

Supporting Information

for

Synthesis of trifluoromethyl ketones by nucleophilic trifluoromethylation of esters under a fluoroform/KHMDS/ triglyme system

Yamato Fujihira, Yumeng Liang, Makoto Ono, Kazuki Hirano, Takumi Kagawa and Norio Shibata

Beilstein J. Org. Chem. 2021, 17, 431-438. doi:10.3762/bjoc.17.39

Optimization of reaction conditions, general procedure and product characterization data

Contents

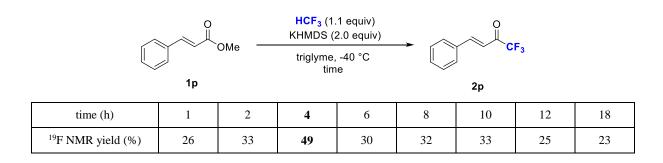
1. General information.	S3
2. Additional experiments for the reaction conditions	S4
3. Experiments for the reaction time	S5
4. General procedure and product characterization data for 2.	S6
5. Supplementary references	S13
6. ¹ H NMR spectra. ¹⁹ F NMR spectra and ¹³ C NMR spectra	S14

1. General information.

All reactions were performed in oven-dried glassware. Solvents were transferred via syringe. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). Column chromatography was carried out in a column packed with silica-gel 60N spherical neutral size 40–50 μm. The ¹H NMR (300 MHz), ¹⁹F NMR (282 MHz), and ¹³C NMR (125.8 MHz) spectra in a CDCl₃ solution were recorded on a Varian Mercury 300 or a Bruker Avance 500 instrument. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or hexafluorobenzene. GC–MS was recorded on JEOL JMS-Q1050GC/Agilent7890. High resolution mass spectrometry (HRMS) was recorded on a SHIMADZU GCMS-QP5050A (EIMS) spectrometer. Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. Melting points were recorded on a BÜCHI M-565 apparatus. Commercially available chemicals were obtained from Ark Pharm Inc., Aldrich Chemical Co., Nacalai tesque, TCI, or Wako, and were used as received unless otherwise stated.

2. Additional experiments for the reaction conditions

Table S1. Additional experiments for the reaction conditions with 1a


entry	base (equiv)	solvent	temp. (°C)	yield ^a (%)
1	t-BuOK (2.0)	THF	-40	5
2	t-BuOK (2.0)	toluene	-40	0
3	t-BuOK (2.0)	triglyme	-40	29
4	t-BuOK (2.0)	triglyme	-60	22
5	t-BuOK (3.0)	triglyme	-40	16
6	t-BuOK (4.0)	triglyme	-40	25
7	t-BuOK (4.0)	triglyme	-60	6
8	KHMDS (2.0)	triglyme	-40	59
9	KHMDS (2.0)	triglyme	-60	54
10	KHMDS (1.2)	triglyme	-60	37
11	PhOK (2.0)	triglyme	-40	0
12	t-BuOK (2.0)	diglyme	-40	5
13	KHMDS (2.0)	diglyme	-40	29
14	KHMDS (2.0)	diglyme	-60	23
15	t-BuOK (2.0)	tetraglyme	-40	15
16	KHMDS (2.0)	tetraglyme	-40	57
17^b	KHMDS (2.0)	triglyme	-40	64
$18^{b,c}$	KHMDS (2.0)	triglyme	-40	$75 (71)^d$

^a Determined by ¹⁹F NMR yield using the crude mixture with trifluorotoluene as the internal standard.

^b The reaction time was 4 h. ^c HCF₃ was 1.1 equiv. ^d Isolated yield

3. Experiments for the reaction time

Table S2. Experiments for the reaction time with 1c and 1p

4. General procedure and product characterization data for 2.

RCO₂Me
$$\frac{\text{HCF}_3 (1.1 \text{ equiv})}{\text{KHMDS } (2.0 \text{ equiv})}$$

$$\text{triglyme, -40 °C}$$

$$\text{1}$$

$$\text{2}$$

Scheme S1. General procedure for trifluoromethyl compounds 2 from methyl ester 1.

General procedure:

A test tube containing 1 (0.4 mmol) in triglyme (0.7 mL) was charged with HCF₃ (9.9 mL, 1.1 equiv) by a syringe (**Figures S1**) by cooling in liquid nitrogen under vacuum. KHMDS (160 mg, 2.0 equiv) in triglyme (0.3 mL) was added at -40 °C, and the reaction mixture was stirred at the same temperature for 4 h. Thereafter, 1M HCl aq. (1.0 mL) was added, and the aqueous layer was extracted with CH₂Cl₂ (1.0 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography on silica gel to give products 2. The commercial grade of triglyme was used without further drying.

Figure S1. Addition of HCF₃ by a syringe

2,2,2-Trifluoro-1- (naphthalen-2-yl) ethan-1-one~(2a).

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/diethyl ether = 5/1) to give **2a** (63.7 mg, 71% yield) as a yellow solid.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 8.61 (s, 1H), 8.07-7.88 (m, 4H), 7.71-7.58 (m, 2H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-*d*) δ: -71.22 (s, 3F) ppm; **GC-MS** (EI, *m/z*): 127 [M-COCF₃]⁺ (100%), 155 [M-CF₃]⁺ (79%), 224 [M]⁺ (17%).

Spectroscopic data was agreement with the literature¹.

