 Hz, J = 6.2 Hz, 1H, CH₂), 1.43 (s, 3H, Me), 1.16 (s, 3H, Me). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 172.0$, 166.5, 158.4, 137.1, 134.9, 132.7, 131.8, 130.5, 130.0, 128.7, 128.4, 128.1, 128.0, 127.4, 127.1, 66.9, 39.1, 32.0, 28.3, 27.6. HRMS (ESI-TOF) calcd for [C₂₆H₂₆N₄O₂+H]⁺ 427.2134, found 427.2137.

N'-(5,5-Dimethyl-2-(4-nitrobenzoyl)-6-phenyl-2,3,4,5-tetrahydropyridazin-3-yl)-4-interval (10,10)-10-2-(10,

nitrobenzohydrazide (**3ac**). Following the general procedure, **3ac** was prepared from 3,3dimethyl-5-hydroxy-2-phenyl- Δ^1 -pyrroline (**1a**, 95 mg, 0.5 mmol) and 4-nitrobenzohydrazide (**2c**, 181 mg, 1.0 mmol); **3ac** was isolated as a white powder (222 mg, 86% yield), mp 201-203 °C. ¹H NMR (400.1 MHz, DMSO-d₆): $\delta = 10.44$ (d, J = 5.7 Hz, 1H, NH), 8.32 (d, J = 8.8 Hz, 2H, Ar), 8.20 (d, J = 8.6 Hz, 2H, Ar), 8.06 (d, J = 8.8 Hz, 2H, Ar), 7.80 (d, J = 8.6 Hz, 2H, Ar), 7.33-7.29 (m, 5H, Ph), 6.06 (m, 1H, NH), 5.95 (dd, J = 5.2 Hz, J = 3.8 Hz, 1H, CH), 2.32 (dd, J = 14.3 Hz, J = 3.8 Hz, 1H, CH₂), 2.12 (dd, J = 14.3 Hz, J = 5.2 Hz, 1H, CH₂), 1.47 (s, 3H, Me), 1.13 (s, 3H, Me). ¹³C NMR (100.6 MHz, DMSO-d₆): $\delta = 168.6$, 165.0, 159.6, 149.0, 147.6, 142.5, 139.1, 137.1, 129.9, 128.8, 128.2, 128.0, 127.9, 123.5, 122.5, 62.8, 36.7, 31.5, 28.2, 27.6. HRMS (ESI-TOF) calcd for [C₂₆H₂₄N₆O₆+H]⁺ 517.1836, found 517.1835.

N'-(2-Isonicotinoyl-5,5-dimethyl-6-phenyl-2,3,4,5-tetrahydropyridazin-3-

yl)isonicotinohydrazide (**3af**). Following the general procedure, **3af** was prepared from 3,3dimethyl-5-hydroxy-2-phenyl- Δ^1 -pyrroline (**1a**, 95 mg, 0.5 mmol) and isonicotinohydrazide (**2f**, 137 mg, 1.0 mmol); **3af** was isolated as a white powder (128 mg, 60% yield), mp 154-156 °C. ¹H NMR (400.1 MHz, DMSO-d₆): $\delta = 10.38$ (d, J = 4.6 Hz, 1H, NH), 8.73 (d, J = 5.6 Hz, 2H, Py), 8.58 (d, J = 5.1 Hz, 2H, Py), 7.73 (d, J = 5.6 Hz, 2H, Py), 7.46 (d, J = 5.1 Hz, 2H, Py), 7.33-7.31 (m, 5H, Ph), 6.02 (m, 1H, NH), 5.91 (dd, J = 5.2 Hz, J = 3.6 Hz, 1H, CH), 2.29 (dd, J = 14.3 Hz, J = 3.6 Hz, 1H, CH), 2.29 (dd, J = 14.3 Hz, J = 3.6 Hz, 1H, CH), 2.29 (dd, J = 14.3 Hz, J = 3.6 Hz, 1H, CH₂), 2.08 (dd, J = 14.3 Hz, J = 5.2 Hz, 1H, CH₂), 1.47 (s, 3H, Me), 1.11 (s, 3H, Me). ¹³C NMR (100.6 MHz, DMSO-d₆): $\delta = 168.5$, 165.0, 159.4, 150.1, 149.0, 143.8, 140.5, 137.1, 128.3, 127.9, 127.9, 122.5, 121.4, 62.6, 36.7, 31.4, 28.3, 27.7. HRMS (ESI-TOF) calcd for [C₂₄H₂₄N₆O₂+H]⁺ 429.2039, found 429.2041.

