

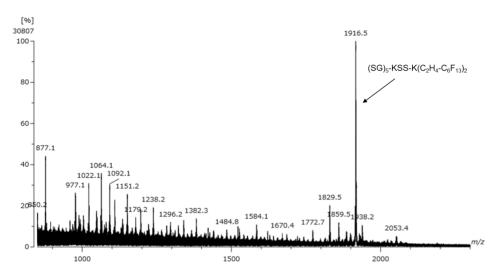
## **Supporting Information**

for

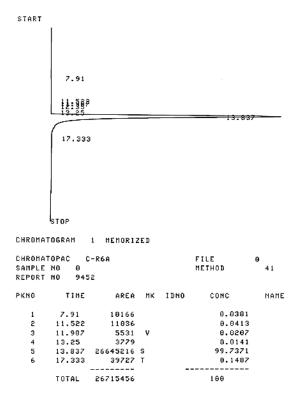
## Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting

Masayori Hagimori, Estefanía E. Mendoza-Ortega and Marie Pierre Krafft

Beilstein J. Org. Chem. 2021, 17, 511-518. doi:10.3762/bjoc.17.45


Mass spectrometry and FTIR data as well as RP-HPLC chromatograms of lipopeptides 1–4

## **Table of contents**


| 1. Instrumentation                                                                                                                                     | S2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. Figure S1: Mass spectrometry data of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>6</sub> F <sub>13</sub> ) <sub>2</sub> <b>1</b> | S2 |
| 3. Figure S2: RP-HPLC chromatogram of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>6</sub> F <sub>13</sub> ) <sub>2</sub> <b>1</b>   | S3 |
| 4. Figure S3: FTIR spectrum of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>6</sub> F <sub>13</sub> ) <sub>2</sub> <b>1</b>          | S3 |
| 5. Figure S4: Mass spectrometry data of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>7</sub> F <sub>15</sub> ) <sub>2</sub> <b>2</b> | S4 |
| 6. Figure S5: RP-HPLC chromatogram of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>7</sub> F <sub>15</sub> ) <sub>2</sub> <b>2</b>   | S4 |
| 7. Figure S6: FTIR spectrum of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>7</sub> F <sub>15</sub> ) <sub>2</sub> <b>2</b>          | S5 |
| 8. Figure S7: Mass spectrometry data of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>8</sub> F <sub>17</sub> ) <sub>2</sub> <b>3</b> | S5 |
| 9. Figure S8: RP-HPLC chromatogram of (SG) <sub>5</sub> -KSS-K(C <sub>2</sub> H <sub>4</sub> -C <sub>8</sub> F <sub>17</sub> ) <sub>2</sub> <b>3</b>   | S6 |
| 10. Figure S9: FTIR spectrum of (SG) <sub>5</sub> -KSS-K( $C_2H_4$ - $C_8F_{17}$ ) <sub>2</sub> <b>3</b>                                               | S6 |
| 11. Figure S10: Mass spectrometry data of (SG) <sub>5</sub> -KSS-K(C <sub>10</sub> H <sub>21</sub> ) <sub>2</sub> <b>4</b>                             | S7 |
| 12. Figure S11: RP-HPLC chromatogram of (SG) <sub>5</sub> -KSS-K(C <sub>10</sub> H <sub>21</sub> ) <sub>2</sub> <b>4</b>                               | S7 |
| 13. Figure S12: FTIR spectrum of (SG) <sub>5</sub> -KSS-K(C <sub>10</sub> H <sub>21</sub> ) <sub>2</sub> <b>4</b>                                      | S8 |

## Instrumentation:

Mass spectra (MS) and HRMS were performed using a JMS-700 spectrometer (JEOL, Japan). RP-HPLC chromatograms were recorded on a Prominence system (Shimadzu, Japan). FTIR spectra were recorded on IRAffinity-1 (Shimadzu, Japan).



**Figure S1:** Mass spectrometry data of  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_6F_{13})_2$  **1.** Exact mass of the  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_6F_{13})_2$  [M + H]<sup>+</sup> was calculated 1916.5511 and found 1916.5509.