2,2,2-Trifluoro-1-(naphthalen-1-yl)ethan-1-one (2b)

Following the general procedure, the mixture was purified by column chromatography on silica gel ("hexane only) to give **2b** (30.3 mg, 34% yield) as a colorless oil.

¹H NMR (300 MHz, Chloroform-*d*) δ: 8.84 (d, J = 8.5 Hz, 1H), 8.22-8.16 (m, 2H), 7.95 (d, J = 7.9 Hz, 1H), 7.74-7.57 (m, 3H) ppm; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ: -70.63 (s, 3F) ppm; GC-MS (EI, m/z): 127 [M-COCF₃]⁺ (100%), 155 [M-CF₃]⁺ (79%), 224 [M]⁺ (21%).

Spectroscopic data was agreement with the literature¹.

1-(4-Chlorophenyl)-2,2,2-trifluoroethan-1-one (2c)

Following the general procedure, the mixture was purified by column chromatography on silica gel ("hexane/DCM = 1/1) to give **2c** (43.2 mg, 52% yield) as a colorless oil.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 8.01 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-*d*) δ: -71.98 (s, 3F) ppm; **GC-MS** (EI, m/z): 111 [M-COCF₃]⁺ (³⁵Cl, 57%), 113 [M-COCF₃]⁺ (³⁷Cl, 15%), 139 [M-CF₃]⁺ (³⁵Cl, 100%), 141 [M-CF₃]⁺ (³⁷Cl, 31%), 208 [M]⁺ (³⁵Cl, 6%), 210 [M]⁺ (³⁷Cl, 1%).

Spectroscopic data was agreement with the literature¹.

1-(4-Bromophenyl)-2,2,2-trifluoroethan-1-one (2d)

Following the general procedure, the mixture was purified by column chromatography on silica gel ("hexane/DCM = 1/1) to give **2d** (39.5 mg, 39% yield) as a colorless oil.

 1 H NMR (300 MHz, Chloroform-d) δ: 7.94 (d, J = 7.9 Hz, 2H), 7.71 (d, J = 8.8 Hz, 2H) ppm; 19 F NMR (282 MHz,

Chloroform-d) δ : -72.04 (s, 3F) ppm; **GC-MS** (EI, m/z): 155 [M-COCF₃]⁺ (79 Br, 49%), 157 [M-COCF₃]⁺ (81 Br, 49%), 183 [M-CF₃]⁺ (79 Br, 100%), 185 [M-CF₃]⁺ (81 Br, 96%), 252 [M]⁺ (79 Br, 13%), 254 [M]⁺ (81 Br, 12%). Spectroscopic data was agreement with the literature¹.

2,2,2-Trifluoro-1-(4-iodophenyl)ethan-1-one (2e)

Followed the general procedure, purified by column chromatography on silica gel ("hexane/acetone = 4/1) to give **2e** (61.2 mg, 51% yield) as a yellow solid.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 7.94 (d, J = 7.9 Hz, 2H), 7.76 (d, J = 7.9 Hz, 2H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-*d*) δ: -72.04 (s, 3F) ppm; **GC-MS** (EI, m/z): 203 [M-COCF₃]⁺ (35%), 231 [M-CF₃]⁺ (100%), 300 [M]⁺ (14%).

Spectroscopic data was agreement with the literature⁶.

$1\hbox{-}(4\hbox{-}(\textit{tert}\hbox{-Butyl})phenyl)\hbox{-}2,2,2\hbox{-trifluoroethan-1-one }(2f)$

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/DCM = 4/1) to give **2f** (35.2 mg, 38% yield) as a white solid.

¹**H NMR** (300 MHz, Chloroform-d) δ: 8.02 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 1.36 (s, 9H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-d) δ: -71.83 (s, 3F) ppm; **HRMS** (EI, m/z) calcd. for C₁₂H₁₃OF₃ [M]⁺: 230.0918 Found: 230.0916.

Spectroscopic data was agreement with the literature³.

1-(4-Cyclohexylphenyl)-2,2,2-trifluoroethan-1-one (2g)

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/DCM = 9/1) to give **2g** (78.5 mg, 77% yield) as a colorless oil.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 8.01 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 2.61 (s, 1H), 1.89-1.76 (m, 5H), 1.51-1.26 (m, 5H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-*d*) δ: -71.76 (s, 3F) ppm; **GC-MS** (EI, m/z): 187 [M-CF₃]⁺ (100%).

Spectroscopic data was agreement with the literature⁴.

1-([1,1'-Biphenyl]-4-yl)-2,2,2-trifluoroethan-1-one (2h)

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/diethyl ether = 9/1) to give **2h** (38.1 mg, 38% yield) as a white solid.

Gram-scale synthesis: Followed by the general procedure, used **1h** (1g, 4.71 mmol), HCF₃ (excess), KHMDS (1.88 g, 9.42 mmol, 2.0 equiv) and triglyme (24 mL) to give **2h** (506 mg, 43%) as a white solid.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 8.16 (d, J = 7.9 Hz, 2H), 7.79-7.43 (m, 7H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-*d*) δ: -71.82 (s, 3F) ppm; **GC-MS** (EI, m/z): 152 [M-COCF₃]⁺ (79%), 181 [M-CF₃]⁺ (100%), 250 [M]⁺ (30%).

Spectroscopic data was agreement with the literature¹

$\textbf{2,2,2-Trifluoro-1-(4-methoxyphenyl)ethan-1-one} \ (\textbf{2i})$

Following the general procedure, the mixture was purified by column chromatography on silica gel ("hexane/diethyl ether = 9/1) to give 2i (36.9 mg, 45% yield) as a colorless oil.