N'-(2-Benzoyl-5,5-dimethyl-6-(p-tolyl)-2,3,4,5-tetrahydropyridazin-3-yl)benzohydrazide (**3ba**). Following the general procedure, **3ba** was prepared from 3,3-dimethyl-5-hydroxy-2-(*p*-tolyl)- Δ^1 -pyrroline (**1b**, 102 mg, 0.5 mmol) and benzohydrazide (**2a**, 136 mg, 1 mmol); **3ba** was isolated as a cream powder (127 mg, 58% yield), mp 134-136 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 8.55$ (d, *J* = 5.9 Hz, 1H, NH), 7.82 (d, *J* = 7.6 Hz, 2H, Ph), 7.72 (d, *J* = 8.0 Hz, 2H, Ph), 7.52-7.48 (m, 1H, Ph), 7.44-7.41 (m, 2H, Ph), 7.39-7.36 (m, 1H, Ph), 7.33-7.30 (m, 2H, Ph), 7.26 (d, *J* = 7.8 Hz, 2H, Ar), 7.10 (d, *J* = 7.8 Hz, 2H, Ar), 5.60 (t, *J* = 5.8 Hz, 1H, CH), 2.33 (s, 3H, Me), 2.24-2.22 (m, 2H, CH₂), 1.48 (s, 3H, Me), 1.28 (s, 3H, Me). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 172.0$, 166.5, 158.5, 138.3, 135.0, 134.3, 132.8, 131.7, 130.5, 130.0, 128.7, 128.1, 127.4, 127.1, 66.9, 39.2, 32.0, 28.3, 27.6, 21.2. HRMS (ESI-TOF) calcd for[C₂₇H₂₈N₄O₂+H¹⁺ 441.2291, found 441.2291.

N'-(3-Benzoyl-1-phenyl-2,3-diazaspiro[5.5]*undec-1-en-4-yl*)*benzohydrazide* (3da). Following the general procedure, 3da was prepared from 1-phenyl-2-azaspiro[4.5]dec-1-en-3-ol (1d, 115 mg, 0.5 mmol) and benzohydrazide (2a ,136 mg, 1.0 mmol); 3da was isolated as a cream powder (132 mg, 57% yield), mp 177-178 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 8.42 (br s, 1H, NH), 7.81 (d, *J* = 7.5 Hz, 2H, Ph), 7.71 (d, *J* = 7.5 Hz, 2H, Ph), 7.51-7.49 (m, 1H, Ph), 7.45-7.41 (m, 2H, Ph), 7.32-7.27 (m, 8H, Ph), 5.69 (br s, 1H, NH), 5.60 (t, *J* = 6.3 Hz, 1H, CH), 2.47-2.45 (m, 2H, CH₂), 1.86-1.82 (m, 1H, Cy), 1.73-1.59 (m, 8H, Cy), 1.21-1.16 (m, 1H, Cy). ¹³C NMR (100.6 MHz, CDCl₃): δ = 171.4, 166.5, 161.2, 136.9, 134.7, 132.7, 131.6, 130.4, 129.9, 128.5, 128.5, 128.1, 127.7, 127.2, 127.1, 66.6, 36.0, 33.6, 33.4, 31.1, 25.4, 21.0, 20.5. HRMS (ESI-TOF) calcd for[C₂₉H₃₀N₄O₂+H]⁺ 467.2447, found 467.2452.

S5

S6

2.33
2.23
2.22
2.22

General procedure for the synthesis of 1,4-dihydropyridazines 4 and tricycle 5

A mixture of 5-hydroxy- Δ^1 -hydroxypyrroline **1** (0.5 mmol), hydrazide **2** (1.0 mmol), acetonitrile (3 mL), and trifluoroacetic acid (4 μ L, 0.05 mmol, 10 mol %) was placed in a 10-mL roundbottomed flask with a stirring bar, equipped with reflux condenser, and heated for 3 h at 80 °C (silicon oil bath). Then, trifluoroacetic acid (54 μ L, 0.7 mmol, 140 mol %) was added and the reaction mixture additionally heated for 3 h at 80 °C (silicon oil bath). The residue after solvent evaporation was neutralized with Et₃N (210 μ L, 1.5 mmol) and purified by column chromatography on silica to afford the desired 1,4-dihydropyridazine **4** or tricycle **5**.

