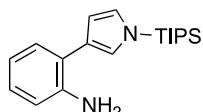


Supporting Information

for

Total synthesis of pyrrolo[2,3-*c*]quinoline alkaloid: trigonoine B

Takashi Nishiyama, Erina Hamada, Daishi Ishii, Yuuto Kihara, Nanase Choshi, Natsumi Nakanishi, Mari Murakami, Kimiko Taninaka, Noriyuki Hatae and Tominari Choshi

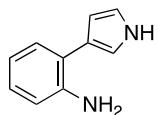

Beilstein J. Org. Chem. **2021**, *17*, 730–736. doi:10.3762/bjoc.17.62

^1H NMR and ^{13}C NMR spectra of all new compounds

EXPERIMENTAL SECTION

General experimental details. All non-aqueous reactions were carried out under an atmosphere of nitrogen in dried glassware unless otherwise noted. Solvents were dried and distilled according to standard protocols. Analytical thin-layer chromatography was performed with silica gel 60PF₂₅₄ (Merck). Silica gel column chromatography was performed with Silica gel 60 (70–230 mesh, Kanto Chemical Co. Lit.). All melting points were determined on Yanagimoto micro melting point apparatus and are uncorrected. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a JEOL AL-300 at 300 MHz. Chemical shifts are reported relative to Me₄Si (δ 0.00). Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); quin (quintet); sept (septet); m (multiplet); br (broad). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a JEOL AL-300 at 75 MHz. Chemical shifts are reported relative to CDCl₃ (δ 77.0) and DMSO-*d*₆ (δ 39.7). Infrared spectra were recorded with ATR method using a Shimadzu FTIR-8000 spectrophotometer and Technologies DuraScop. Low and high-resolution mass spectra were recorded on JEOL JMS-700 spectrometers by a direct inlet system.

2-(1-Triisopropylsilyl-1*H*-pyrrol-3-yl)aniline (**14**)¹



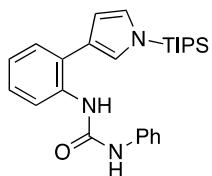
The synthesis of the known compound **14** was carried out according to a reference procedure.¹ A mixture of 2-iodoaniline (**12**, 249 mg, 1.1 mmol), 1-(triisopropylsilyl)-1*H*-pyrrole-3-boronic acid pinacol ester (**13**, 500 mg, 1.4 mmol), K₃PO₄ (485 mg, 2.3 mmol), Pd(OAc)₂ (9 mg, 0.04 mmol), and SPhos (33 mg, 0.08 mmol) in *n*-BuOH/H₂O (4 mL:2 mL) was stirred at 80 °C for 2 h under a N₂ atmosphere. The reaction mixture was quenched with water, and then extracted with EtOAc. The organic layer was washed with water and brine, dried over Na₂SO₄, and evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:5 (v/v) as an eluent to give the 2-(pyrrol-3-yl)aniline **14** (248 mg, 84%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (dd, *J* = 7.5 and 1.7 Hz, 1H), 7.05 (td, *J* = 7.5 and 1.7 Hz, 1H), 6.95 (dd, *J* = 2.2 and 1.5

Hz, 1H), 6.84 (dd, J = 2.8 and 2.2 Hz, 1H), 6.79 (td, J = 7.5 and 1.7 Hz, 1H), 6.74 (dd, J = 7.5 and 1.7 Hz, 1H), 6.51 (dd, J = 2.8 and 1.5 Hz, 1H), 3.93 (br s, 2H), 1.47 (sept, J = 7.3 Hz, 3H), 1.13 (d, J = 7.3 Hz, 18H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 143.6, 129.7, 126.9, 124.7, 123.8, 122.6, 122.3, 118.6, 115.5, 110.7, 17.8, 11.7 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{19}\text{H}_{30}\text{N}_2\text{Si}$, 314.2178; found, 314.2180. IR (ATR) ν (cm $^{-1}$): 3290.

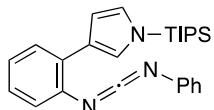
The spectral data were in agreement with the literature values.¹


2-(1H-Pyrrol-3-yl)aniline (15)²

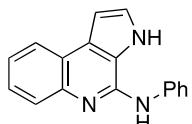
The synthesis of the known compound **15** was performed by a method³ different to the procedure described in ref. 2. A solution of TBAF (1.0 M in THF, 0.21 mL, 0.21 mmol) was added dropwise to a solution of TIPS-protected 2-(pyrrol-3-yl)aniline **14** (56 mg, 0.178 mmol) in THF (5 mL) at 0 °C under a N_2 atmosphere. After stirring at rt for 10 min, the reaction was quenched with water, and then extracted with EtOAc. The organic layer was washed with brine, dried over Na_2SO_4 , and evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) as an eluent to give the 2-(1H-pyrrol-3-yl)aniline (**15**, 65 mg, 65%). Yellow oil; ^1H NMR (300 MHz, CDCl_3) δ 8.35 (br s, 1H), 7.24 (dd, J = 7.5 and 1.7 Hz, 1H), 7.07 (td, J = 7.5 and 1.7 Hz, 1H), 6.98–7.00 (m, 1H), 6.87–6.89 (m, 1H), 6.79 (td, J = 7.5 and 1.7 Hz, 1H), 6.75 (dd, J = 7.5 and 1.7 Hz, 1H), 6.44–6.46 (m, 1H), 3.94 (br s, 2H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 143.8, 129.9, 127.2, 122.2, 121.9, 118.6, 118.4, 116.1, 115.5, 108.7 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{10}\text{H}_{10}\text{N}_2$, 158.0844; found, 158.0848; IR (ATR) ν (cm $^{-1}$): 3406.