¹H NMR (300 MHz, Chloroform-*d*) δ: 8.06 (d, J = 8.5 Hz, 2H), 7.01 (d, J = 9.1 Hz, 2H), 3.92 (s, 3H) ppm; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ: -71.47 (s, 3F) ppm; **GC-MS** (EI, m/z): 135 [M-CF₃]⁺ (82%), 152 [M-CF₃+OH]⁺ (100%).

Spectroscopic data was agreement with the literature¹.

$\hbox{\bf 1-(3-Bromophenyl)-2,2,2-trifluoroethan-1-one (2j)}\\$

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/DCM = 2/1) to give 2i (60.5 mg, 60% yield) as a colorless oil.

¹H NMR (300 MHz, Chloroform-d) δ: 8.20 (s, 1H), 8.01 (d, J = 7.3 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H) ppm; ¹⁹F NMR (282 MHz, Chloroform-d) δ: -72.05 (s, 3F) ppm; GC-MS (EI, m/z): 155 [M $-COCF_3$] $^+$ (^{79}Br , 68%), 157 [M $-COCF_3$] $^+$ (^{81}Br , 63%), 183 [M $-CF_3$] $^+$ (^{79}Br , 100%), 185 [M $-CF_3$] $^+$ (^{81}Br , 97%), 252 [M] $^+$ (^{79}Br , 14%),

254 [M]+ (81Br, 15%).

Spectroscopic data was agreement with the literature⁹.

2,2,2-Trifluoro-1-(3-iodophenyl)ethan-1-one (2k)

Following the general procedure, the mixture was purified by column chromatography on silica gel ("hexane/ethyl acetate = 4/3) to give 2k (90.3 mg, 75% yield) as a yellow oil.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 8.39 (s, 1H), 8.06-8.03 (m, 2H), 7.34-7.26 (m, 1H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-*d*) δ: -72.01 (s, 3F) ppm; **GC-MS** (EI, *m/z*): 203 [M-COCF₃]⁺ (49%), 231 [M-CF₃]⁺ (100%), 300 [M]⁺ (31%).

Spectroscopic data was agreement with the literature⁷.

$1\hbox{-}(2\hbox{-}Bromophenyl)\hbox{-}2,2,2\hbox{-}trifluoroethan\hbox{-}1\hbox{-}one\ (2l)$

Followed the general procedure, purified by column chromatography on silica gel ("hexane/ethyl acetate = 5/1) to give **2l** (56.7 mg, 56% yield) as a colorless oil.

¹H NMR (300 MHz, Chloroform-*d*) δ: 7.77-7.70 (m, 2H), 7.48-7.46 (m, 2H) ppm; ¹⁹F NMR (282 MHz, Chloroform-*d*) δ: -73.50 (s, 3F) ppm; **GC-MS** (EI, *m/z*): 155 [M-COCF₃]⁺ (⁷⁹Br, 51%), 157 [M-COCF₃]⁺ (⁸¹Br, 48%), 183 [M-CF₃]⁺ (⁷⁹Br, 100%), 185 [M-CF₃]⁺ (⁸¹Br, 98%), 252 [M]⁺ (⁷⁹Br, 5%), 254 [M]⁺ (⁸¹Br, 3%). Spectroscopic data was agreement with the literature².

2,2,2-Trifluoro-1-(2-iodophenyl)ethan-1-one (2m)

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/DCM = 3/1) to give **2m** (92.6 mg, 77% yield) as a yellow solid.

¹H NMR (300 MHz, Chloroform-d) δ: 8.09 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 6.7 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H) ppm; ¹⁹F NMR (282 MHz, Chloroform-d) δ: -72.77 (s, 3F) ppm; ¹³C NMR (126 MHz, Chloroform-d) δ: 182.4 (q, J = 35.7 Hz), 142.4, 134.3, 130.2, 130.1, 128.1, 115.5 (q, J = 292.1 Hz), 94.0 ppm; ATR-FTIR (KBr): v = 3431, 3092, 1469, 1432, 1323, 1279, 1052, 1020, 792, 755, 698, 676, 637, 460, 422 cm⁻¹;

mp: 40.2-40.7 °C; HRMS (EI, m/z) calcd. for C₈H₄OF₃I [M]⁺: 299.9259 Found: 299.9261.

1-(3,4-Dimethoxyphenyl)-2,2,2-trifluoroethan-1-one (2n)

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/diethyl ether = 9/1) to give **2n** (39.0 mg, 42% yield) as a white solid.

Gram-scale synthesis: Followed by the general procedure, used **1n** (1g, 5.10 mmol), HCF₃ (excess), KHMDS (2.03 g, 10.2 mmol, 2.0 equiv) and triglyme (26 mL) to give **2n** (478 mg, 40%) as a white solid.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 7.74 (d, J = 8.2 Hz, 1H), 7.58 (s, 1H), 6.96 (d, J = 8.5 Hz, 1H), 4.00 (s, 3H), 3.96 (s, 3H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-*d*) δ: -70.90 (s, 3F) ppm; **GC-MS** (EI, m/z): 165 [M-CF₃]⁺ (100%), 234 [M]⁺ (51%).

Spectroscopic data was agreement with the literature⁵.