**Figure S2:** RP-HPLC chromatogram of  $(SG)_5$ -KSS-K $(C_2H_4-C_6F_{13})_2$  **1**. HPLC conditions: the column was a COSMOSIL 5C18-AR-II 4.6 mm × 250 mm, flow rate was 0.5 mL/min, UV excitation at 220 nm, mobile phase systems were CH<sub>3</sub>CN/H<sub>2</sub>O 80:20.

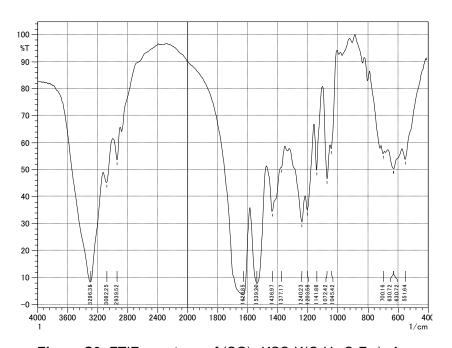
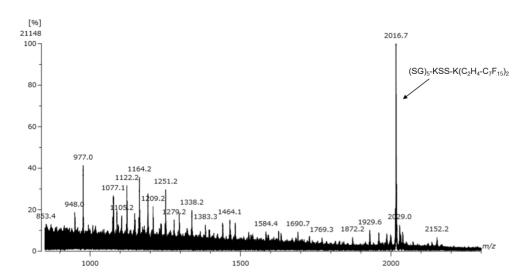
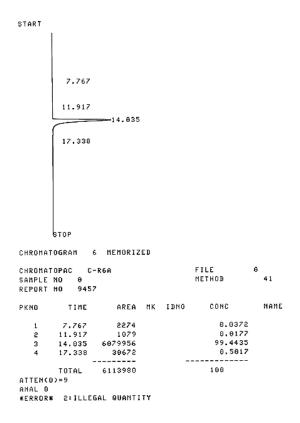





Figure S3: FTIR spectrum of  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_6F_{13})_2$  1.



**Figure S4:** Mass spectrometry data of  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_7F_{15})_2$  **2.** Exact mass of the  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_7F_{15})_2$  [M + H]<sup>+</sup> was calculated 2016.5447 and found 2016.5448.



**Figure S5:** RP-HPLC chromatogram of  $(SG)_5$ -KSS-K $(C_2H_4-C_7F_{15})_2$  **2**. HPLC conditions: the column was a COSMOSIL 5C18-AR-II 4.6 mm × 250 mm, flow rate was 0.5 mL/min, UV excitation at 220 nm, mobile phase systems were CH<sub>3</sub>CN/H<sub>2</sub>O 80:20.

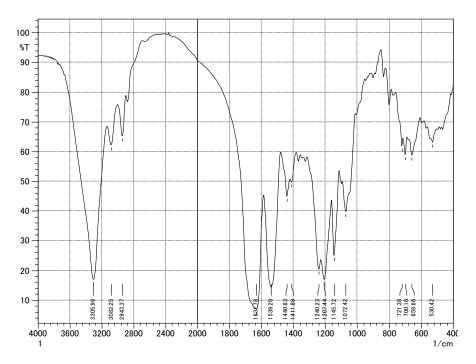
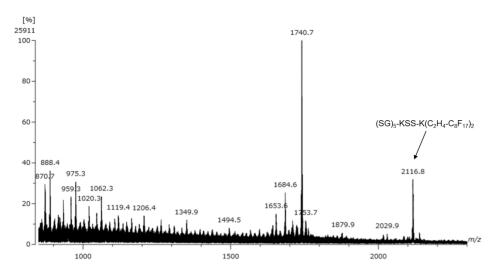
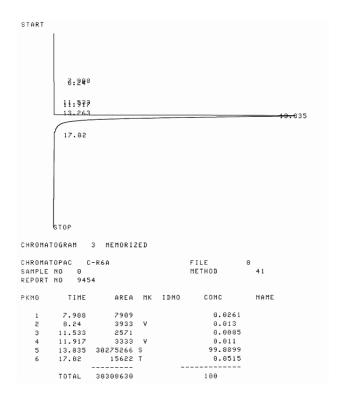





Figure S6: FTIR spectrum of  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_7F_{15})_2$  2.