The spectral data were in agreement with the literature values.²

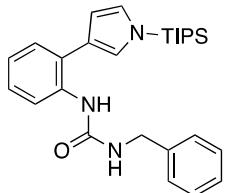
N-Phenyl-N’-[2-(1H-pyrrol-3-yl)phenyl]urea (16a)


A solution of phenyl isocyanate (62 μ L, 0.57 mmol) in CH_2Cl_2 (1 mL) was added dropwise to a solution of aniline **14** (60 mg, 0.38 mmol) in CH_2Cl_2 (2 mL) at rt under a N_2 atmosphere. After stirring at rt for 12 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 3:7 (v/v) as an eluent to give the urea **16a** (57 mg, 54%). White solid; mp = 160–161 $^{\circ}\text{C}$; ^1H NMR (300 MHz, $\text{DMSO}-d_6$) δ 11.09 (br s, 1H), 9.17 (s, 1H), 7.81 (dd, J = 7.8 and 1.7 Hz, 1H), 7.75 (br s, 1H), 7.44 (dd, J = 7.8 and 1.7 Hz, 2H), 7.23–7.32 (m, 3H), 7.14 (td, J = 7.8 and 1.7 Hz, 1H), 6.99–7.05 (m, 2H), 6.89–6.95 (m, 2H), 6.27–6.30 (m, 1H) ppm; ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$) δ 152.9, 140.1, 135.1, 129.2, 128.8, 127.9, 125.7, 123.0, 122.4, 121.6, 119.5, 118.7, 117.9, 116.7, 107.9 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{17}\text{H}_{15}\text{N}_3\text{O}$, 277.1215; found, 277.1227; IR (ATR) ν (cm $^{-1}$): 3325, 3286, 1631; IR (ATR) ν (cm $^{-1}$): 3302, 1651.

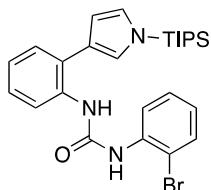
N-Phenyl-N’-[2-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)phenyl]urea (16b)


The same procedure as above was carried out using aniline **15** (300 mg, 0.96 mmol) to give the urea **16b** (220 mg, 53%). White solid; mp = 199–201 $^{\circ}\text{C}$; ^1H NMR (300 MHz, $\text{DMSO}-d_6$) δ 8.96 (br s, 1H), 7.74 (br s, 1H), 7.61 (dd, J = 7.4 and 1.7 Hz, 1H), 7.38–7.44 (m, 3H), 7.23–7.28 (m, 2H), 7.17 (td, J = 7.4 and 1.7 Hz, 1H), 7.07–7.12 (m, 2H), 6.91–6.96 (m, 2H), 6.51 (dd, J = 2.8 and 1.5 Hz, 1H), 1.48 (sept, J = 7.4 Hz, 3H), 1.05 (d, J = 7.4 Hz, 18H) ppm; ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$) δ 153.2, 140.1, 134.5, 129.2, 129.0, 128.7, 125.8, 124.90, 124.85, 124.1, 122.9, 122.6, 121.5, 117.8, 110.6, 17.6, 10.9 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{26}\text{H}_{35}\text{N}_3\text{OSi}$, 433.2549; found, 433.2553; IR (ATR) ν (cm $^{-1}$): 3325, 1651.

N-Phenyl-N’-[2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]carbodiimide (17b)