$1\hbox{-}((3r,\!5r,\!7r)\hbox{-}Adamantan-1\hbox{-}yl)\hbox{-}2,\!2,\!2\hbox{-}trifluoroethan-1\hbox{-}one\ (2o)$

Followed the general procedure, purified by column chromatography on silica gel ("hexane/ethyl acetate = 9/1) to give **2o** (54.0 mg, 58% yield) as a colorless oil.

¹**H NMR** (300 MHz, Chloroform-*d*) δ: 3.65 (s, 2H), 2.09-1.67 (m, 13H) ppm; ¹⁹**F NMR** (282 MHz, Chloroform-d) δ: -72.66 (s, 3F) ppm; **GC-MS** (EI, *m/z*): 135 [M-COCF₃] $^+$ (100%).

Spectroscopic data was agreement with the literature⁸.

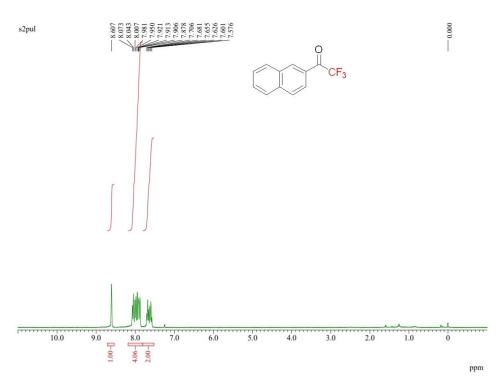
$(E)\hbox{-}1,\negthinspace 1,\negthinspace 1\hbox{-}Trifluoro\hbox{-}4\hbox{-}phenylbut\hbox{-}3\hbox{-}en\hbox{-}2\hbox{-}one\ (2p)$

Following the general procedure, the mixture was purified by column chromatography on silica gel (n hexane/DCM = 10/1) to give **2p** (32.8 mg, 41% yield) as a yellow oil.

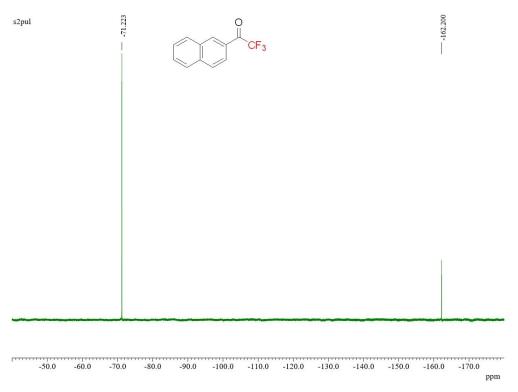
Gram-scale synthesis: Followed by the general procedure, used **1p** (1g, 6.17 mmol), HCF₃ (excess), KHMDS (2.45 g, 12.3 mmol, 2.0 equiv) and triglyme (31 mL) to give **2p** (445 mg, 36% yield) as a yellow oil.

¹H NMR (300 MHz, Chloroform-*d*) δ: 7.97 (d, J = 15.8 Hz, 1H), 7.64 (d, J = 6.7 Hz, 2H), 7.50-7.43 (m, 3H), 7.02 (d, J = 15.8 Hz, 1H); ¹⁹F NMR (282 MHz, Chloroform-*d*) δ: -78.05 (s, 3F) ppm; **GC-MS** (EI, m/z): 103 [M-COCF₃]⁺ (79%), 131 [M-CF₃]⁺ (100%), 200 [M]⁺ (39%).

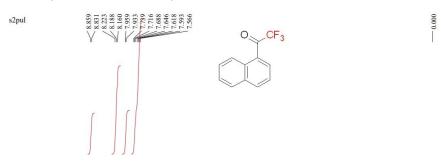
Spectroscopic data was agreement with the literature⁵.


5. Supplementary references

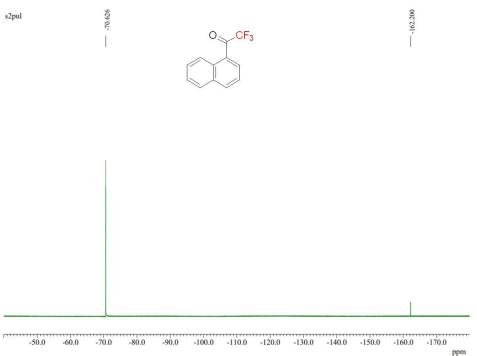
- Xing Yi, Ya-Fang Cao, Xing Wang, Hui Xu, Shu-Rong Ban, Hui-Xiong Dai. Palladium-catalyzed fluoroacylation of (Hetero)arylboronic acid with fluorothioacetates at ambient temperature. *Tetrahedron Lett.*, 2020, 61, 151780.
- James P. Phelan, Rebecca J. Wiles, Simon B. Lang, Christopher B. Kelly, and Gary A. Molander. Rapid Access
 to Diverse, Trifluoromethyl-Substituted Alkenes Using Complementary Strategies., Chem. Sci., 2018, 9,
 3215–3220.
- Fengxiang Zhu, Guangfu Yang, Shaolin Zhou, Xiao-Feng Wu. Palladium-catalyzed carbonylative coupling of aryl iodides with an organocopper reagent: a straightforward procedure for the synthesis of aryl trifluoromethyl ketones., RSC Adv., 2016, 6, 57070.
- Xiangyu Guo and Chao-Jun Li. Ruthenium-Catalyzed Para-Selective Oxidative Cross-Coupling of Arenes and Cycloalkanes. Org. Lett., 2011, 13, 4977–4979.
- Paweł Czerwiński, Edyta Molga, Prof. Luigi Cavallo, Dr. Albert Poater, Dr. Michał Michalak. NHC–Copper(I)
 Halide Catalyzed Direct Alkynylation of Trifluoromethyl Ketones on Water. Chem. Eur. J., 2016, 22, 8089