**Figure S7:** Mass spectrometry data of  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_8F_{17})_2$  **3.** Exact mass of the  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_8F_{17})_2$  [M + H]<sup>+</sup> was calculated 2116.5383 and found 2116.5381.



**Figure S8:** RP-HPLC chromatogram of  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_8F_{17})_2$  **3.** HPLC conditions: the column was a COSMOSIL 5C18-AR-II 4.6 mm × 250 mm, flow rate was 0.5 mL/min, UV excitation at 220 nm, mobile phase systems were CH<sub>3</sub>CN/H<sub>2</sub>O 80:20.

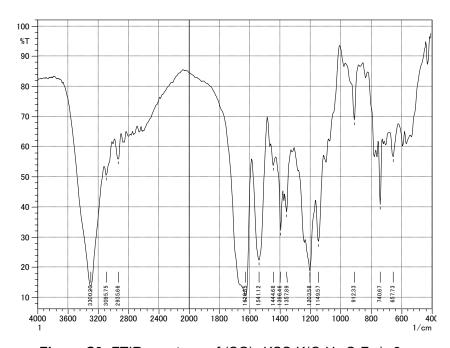
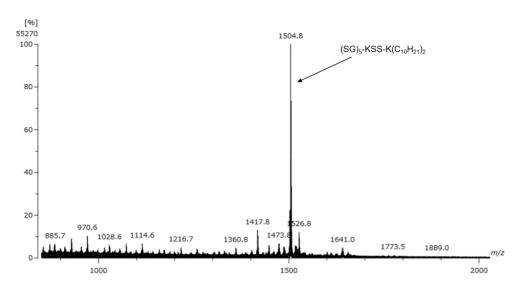
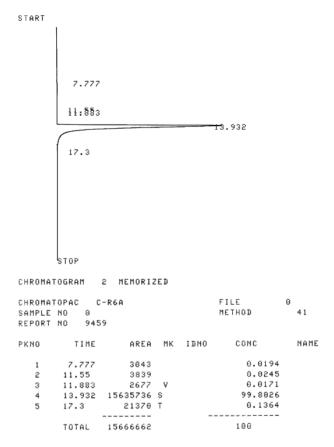





Figure S9: FTIR spectrum of  $(SG)_5$ -KSS-K $(C_2H_4$ - $C_8F_{17})_2$  3.



**Figure S10:** Mass spectrometry data of  $(SG)_5$ -KSS-K $(C_{10}H_{21})_2$  **4.** Exact mass of the  $(SG)_5$ -KSS-K $(C_{10}H_{21})_2$  [M + H]<sup>+</sup> was calculated 1504.8586 and found 1504.8585.



**Figure S11:** RP-HPLC chromatogram of  $(SG)_5$ -KSS-K $(C_{10}H_{21})_2$  **4.** HPLC conditions: the column was a COSMOSIL 5C18-AR-II 4.6 mm × 250 mm, flow rate was 0.5 mL/min, UV excitation at 220 nm, mobile phase systems were CH<sub>3</sub>CN/H<sub>2</sub>O 80:20.

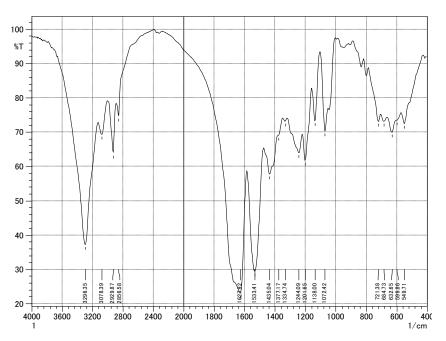



Figure S12: FTIR spectrum of (SG)<sub>5</sub>-KSS-K( $C_{10}H_{21}$ )<sub>2</sub> 4.