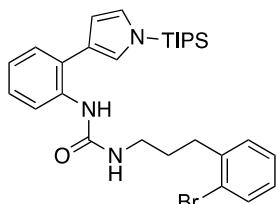

A solution of CBr₄ (380 mg, 1.2 mmol) in CH₂Cl₂ (2 mL) was added dropwise to a solution of urea **16b** (100 mg, 0.23 mmol), PPh₃ (303 mg, 1.2 mmol), and Et₃N (0.32 mL, 2.3 mmol) in CH₂Cl₂ (8 mL) at 0 °C. After stirring at rt for 2 h, the reaction mixture was then evaporated *in vacuo*. The residue was washed with EtOAc/hexane 1:4 (v/v) for 3 times and the filtrate was evaporated *in vacuo* to give the carbodiimide **17b** (56 mg, 58%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.64–7.70 (m, 1H), 7.51–7.55 (m, 1H), 7.46–7.49 (m, 1H), 7.34 (dd, *J* = 2.2 and 1.5 Hz, 1H), 7.26–7.35 (m, 2H), 7.11–7.17 (m, 4H), 6.80 (dd, *J* = 2.8 and 2.2 Hz, 1H), 6.71 (dd, *J* = 2.8 and 1.5 Hz, 1H), 1.46 (sept, *J* = 7.4 Hz, 3H), 1.12 (d, *J* = 7.4 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 134.1, 132.1, 130.7, 129.4, 128.8, 128.6, 128.5, 126.2, 125.9, 125.7, 125.0, 124.3, 124.0, 123.0, 110.6, 17.8, 11.7 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₂₆H₃₃N₃Si, 415.2444; found, 415.2448; IR (ATR) ν (cm⁻¹): 2133.

N-Phenyl-3*H*-pyrrolo[2,3-*c*]quinolin-4-amine (18)

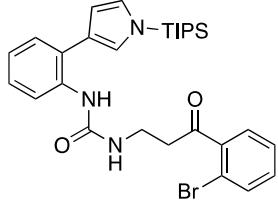

A solution of TBAF (1.0 M in THF, 80 μL, 0.080 mmol) was added dropwise to a solution of carbodiimide **17b** (28 mg, 0.067 mmol) in 1,2-dichlorobenzene (2.0 mL) under a N₂ atmosphere. After stirring at 80 °C for 1 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:5 (v/v) as an eluent to give the pyrroloquinoline **18** (10 mg, 58%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (dd, *J* = 7.8 and 1.5 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.46 (td, *J* = 7.8 and 1.5 Hz, 1H), 7.37 (td, *J* = 7.8 and 1.5 Hz, 1H), 7.28–7.35 (m, 4H), 7.18 (d, *J* = 2.9 Hz, 1H), 7.05–7.09 (m, 1H), 6.95 (d, *J* = 2.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 141.2, 140.9, 129.8, 129.4, 126.5, 125.3, 125.1, 123.7, 123.2, 122.7, 121.5, 121.1, 120.1, 102.1 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₁₇H₁₃N₃, 259.1109; found, 259.1117; IR (ATR) ν (cm⁻¹): 3332.

N-Benzyl-N’-[2-(1-triisopropylsilyl-1H-pyrrol-3-yl)phenyl]urea (19a)

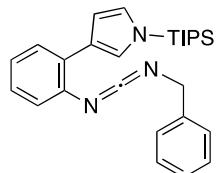
A solution of benzyl isocyanate (0.29 mL, 2.4 mmol) in CH_2Cl_2 (5 mL) was added dropwise to a solution of 2-(1H-pyrrol-3-yl)aniline **14** (500 mg, 1.6 mmol) in CH_2Cl_2 (10 mL) at rt under N_2 atmosphere. After stirring at rt for 12 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) as an eluent to give the urea **19a** (355 mg, 50%). White solid; mp = 136–138 °C; ^1H NMR (300 MHz, CDCl_3) δ 7.74 (dd, J = 7.5 and 1.4 Hz, 1H), 7.39 (dd, J = 7.5 and 1.4 Hz, 1H), 7.26–7.32 (m, 3H), 7.19–7.24 (m, 3H), 7.12 (td, J = 7.5 and 1.4 Hz, 1H), 6.96 (dd, J = 2.0 and 1.6 Hz, 1H), 6.84 (dd, J = 2.8 and 2.0 Hz, 1H), 6.46–6.47 (m, 2H), 4.84 (t, J = 6.1 Hz, 1H), 4.42 (d, J = 6.1 Hz, 1H), 1.45 (sept, J = 7.4 Hz, 3H), 1.11 (d, J = 7.4 Hz, 18H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 155.8, 139.0, 134.7, 129.1, 129.6, 128.6, 127.5, 127.3, 126.9, 125.2, 124.5, 123.3, 123.0, 122.7, 110.6, 44.3, 17.8, 11.6 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{27}\text{H}_{37}\text{N}_3\text{OSi}$, 447.2706; found, 447.2714. IR (ATR) ν (cm $^{-1}$): 3290, 1624.


N-(2-Bromophenyl)-N’-[2-(1-triisopropylsilyl-1H-pyrrol-3-yl)phenyl]urea (19b)

The analogous procedure as described above was carried out using aniline **14** (347 mg, 1.11 mmol) and the corresponding aryl isocyanate to give the urea **19b** (526 mg, 98%). White solid; mp = 99–100 °C; ^1H NMR (300 MHz, CDCl_3) δ 8.17 (dd, J = 7.8 and 1.5 Hz, 1H), 7.77 (dd, J = 7.8 and 1.5 Hz, 1H), 7.43–7.48 (m, 2H), 7.28–7.31 (m, 1H), 7.20 (td, J = 7.8 and 1.5 Hz, 1H), 6.97–6.99 (m, 2H), 6.91 (td, J = 7.8 and 1.5 Hz, 1H), 6.83 (dd, J = 2.8 and 2.2 Hz, 1H), 6.68 (br s, 1H), 6.49 (dd, J = 2.8 and 1.5 Hz, 1H), 1.45 (sept, J = 7.5 Hz, 3H), 1.11 (d, J = 7.5 Hz, 18H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 152.9,


136.3, 133.7, 132.5, 132.1, 130.1, 129.8, 128.2, 127.0, 125.5, 125.3, 124.2, 124.1, 123.1, 122.5, 121.5, 113.5, 110.7, 17.8, 11.6 ppm; HRMS (EI) m/z : [M $^+$] calcd for C₂₆H₃₄BrN₃OSi, 511.1655; found, 511.1665. IR (ATR) ν (cm $^{-1}$): 3294, 1655.