 –8094.
- 6. Xiao Xu, Qing-Qiang Min, Na Lia and Feng Liu. Visible light-promoted umpolung coupling of aryl tri-/difluoroethanones with 2-alkenylpyridines. *Chem. Commun.*, **2018**, *54*, 11017.
- Christopher B. Kelly, Michael A. Mercadante, Emma R. Carnaghan, Matthew J. Doherty, Diana C. Fager, John J. Hauck, Allyson E. MacInnis, Leon J. Tilley, and Nicholas E. Leadbeater. Synthesis of Perfluoroalkyl-Substituted Vinylcyclopropanes by Way of Enhanced Neighboring Group Participation. Eur. J. Org. Chem. 2015, 4071–4076.
- 8. Pei Zhang, Haigen Shen, Lin Zhu, Weiguo Cao, and Chaozhong Li. Radical C(sp2)–H Trifluoromethylation of Aldehydes in Aqueous Solution. *Org. Lett.*, **2018**, *20*, 7062–7065.
- Zhaomeng Han, Sihan Chen, Yongjun Tu, Xiongdong Lian, and Gongyong Li. Fluoroform: an Efficient Precursor for the Trifluoromethylation of Aromatic Esters by Sodium Diisopropylamide with Trialkylamines. Eur. J. Org. Chem. 2019, 4658–4661.

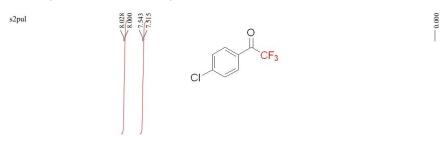
6. $^{1}\mathrm{H}$ NMR spectra, $^{19}\mathrm{F}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra

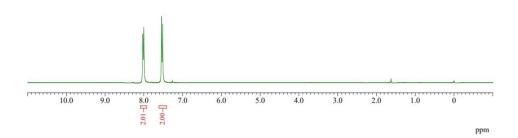

¹H NMR (300 MHz, Chloroform-d) of 2a

¹⁹F NMR (282 MHz, Chloroform-d) of 2a

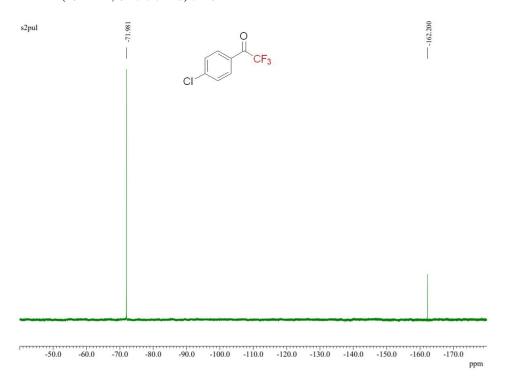


¹H NMR (300 MHz, Chloroform-d) of **2b**

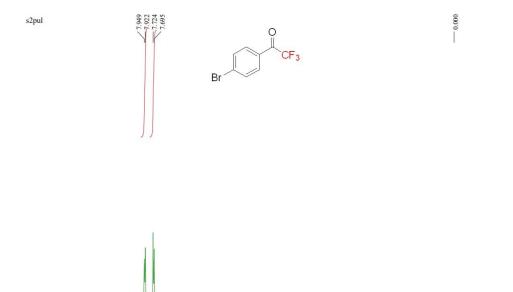




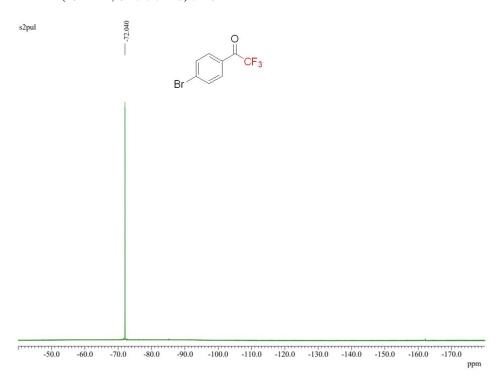
¹⁹F NMR (282 MHz, Chloroform-d) of **2b**

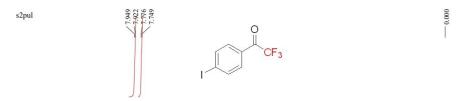


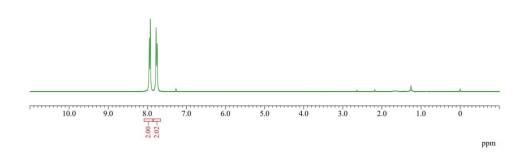
$^1\mathrm{H}$ NMR (300 MHz, Chloroform-d) of $\mathbf{2c}$



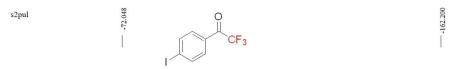
19 F NMR (282 MHz, Chloroform-d) of ${f 2c}$