(4,4-Dimethyl-3-phenylpyridazin-1(4H)-yl)(phenyl)methanone (4aa). Following the general procedure, 4aa was prepared from 3,3-dimethyl-5-hydroxy-2-phenyl- Δ^1 -pyrroline (1a, 95 mg, 0.5 mmol) and benzohydrazide (2a, 136 mg, 1.0 mmol); 4aa was isolated as a white powder (107 mg, 74% yield), mp 96-98 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.83-7.80 (m, 2H, Ph), 7.55 (d, *J* = 7.9 Hz, 1H, CH), 7.48-7.46 (m, 2H, Ph), 7.40-7.32 (m, 6H, Ph), 5.13 (d, *J* = 7.9 Hz, 1H, CH), 1.35 (s, 6H, Me). ¹³C NMR (100.6 MHz, CDCl₃): δ = 167.9, 156.1, 136.7, 133.9, 130.8, 130.2, 128.7, 128.7, 127.9, 127.4, 120.1, 116.2, 33.2, 29.3. HRMS (ESI-TOF) calcd for [C₁₉H₁₈N₂O+H]⁺ 291.1497, found 291.1499.

(4,4-Dimethyl-3-phenylpyridazin-1(4H)-yl)(p-tolyl)methanone (4ab). Following the general procedure, 4ab was prepared from 3,3-dimethyl-5-hydroxy-2-phenyl-Δ¹-pyrroline (1a, 95 mg, 0.5 mmol) and 4-methylbenzohydrazide (2b, 150 mg, 1.0 mmol); 4ab was isolated as a cream powder (105 mg, 69% yield), mp 111-113 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.73 (d, J = 7.8 Hz, 2H, Ar), 7.52 (d, J = 8.0 Hz, 1H, CH), 7.47-7.45 (m, 2H, Ph), 7.37-7.32 (m, 3H, Ph), 7.14 (d, J = 7.8 Hz, 2H, Ar), 5.11 (d, J = 8.0 Hz, 1H, CH), 2.34 (s, 3H, Me), 1.33 (s, 6H, Me). ¹³C NMR (100.6 MHz, CDCl₃): δ = 167.8, 156.0, 141.3, 136.9, 130.9, 130.6, 128.8, 128.7, 128.2, 128.0, 120.3, 116.0, 33.2, 29.4, 21.6. HRMS (ESI-TOF) calcd for [C₂₀H₂₀N₂O+H]⁺ 305.1654, found 305.1654.

(4,4-Dimethyl-3-phenylpyridazin-1(4H)-yl)(4-nitrophenyl)methanone (4ac). Following the general procedure, 4ac was prepared from 3,3-dimethyl-5-hydroxy-2-phenyl- Δ^1 -pyrroline (1a, 95 mg, 0.5 mmol) and 4-nitrobenzohydrazide (2c, 181 mg, 1.0 mmol); 4ac was isolated as a yellow powder (73 mg, 44% yield), mp 100-102 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 8.17 (d, J = 8.8 Hz, 2H, Ar), 7.89 (d, J = 8.8 Hz, 2H, Ar), 7.50 (d, J = 8.1 Hz, 1H, CH), 7.40-7.33 (m, 5H, Ph), 5.20 (d, J = 8.1 Hz, 1H, CH), 1.34 (s, 6H, Me). ¹³C NMR (100.6 MHz, CDCl₃): δ = 166.0, 157.6, 148.8, 140.1, 136.3, 131.0, 129.1, 128.5, 128.2, 122.7, 119.3, 117.4, 33.5, 29.4. HRMS (ESI-TOF) calcd for $[C_{19}H_{17}N_3O_3+H]^+$ 336.1348, found 336.1349.

1-(4,4-Dimethyl-3-phenylpyridazin-1(4H)-yl)ethan-1-one (**4ag**). Following the general procedure, **4ag** was prepared from 3,3-dimethyl-5-hydroxy-2-phenyl-Δ¹-pyrroline (**1a**, 95 mg, 0.5 mmol) and acetohydrazide (**2g**, 74 mg, 1.0 mmol); **4ag** was isolated as a light-yellow powder (62 mg, 54% yield), mp 42-44 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.51-7.48 (m, 2H, Ph), 7.41-7.38 (m, 3H, Ph), 7.34 (d, *J* = 8.1 Hz, 1H, CH), 4.97 (d, *J* = 8.1, Hz, 1H, CH), 2.36 (s, 3H, Me), 1.28 (s, 6H, Me). ¹³C NMR (100.6 MHz, CDCl₃): δ = 170.4, 156.0, 137.1, 128.7, 128.7, 128.0, 118.8, 114.9, 33.0, 29.5, 21.2. HRMS (ESI-TOF) calcd for [C₁₄H₁₆N₂O+H]⁺ 229.1341, found 229.1340.