***N*-[3-(2-Bromophenyl)propyl]-*N'*-[2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]urea (19c)**

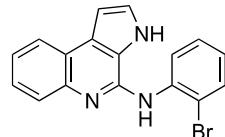

To a solution of 4-(2-bromophenyl)butanoic acid (300 g, 1.2 mmol) in toluene (15 mL) was added diphenylphosphoryl azide (0.3 mL, 1.6 mmol) and Et₃N (0.25 mL, 1.8 mmol). After stirring at rt for 30 min, the reaction mixture was evaporated *in vacuo* to give the isocyanate as a yellow oil. The isocyanate was used in the next reaction without purification. A solution of the isocyanate in CH₂Cl₂ (3.0 mL) was added dropwise to a solution of aniline **14** (193 mg, 0.62 mmol) in CH₂Cl₂ (3.0 mL) at rt under N₂ atmosphere. After stirring at rt for 20 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) as an eluent to give the urea **19c** (215 mg, 64%). White solid; mp = 134–135 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.65 (dd, J = 8.0 and 1.1 Hz, 1H), 7.48 (dd, J = 8.0 and 1.1 Hz, 1H), 7.42 (dd, J = 8.0 and 1.1 Hz, 1H), 7.16–7.26 (m, 3H), 7.14 (td, J = 8.0 and 2.2 Hz, 1H), 7.00–7.06 (m, 1H), 6.96 (dd, J = 2.9 and 1.5 Hz, 1H), 6.83 (dd, J = 2.9 and 2.0 Hz, 1H), 6.49 (dd, J = 2.9 and 1.5 Hz, 1H), 6.33 (br s, 1H), 4.64 (t, J = 6.0 Hz, 1H), 3.25 (dt J = 7.2 and 6.0 Hz, 2H), 2.72 (t, J = 7.2 Hz, 2H), 1.78 (quin, J = 7.2 Hz, 2H), 1.47 (sept, J = 7.5 Hz, 3H), 1.11 (d, J = 7.5 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 156.1, 140.8, 134.7, 132.7, 130.3, 129.62, 129.57, 127.6, 127.5, 126.8, 125.1, 124.7, 124.3, 123.9, 123.0, 122.7, 110.7, 39.7, 33.3, 30.2, 17.8, 11.6 ppm; HRMS (EI) m/z : [M $^+$] calcd for C₂₉H₄₀BrN₃OSi, 553.2124; found, 553.2128. IR (ATR) ν (cm $^{-1}$): 3294, 1624.

N-[3-(2-Bromophenyl)-3-oxopropyl]-N’-[2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]urea (19d)

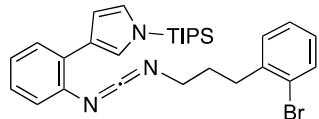
The same procedure as above was carried out using aniline **14** (73 mg, 0.23 mmol) and 4-(2-bromophenyl)-4-oxobutanoic acid (120 mg, 0.47 mmol) to give the urea **19d** (62 mg, 98%). White solid; mp = 121–123 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.0 and 1.2 Hz, 1H), 7.59 (dd, *J* = 8.0 and 1.2 Hz, 1H), 7.35–7.39 (m, 3H), 7.29–7.33 (m, 1H), 7.23 (td, *J* = 8.0 and 1.2 Hz, 1H), 7.11 (td, *J* = 8.0 and 1.2 Hz, 1H), 6.92 (dd, *J* = 2.2 and 1.5 Hz, 1H), 6.84 (dd, *J* = 2.8 and 2.2 Hz, 1H), 6.45 (dd, *J* = 2.8 and 1.5 Hz, 1H), 6.42 (br s, 1H), 5.15 (t, *J* = 6.5 Hz, 1H), 3.63 (dt *J* = 6.5 and 6.1 Hz, 2H), 3.18 (t, *J* = 6.1 Hz, 2H), 1.47 (sept, *J* = 7.5 Hz, 3H), 1.12 (d, *J* = 7.5 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 203.4, 155.8, 140.8, 134.9, 133.9, 131.8, 129.7, 128.7, 128.5, 127.5, 126.9, 125.3, 124.3, 123.0, 122.8, 122.7, 118.7, 110.7, 42.8, 35.2, 17.8, 11.6 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₂₉H₃₈BrN₃O₂Si, 567.1917; found, 567.1923; IR (ATR) ν (cm⁻¹): 3317, 1705, 1651.