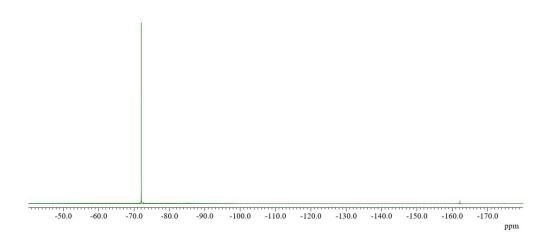

¹H NMR (300 MHz, Chloroform-*d*) of **2d**

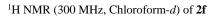

ppm

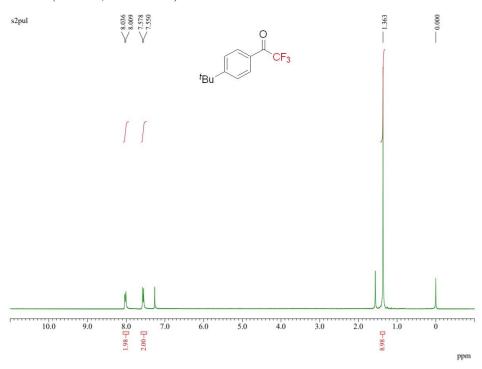

¹⁹F NMR (282 MHz, Chloroform-d) of **2d**

10.0

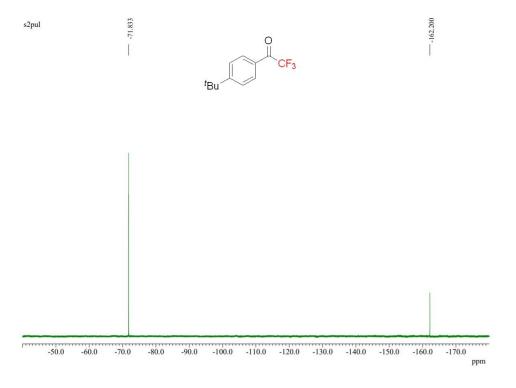


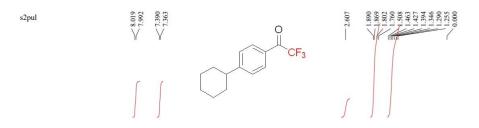

1 H NMR (300 MHz, Chloroform-d) of ${f 2e}$

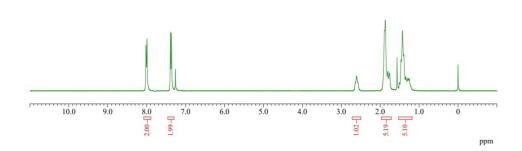




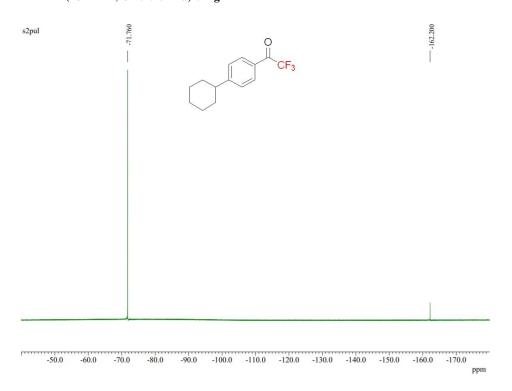
¹⁹F NMR (282 MHz, Chloroform-d) of **2e**



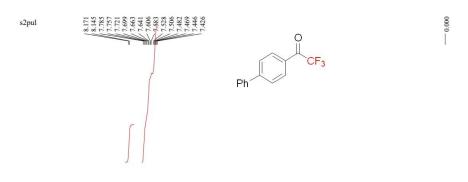


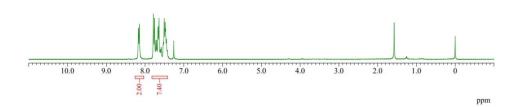


¹⁹F NMR (282 MHz, Chloroform-d) of **2f**

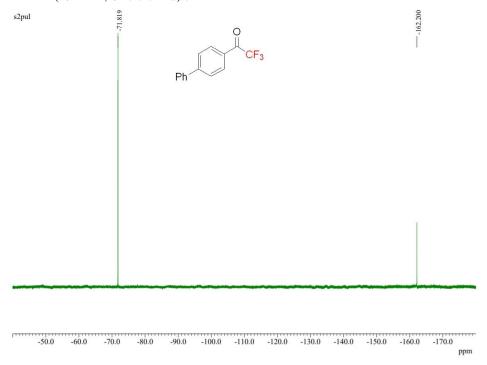


$^1\mathrm{H}$ NMR (300 MHz, Chloroform-d) of $\mathbf{2g}$

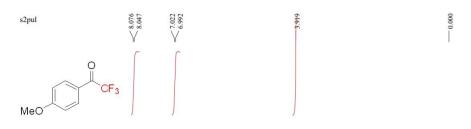


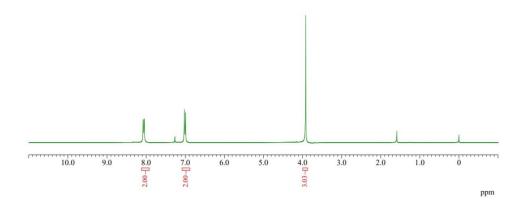


$^{19}\mathrm{F}$ NMR (282 MHz, Chloroform-d) of $\mathbf{2g}$

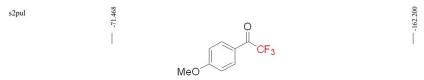


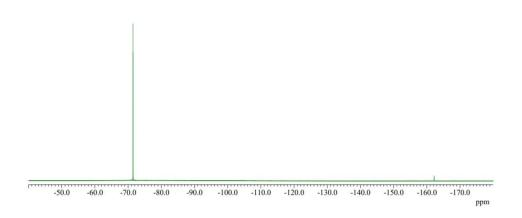
¹H NMR (300 MHz, Chloroform-d) of **2h**