(4,4-Dimethyl-3-(p-tolyl)pyridazin-1(4H)-yl)(phenyl)methanone (4ba). Following the general procedure, 4ba was prepared from 3,3-dimethyl-5-hydroxy-2-(p-tolyl)- Δ^1 -pyrroline (1b, 102 mg, 0.5 mmol) and benzohydrazide (2a, 136 mg, 1.0 mmol); 4ba was isolated as a white powder (78 mg, 51% yield), mp 129-131 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.81 (d, *J* = 8.1 Hz, 2H, Ph), 7.53 (d, *J* = 8.0 Hz, 1H, CH), 7.42-7.33 (m, 3H, Ph, 2H, Ar), 7.14 (d, *J* = 7.8 Hz, 2H, Ar), 5.12 (d, *J* = 8.0 Hz, 1H, CH), 2.35 (s, 3H, Me), 1.35 (s, 6H, Me). ¹³C NMR (100.6 MHz, CDCl₃) δ = 167.9, 156.0, 138.7, 134.0, 133.9, 130.8, 130.3, 128.7, 128.6, 127.4, 120.0, 116.4, 33.2, 29.4, 21.2. HRMS (ESI-TOF) calcd for [C₂₀H₂₀N₂O+H]⁺ 305.1654, found 305.1654.

(3-(*Furan-2-yl*)-4,4-dimethylpyridazin-1(4H)-yl)(phenyl)methanone (**4ca**). Following the general procedure, **4ca** was prepared from 3,3-dimethyl-2-(2-furyl)-5-hydroxy-Δ¹-pyrroline (**1c**, 90 mg, 0.5 mmol) and benzohydrazide (**2a**, 136 mg, 1.0 mmol); **4ca** was isolated as an yellow oil (28 mg, 20% yield). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.82-7.80$ (m, 2H, Ph), 7.47-7.39 (m, 1H, CH, 1H, Fur, 3H, Ph), 6.60 (d, J = 3.4 Hz, 1H, Fur), 6.39 (dd, J = 3.4 Hz, J = 1.7 Hz, 1H, Fur), 5.08 (d, J = 8.4 Hz, 1H, CH), 1.49 (s, 6H, Me). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 167.5$, 152.1, 145.8, 142.9, 133.8, 130.9, 130.4, 127.4, 118.3, 117.1, 111.5, 111.2, 32.0, 29.7. HRMS (ESI-TOF) calcd for [C₁₇H₁₆N₂O₂+H]⁺ 281.1290, found 281.1291.

Phenyl(*1-phenyl-2,3-diazaspiro*[5.5]*undeca-1,4-dien-3-yl*)*methanone* (**4da**). Following the general procedure, **4da** was prepared from 1-phenyl-2-azaspiro[4.5]dec-1-en-3-ol (**1d**, 115 mg, 0.5 mmol) and benzohydrazide (**2a**, 136 mg, 1.0 mmol); **4da** was isolated as a white powder (83 mg, 50% yield), mp 143-145 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.80 (d, *J* = 7.6 Hz, 2H, Ph), 7.61 (d, *J* = 7.9 Hz, 1H, CH), 7.40-7.32 (m, 8H, Ph), 5.63 (d, *J* = 7.9 Hz, 1H, CH), 1.74-

1.56 (m, 9H, Cy), 1.17-1.14 (m, 1H, Cy). ¹³C NMR (100.6 MHz, CDCl₃): δ = 168.2, 157.9, 136.5, 133.9, 130.9, 130.3, 128.9, 128.4, 127.9, 127.5, 121.5, 111.6, 38.2, 35.1, 25.5, 20.7. HRMS (ESI-TOF) calcd for [C₂₂H₂₂N₂O+H]⁺ 331.1810, found 331.1810.