N-Benzyl-N’-[2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]carbodiimide (20a)

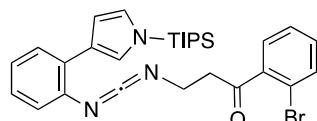
A solution of CBr₄ (148 mg, 0.45 mmol) in CH₂Cl₂ (2 mL) was added dropwise to a solution of urea **19a** (100 mg, 0.22 mmol), PPh₃ (117 mg, 0.45 mmol), and Et₃N (0.12 mL, 0.90 mmol) in CH₂Cl₂ (8 mL) at 0 °C. After stirring at rt for 2 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:9 (v/v) as an eluent to give the carbodiimide **20a** (62 mg, 64%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.48 (m, 1H), 7.34–7.36 (m, 4H), 7.28–7.30 (m, 2H), 7.03–7.11 (m, 3H), 6.79 (dd, *J* = 2.8 and 2.1 Hz, 1H), 6.66 (dd, *J* = 2.8 and 1.5 Hz, 1H), 4.52 (s, 2H), 1.47 (sept, *J* = 7.3 Hz, 3H), 1.12 (d, *J* = 7.3 Hz, 18H) ppm; ¹³C NMR


(75 MHz, CDCl_3) δ 138.2, 136.8, 135.8, 130.3, 128.7, 127.6, 127.5, 127.3, 126.0, 125.2, 125.0, 124.1, 123.2, 110.6, 50.4, 17.9, 11.7 ppm; HRMS (EI) m/z : $[\text{M}^+]$ calcd for $\text{C}_{27}\text{H}_{35}\text{N}_3\text{Si}$, 429.2600; found, 429.2610. IR (ATR) ν (cm^{-1}): 2137.

***N*-(2-Bromophenyl)-*N'*-[2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]carbodiimide (20b)**

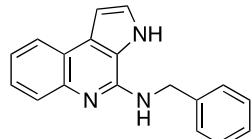

A solution of CBr_4 (119 mg, 0.361 mmol) in CH_2Cl_2 (1 mL) was added dropwise to a solution of urea **19b** (35 mg, 0.072 mmol), PPh_3 (94 mg, 0.36 mmol), and Et_3N (0.1 mL, 0.72 mmol) in CH_2Cl_2 (2 mL) at 0 °C. After stirring at rt for 2 h, the reaction mixture was evaporated *in vacuo* to give the crude carbodiimide **20b**. The carbodiimide **20b** was used in the next reaction without purification, because it was unstable.

***N*-(2-Bromophenyl)-3*H*-pyrrolo[2,3-*c*]quinolin-4-amine (22b)**

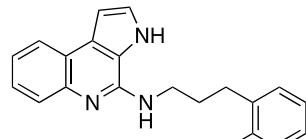

A solution of TBAF (1.0 M in THF, 86 μL , 0.0864 mmol) was added dropwise to a solution of the crude carbodiimide **20b** in 1,2-dichlorobenzene (3 mL) under a N_2 atmosphere. After stirring at 80 °C for 1 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using $\text{EtOAc}/\text{hexane}$ 3:7 (v/v) as an eluent to give the pyrroloquinolin **22b** (12 mg, 49%). Colorless oil; ^1H NMR (300 MHz, $\text{DMSO}-d_6$) δ 11.99 (br s, 1H), 8.33 (br s, 1H), 8.03–8.13 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.60–7.63 (m, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.29–7.46 (m, 3H), 7.03–7.13 (m, 2H) ppm; ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$) δ 142.9, 141.6, 138.1, 132.7, 128.4, 127.8, 126.8, 126.3, 126.0, 125.5, 124.9, 122.54, 122.46, 121.3, 119.4, 116.5, 101.6 ppm; HRMS (EI) m/z : $[\text{M}^+]$ calcd for $\text{C}_{17}\text{H}_{12}\text{BrN}_3$, 337.0215; found, 337.0225. IR (ATR) ν (cm^{-1}): 2962.

***N*-[3-(2-Bromophenyl)propyl]-*N'*-[2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]carbodiimide (20c)**

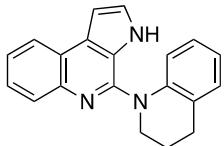
A solution of CBr₄ (1.70 g, 5.1 mmol) in CH₂Cl₂ (10 mL) was added dropwise to a solution of urea **19c** (568 mg, 1.03 mmol), PPh₃ (1.34 g, 5.1 mmol), and Et₃N (1.4 mL, 10.3 mmol) in CH₂Cl₂ (20 mL) at 0 °C. After stirring at rt for 2 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) as an eluent to give the carbodiimide **20c** (411 mg, 75%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.48–7.54 (m, 2H), 7.34 (dd, *J* = 2.0 and 1.5 Hz, 1H), 7.20–7.23 (m, 3H), 7.03–7.14 (m, 3H), 6.79 (dd, *J* = 2.7 and 2.0 Hz, 1H), 6.70 (dd, *J* = 2.7 and 1.5 Hz, 1H), 3.41 (t, *J* = 6.6 Hz, 2H), 2.86 (dt *J* = 6.6 and 6.1 Hz, 2H), 1.95 (t, *J* = 6.1 Hz, 2H), 1.47 (sept, *J* = 7.5 Hz, 3H), 1.13 (d, *J* = 7.5 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 140.5, 136.3, 135.7, 132.9, 130.5, 130.2, 128.7, 127.8, 127.5, 126.0, 125.0, 124.8, 124.4, 124.0, 123.3, 110.6, 46.1, 33.4, 31.3, 17.8, 11.7 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₂₉H₃₈BrN₃Si, 535.2018; found, 535.2012. IR (ATR) ν (cm⁻¹): 2137.