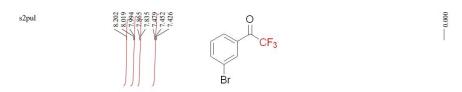


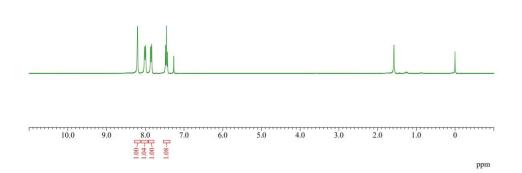


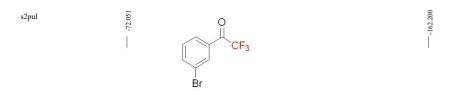
¹⁹F NMR (282 MHz, Chloroform-d) of **2h**

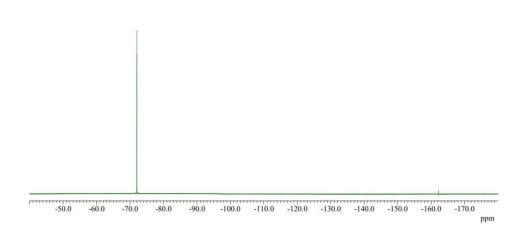


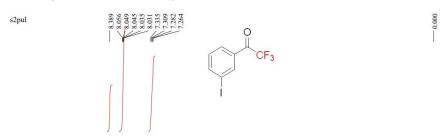

1 H NMR (300 MHz, Chloroform-d) of ${\bf 2i}$

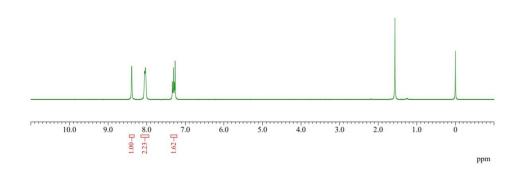


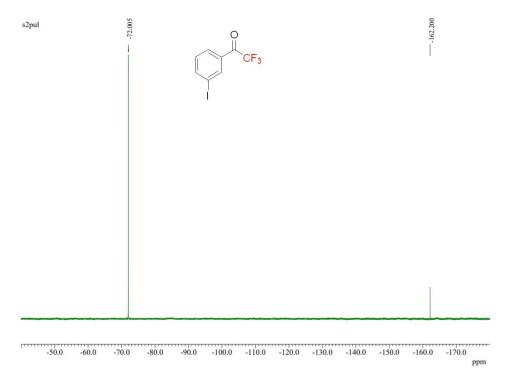

¹⁹F NMR (282 MHz, Chloroform-d) of **2i**



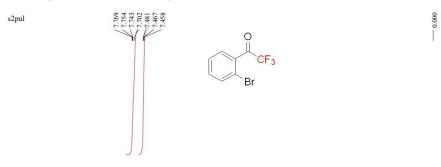

$^1\mathrm{H}$ NMR (300 MHz, Chloroform-d) of $\mathbf{2j}$

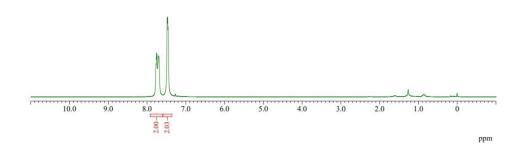



$^{19}\mathrm{F}$ NMR (282 MHz, Chloroform-d) of $\mathbf{2j}$

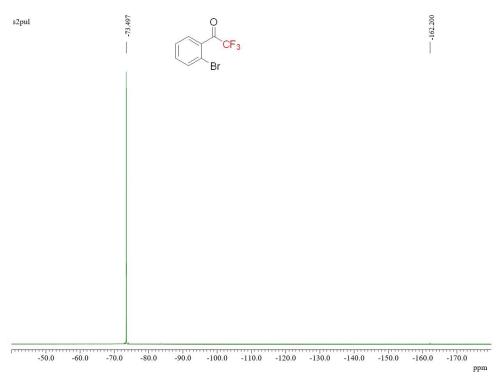


¹H NMR (300 MHz, Chloroform-d) of **2k**

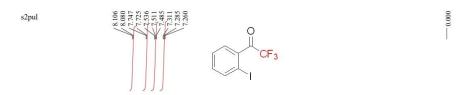


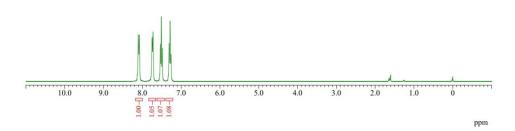


¹⁹F NMR (282 MHz, Chloroform-d) of **2k**

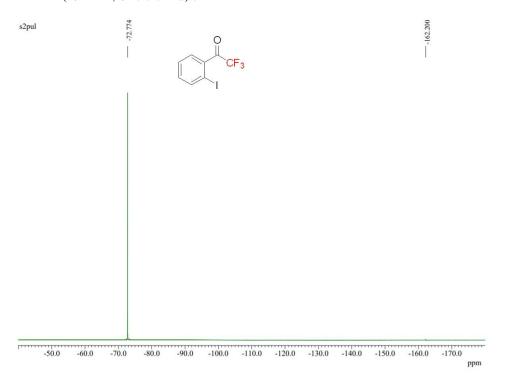


