

Supporting Information

for

Synthesis and properties of oligonucleotides modified with an *N*-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing adenine, guanine, or 5-methylcytosine nucleobases

Naohiro Horie, Takao Yamaguchi, Shinji Kumagai and Satoshi Obika

Beilstein J. Org. Chem. 2021, 17, 622-629. doi:10.3762/bjoc.17.54

¹H, ¹³C, and ³²P NMR spectra for all new compounds, HPLC charts and MALDI–TOF mass data for all new oligonucleotides, UV melting curves of the duplexes formed between GuNA[Me]-modified oligonucleotides and ssDNAs (or ssRNAs), and CD spectra of ON4/ssRNA and ON4/ssDNA

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

- 1. ¹H NMR, ¹³C NMR, and ³¹P NMR spectra of new compounds
- 2. Characterisation of oligonucleotides
- 3. UV melting experiments
- 4. CD spectral analysis

1. ¹H NMR, ¹³C NMR, and ³¹P NMR spectra of new compounds

Figure S1: Compound 2a (¹H NMR, CDCl₃, 300 MHz)

Figure S2: Compound 2a (¹³C NMR, CDCl₃, 76 MHz)

Figure S3: Compound 2b (¹H NMR, CDCl₃, 300 MHz)

Figure S4: Compound 2b (¹³C NMR, CDCl₃, 76 MHz)

Figure S5: Compound 2c (¹H NMR, CDCl₃, 300 MHz)

Figure S6: Compound 2c (¹³C NMR, CDCl₃, 76 MHz)

Figure S7: Compound 3a (³¹P NMR, CDCl₃, 122 MHz)

Figure S8: Compound 3b (³¹P NMR, CDCl₃, 122 MHz)

Figure S9: Compound 3c (³¹P NMR, CDCl₃, 122 MHz)

2. Characterisation of oligonucleotides

Figure S10: HPLC charts of all new oligonucleotides. HPLC conditions: Reversed-phase HPLC (Waters XBridgeTM C18 column) with a linear gradient of acetonitrile (5 to 10% over 5 min, then 10 to 15% over 20 min, then 15 to 15%, over 5 min) in 0.1 M triethylammonium acetate buffer (pH 7.0). <u>A</u>, <u>G</u>, and <u>mC</u> indicate GuNA[Me] modifications.

ON1 5'-d(GCG TTA TTT GCT)-3' (A)

ON2 5'-(GCG TT<u>G</u> TTT GCT)-3' (B)

S13

ON3 5'-d(GCG TT^mC TTT GCT)-3' (C)

Figure S11: MALDI-TOF-MS charts of all new oligonucleotides. **ON1** 5'-d(GCG TT<u>A</u> TTT GCT)-3' (A), **ON2** 5'-(GCG TT<u>G</u> TTT GCT)-3' (B), **ON3** 5'-d(GCG TT<u>mC</u> TTT GCT)-3' (C); <u>A</u>, <u>G</u>, and <u>mC</u> indicate GuNA[Me] modifications.

3. UV melting experiments

Figure S12: Normalized UV melting curves for the duplexes formed between **ON1/ON6** and the complementally DNA or RNA strands. The sequences are 5'-d(GCG TT<u>A</u> TTT GCT)-3' and 5'-r/d(AGC AAA YAA CGC)-3', respectively.

Figure S13: Normalized UV melting curves for the duplexes formed between **ON2/ON7** and the complementally DNA or RNA strands. The sequences are 5'-d(GCG TT<u>G</u> TTT GCT)-3' and 5'-r/d(AGC AAA CAA CGC)-3', respectively. Y indicates U for RNA, and T for DNA.

Figure S14: Normalized UV melting curves for the duplexes formed between **ON3/ON8** and the complementally DNA or RNA strands. The sequences are $5'-d(GCG TT\underline{}^{m}CTTT GCT)-3'$ and 5'-r/d(AGC AAA GAA CGC)-3', respectively.

4. CD spectral analysis

Figure S15: CD spectra of the ON5/ssRNA, ON4/ssRNA, ON5/ssDNA and ON4/ssDNA duplexes. Conditions: 10 mM sodium phosphate buffer (pH 7.2), 100 mM NaCl, 4 μ M each oligonucleotide. Sequences of the complementary ssRNA and ssDNA are 5'-r(AGC AAA AAA CGC)-3' and 5'-d(AGC AAA AAA CGC)-3', respectively.