***N*-[3-(2-Bromophenyl)-3-oxopropyl]-*N'*-[2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]carbodiimide (20d)**

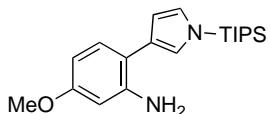
A solution of CBr₄ (443 mg, mmol) in CH₂Cl₂ (5 mL) was added dropwise to a solution of urea **19d** (152 mg, 0.27 mmol), PPh₃ (351 mg, 1.34 mmol), and Et₃N (0.4 mL, 2.68 mmol) in CH₂Cl₂ (4 mL) at 0 °C. After stirring at rt for 2 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:9 (v/v) as an eluent to give the carbodiimide **20d** (99 mg, 68%). Brown oil; ¹H NMR (300 MHz, CDCl₃) δ 7.58–7.61 (m, 1H), 7.45–7.49 (m, 1H), 7.36–7.41 (m, 1H), 7.28–7.32 (m, 3H), 7.17–7.21 (m, 1H), 7.07–7.13 (m, 2H), 6.79 (dd, *J* = 2.8 and 2.2 Hz, 1H), 6.68 (dd, *J* = 2.8 and 1.5 Hz, 1H), 3.79 (t, *J* = 6.8 Hz, 2H), 3.26 (t *J* = 6.8 Hz, 2H), 1.45 (sept, *J* = 7.6 Hz, 3H), 1.12 (d, *J* = 7.6 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 201.4, 141.1, 136.1, 135.7, 133.7, 131.8, 130.3, 128.8, 128.7,


127.5, 126.1, 125.3, 125.0, 124.0, 123.2, 118.7, 110.6, 43.8, 41.7, 17.8, 11.7 ppm; HRMS (EI) m/z : [M⁺] calcd for C₂₉H₃₅BrN₃OSi, 549.1811; found, 549.1823. IR (ATR) ν (cm⁻¹): 2133.

N-Benzyl-3H-pyrrolo[2,3-*c*]quinolin-4-amine (22a)

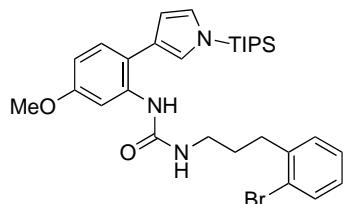

A solution of TBAF (1.0 M in THF, 0.14 mL, 0.14 mmol) was added dropwise to a solution of carbodiimide **19a** (50 mg, 0.12 mmol) in 1,2-dichlorobenzene (10 mL) under N₂ atmosphere. After stirring at 80 °C for 1 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:9 (v/v) as an eluent to give the pyrroloquinolin **22a** (26 mg, 90%). Brown solid; mp = 145–146 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 7.7 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 1H), 7.06–7.19 (m, 6H), 6.86 (d, *J* = 2.8 Hz, 1H), 4.72 (s, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 145.9, 142.3, 138.5, 128.8, 128.5, 127.9, 127.3, 126.3, 125.4, 124.8, 122.7, 122.6, 120.5, 119.1, 102.4, 45.6 ppm; HRMS (EI) m/z : [M⁺] calcd for C₁₈H₁₅N₃, 273.1266; found, 273.1276. IR (ATR) ν (cm⁻¹): 3329.

N-[3-(2-bromophenyl)propyl]-3H-pyrrolo[2,3-*c*]quinolin-4-amine (22c)

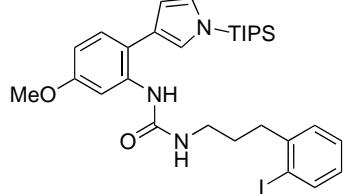

The same procedure as above was carried out using carbodiimide **19c** (102 mg, 0.1 mmol) to give the pyrrolo[2,3-*c*]quinoline **22c** (45 mg, 61%). White solid; mp = 158–159 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 8.3 Hz, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.37 (dd, *J* = 8.3 Hz, 1H), 7.33 (d, *J* = 2.8 Hz, 1H), 7.22–7.27 (m, 1H), 7.09 (t, *J* = 7.8 Hz, 1H), 6.98 (t, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 2.8 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 5.20 (br s, 1H), 3.30 (t, *J* = 7.2 Hz, 2H), 2.29 (t, *J* = 7.2 Hz, 2H), 1.28 (quin, *J* = 7.1 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 147.3, 142.6, 140.5, 132.5, 130.1, 128.7, 127.5, 127.3, 126.3, 125.1, 124.8, 124.3, 122.8, 122.4, 120.9, 119.7, 102.5, 41.1, 33.0, 28.7 ppm; HRMS (EI) m/z : [M⁺] calcd for C₂₀H₁₈BrN₃, 379.0684; found, 379.0692. IR (ATR) ν (cm⁻¹): 3309.