¹H NMR (300 MHz, Chloroform-d) of **21**

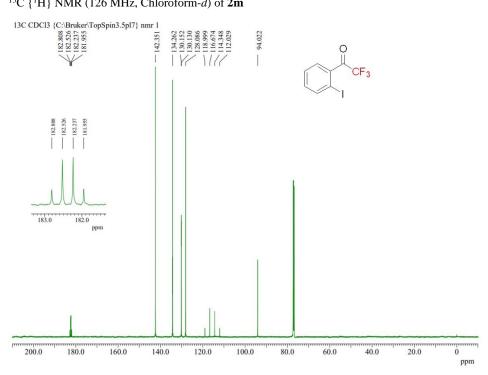


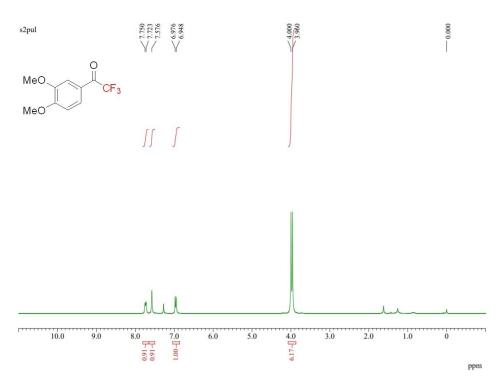


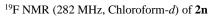
¹⁹F NMR (282 MHz, Chloroform-d) of 21

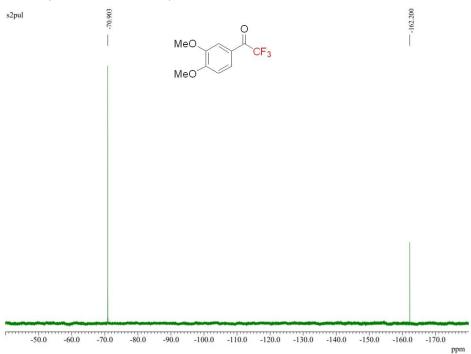


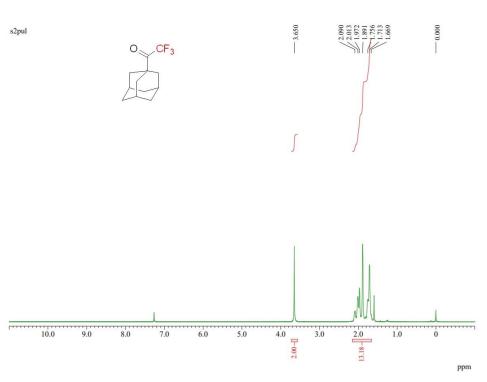
¹H NMR (300 MHz, Chloroform-*d*) of **2m**

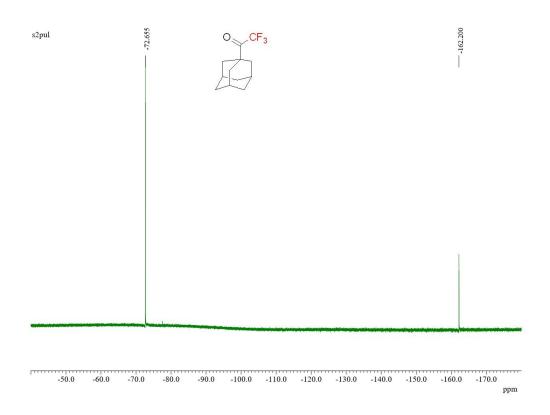


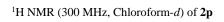

$^{19}\mathrm{F}\ \mathrm{NMR}\ (282\ \mathrm{MHz},\ \mathrm{Chloroform}\text{-}d)$ of $\mathbf{2m}$

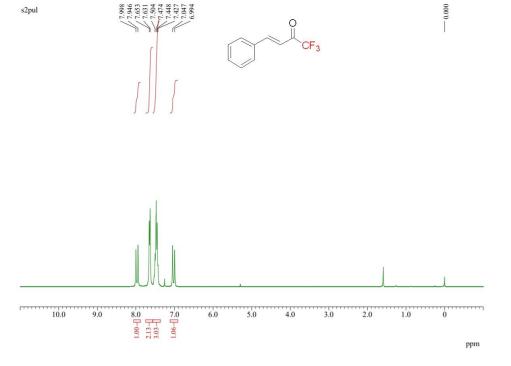


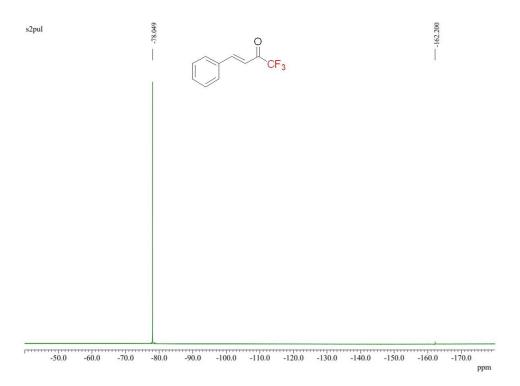

13 C $\{^{1}$ H $\}$ NMR (126 MHz, Chloroform-d) of $\bf 2m$


¹H NMR (300 MHz, Chloroform-d) of **2n**






¹H NMR (300 MHz, Chloroform-d) of **20**


$^{19}\mathrm{F}\ \mathrm{NMR}\ (282\ \mathrm{MHz},\ \mathrm{Chloroform}\text{-}d)$ of $\mathbf{2o}$

19 F NMR (282 MHz, Chloroform-d) of **2p**