Phenyl(*1-(p-tolyl)-2,3-diazaspiro*[5.5]*undeca-1,4-dien-3-yl*)*methanone* (**4ea**). Following the general procedure, **4ea** was prepared from 1-phenyl-2-azaspiro[4.5]dec-1-en-3-ol (**1e**, 122 mg, 0.5 mmol) and benzohydrazide (**2a**, 136 mg, 1.0 mmol); **4ea** was isolated as a beige powder (65 mg, 38% yield), mp 150-152 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 7.79-7.77 (m, 2H, Ph), 7.59 (d, *J* = 7.9 Hz, 1H, CH), 7.41-7.31 (m, 3H, Ph), 7.24 (d, *J* = 7.9 Hz, 2H, Ar), 7.14 (d, *J* = 7.9 Hz, 2H, Ar), 5.61 (d, *J* = 7.9 Hz, 1H, CH), 2.35 (s, 3H, Me), 1.72-1.55 (m, 9H, Cy), 1.21-1.10 (m, 1H, Cy). ¹³C NMR (100.6 MHz, CDCl₃): δ = 168.2, 157.9, 138.3, 134.0, 133.6, 130.9, 130.3, 128.9, 128.6, 127.5, 121.5, 111.6, 38.2, 35.1, 25.5, 21.3, 20.8. HRMS (ESI-TOF) calcd for [C₂₃H₂₄N₂O+H]⁺ 345.1967, found 345.1968.

3,3-Dimethyl-2-phenyl-4,4a-dihydro-3H,10H-benzo[e]pyridazino[6,1-b][1,3]oxazin-10one (**5ad**). Following the general procedure, **5ad** was prepared from 3,3-dimethyl-5-hydroxy-2phenyl- Δ^1 -pyrroline (**1a**, 95 mg, 0.5 mmol) and 2-hydroxybenzohydrazide (**2d**, 152 mg, 1.0 mmol); **5ad** was isolated as a beige powder (81 mg, 53% yield), mp 110-112 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 8.07 (d, *J* = 7.7 Hz, 1H, Ar), 7.49-7.45 (m, 1H, Ar), 7.42-7.39 (m, 2H, Ph), 7.33-7.31 (m, 3H, Ph), 7.16-7.13 (m, 1H, Ar), 6.99 (d, *J* = 8.2 Hz, 1H, Ar), 5.68 (dd, *J* = 8.2 Hz, *J* = 6.8 Hz, 1H, CH), 2.25-2.23 (m, 2H, CH₂), 1.39 (s, 3H, Me), 1.19 (s, 3H, Me). ¹³C NMR (100.6 MHz, CDCl₃): δ = 160.8, 158.8, 157.0, 136.4, 134.5, 129.3, 128.7, 128.4, 128.0, 123.2, 118.9, 116.3, 82.1, 39.5, 34.2, 27.6, 27.0. HRMS (ESI-TOF) calcd for [C₁₉H₁₈N₂O₂+H]⁺ 307.1447, found 307.1446.

3,3-Dimethyl-2-phenyl-3,4,4a,5-tetrahydro-10H-pyridazino[6,1-b]quinazolin-10-one

(5ae). Following the general procedure, 5ae was prepared from 3,3-dimethyl-5-hydroxy-2-phenyl- Δ^1 -pyrroline (1a, 95 mg, 0.5 mmol) and 2-aminobenzohydrazide (2e, 151 mg, 1.0 mmol); 5ae was isolated as a beige powder (43 mg, 28% yield), mp 242-244 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 8.04$ (d, J = 7.9 Hz, 1H, Ar), 7.42-7.39 (m, 2H, Ph), 7.33-7.28 (m, 1H, Ar, 3H, Ph), 6.94-6.90 (m, 1H, Ar), 6.72 (d, J = 8.1 Hz, 1H, Ar), 5.16 (dd, J = 11.0 Hz, J = 4.1 Hz, 1H, CH), 4.73 (br s, 1H, NH), 2.13-1.99 (m, 2H, CH₂), 1.38 (s, 3H, Me), 1.12 (s, 3H, Me). ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 160.5$, 159.1, 146.8, 137.1, 133.7, 129.8, 128.7, 128.4, 128.0, 120.2, 117.4, 114.9, 63.6, 40.9, 33.2, 28.2, 28.0. HRMS (ESI-TOF) calcd for [C₁₉H₁₉N₃O+H]⁺ 306.1606, found 306.1607.

¹³C NMR Spectrum of 4aa (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of 4ac (100.6 MHz, CDCl₃)

- 1.28

¹³C NMR spectrum of **4da** (100.6 MHz, CDCl₃)

S21