4-[1,2,3,4-Tetrahydroquinolin-1-yl]-3*H*-pyrrolo[2,3-*c*]quinoline (23)

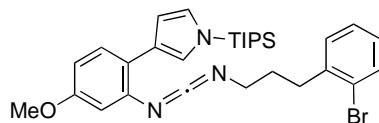
A mixture of pyrrolo[2,3-*c*]quinoline **22c** (38 mg, 0.10 mmol), Pd(OAc)₂ (1.12 mg, 5.0 μ mol), Cu(OAc)₂ (9.1 mg, 50 μ mol) and K₂CO₃ (69 mg, 0.50 mmol) in toluene (2.0 mL) was refluxed for 3 h under N₂ atmosphere. The reaction mixture was filtered through Celite pad and the organic layer was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) as an eluent to give the tetrahydroquinoline **23** (10 mg, 34%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.12 (dd, *J* = 7.8 and 1.6 Hz, 1H), 8.00 (dd, *J* = 7.8 and 1.6 Hz, 1H), 7.91 (br s, 1H), 7.54 (td, *J* = 7.8 and 1.6 Hz, 1H), 7.45 (td, *J* = 7.8 and 1.6 Hz, 1H), 7.22 (dd, *J* = 7.8 and 1.6 Hz, 1H), 7.14 (t, *J* = 2.8 Hz, 1H), 7.03 (td, *J* = 8.0 and 1.6 Hz, 1H), 6.93–6.98 (m, 2H), 6.75 (dd, *J* = 7.8 and 1.6 Hz, 1H), 4.19 (t, *J* = 6.2 Hz, 2H), 2.92 (t, *J* = 6.2 Hz, 2H), 1.12 (quin, *J* = 6.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 145.1, 142.8, 141.2, 130.1, 129.2, 129.1, 127.6, 126.3, 126.2, 124.4, 123.9, 122.5, 122.0, 121.9, 121.7, 118.7, 101.6, 47.3, 27.5, 24.1 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₂₀H₁₇N₃, 299.1422; found, 299.1432.


5-Methoxy-2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)aniline (25)

The synthesis of compound **25** was carried out according to the reference procedure.¹ A mixture of 2-iodo-5-methoxyaniline (**24**, 249 mg, 1.1 mmol), 1-(triisopropylsilyl)-1*H*-pyrrole-3-boronic acid pinacol ester (**13**, 500 mg, 1.4 mmol), K₃PO₄ (486 mg, 2.3 mmol), Pd(OAc)₂ (13 mg, 57 μ mol), and SPhos (47 mg, 114 μ mol) in *n*-BuOH/H₂O (6 mL:3 mL) was stirred at 80 °C for 2 h under N₂ atmosphere. The reaction was quenched with water, and then the mixture extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) to give the 2-(pyrrol-3-yl)aniline **25** (227 mg, 66%). Brown oil; ¹H NMR (300 MHz, CDCl₃) δ 7.17 (d, *J* = 8.3 Hz, 1H), 6.87–6.89

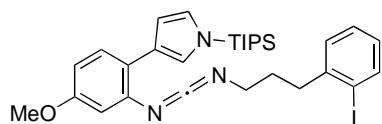

(m, 1H), 6.83 (t, J = 2.5 Hz, 1H), 6.44–6.46 (m, 1H), 6.35–6.40 (m, 2H), 3.78 (s, 3H), 1.47 (sept, J = 7.6 Hz, 3H), 1.12 (d, J = 7.6 Hz, 18H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 159.0, 144.6, 130.5, 124.6, 123.4, 121.9, 115.8, 110.7, 104.0, 101.0, 55.1, 17.8, 11.6 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{19}\text{H}_{30}\text{N}_2\text{Si}$, 314.2178; found, 314.2184; IR (ATR) ν (cm $^{-1}$): 2943.

***N*-[3-(2-Bromophenyl)propyl]-*N'*-[5-methoxy-2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]urea (27a)**

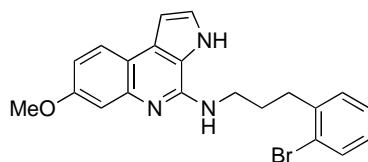

To a solution of 4-(2-bromophenyl)butanoic acid (620 mg, 2.6 mmol) in toluene (15 mL) was added diphenylphosphoryl azide (0.70 mL, 3.3 mmol) and Et_3N (0.50 mL, 3.4 mmol). After stirring at rt for 30 min, the reaction mixture was evaporated *in vacuo* to give the isocyanate as yellow oil. The isocyanate was used in the next reaction without purification. A solution of the isocyanate in CH_2Cl_2 (11 mL) was added dropwise to a solution of the aniline **25** (438 mg, 1.3 mmol) in CH_2Cl_2 (10 mL) at rt under a N_2 atmosphere. After stirring at rt for 20 h, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using $\text{EtOAc}/\text{hexane}$ 1:4 (v/v) as an eluent to give the urea **27a** (448 mg, 60%). White solid; mp = 117–118 °C; ^1H NMR (300 MHz, CDCl_3) δ 7.49 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 2.6 Hz, 1H), 7.27 (d, J = 8.3 Hz, 1H), 7.17–7.21 (m, 2H), 7.00–7.06 (m, 1H), 6.86 (t, J = 1.5 Hz, 1H), 6.82 (t, J = 2.6 Hz, 1H), 6.68 (dd, J = 8.3 and 2.6 Hz, 1H), 6.55 (br s, 1H), 6.41 (dd, J = 2.6 and 1.5 Hz, 1H), 4.69 (br s, 1H), 3.83 (s, 3H), 3.22–3.26 (m, 2H), 2.73 (t, J = 7.5 Hz, 2H), 1.78 (quin, J = 7.5 Hz, 2H) 1.46 (sept, J = 7.4 Hz, 3H), 1.11 (d, J = 7.4 Hz, 18H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 158.6, 155.7, 140.7, 136.1, 132.7, 130.4, 130.3, 127.7, 127.5, 125.1, 124.3, 122.6, 122.4, 120.9, 110.6, 110.3, 107.5, 55.4, 39.8, 33.3, 30.2, 17.8, 11.6 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{30}\text{H}_{42}\text{BrN}_3\text{O}_2\text{Si}$, 583.2230; found, 583.2237. IR (ATR) ν (cm $^{-1}$): 3298, 1631.

***N*-[3-(2-Iodophenyl)propyl]-*N'*-[5-methoxy-2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]urea (27b)**

The same procedure as above was carried out using aniline **25** (50 mg, 0.145 mmol) and 4-(2-bromophenyl)butanoic acid (105 mg, 0.362 mmol) to give the urea **27b** (66 mg, 70%). White solid; mp = 124–125 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.77 (dd, *J* = 7.8 and 1.2 Hz, 1H), 7.46 (d, *J* = 2.8 Hz, 1H), 7.26–7.28 (m, 1H), 7.20 (td, *J* = 7.8 and 1.2 Hz, 1H), 6.82–6.89 (m, 3H), 6.68 (dd, *J* = 8.3 and 2.8 Hz, 1H), 6.48 (br s, 1H), 6.42 (dd, *J* = 2.5 and 1.3 Hz, 1H), 4.65 (t, *J* = 5.8 Hz, 1H), 3.83 (s, 3H), 3.27 (dt, *J* = 7.9 and 5.8 Hz, 2H), 2.72 (t, *J* = 7.9 Hz, 1H), 1.76 (quin, *J* = 7.9 Hz, 2H) 1.46 (sept, *J* = 7.8 Hz, 3H), 1.11 (d, *J* = 7.8 Hz, 18H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.7, 155.7, 144.0, 139.4, 136.1, 130.4, 129.4, 128.4, 127.8, 125.1, 122.6, 122.4, 121.0, 110.7, 110.3, 107.6, 100.5, 55.4, 39.8, 38.0, 30.6, 17.8, 11.6 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₃₀H₄₂IN₃O₂Si, 631.2091; found, 631.2097. IR (ATR) ν (cm⁻¹): 3275, 2360, 1624; IR (ATR) ν (cm⁻¹): 3275, 1624.

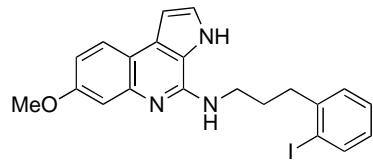

***N*-[3-(2-Bromophenyl)propyl]-*N'*-[5-methoxy-2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]carbodiimide (28a)**

A solution of CBr₄ (1.53 g, 4.6 mmol) in CH₂Cl₂ (10 mL) was added dropwise to a solution of urea **27a** (540 mg, 0.92 mmol), PPh₃ (1.21 g, 4.6 mmol), and Et₃N (1.3 mL, 9.2 mmol) in CH₂Cl₂ (21 mL) at 0 °C. After stirring at rt for 30 min, the reaction mixture was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) as an eluent to give the carbodiimide **28a** (387 mg, 74%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.20–7.22 (m, 3H), 7.03–7.08 (m, 1H), 6.77 (dd, *J* = 2.8 and 1.5 Hz, 1H), 6.76 (d, *J* = 2.5 Hz, 1H), 6.69 (dd, *J* = 8.5 and 2.7 Hz, 1H), 6.63 (dd, *J* = 2.8 and 1.5 Hz, 1H), 3.83 (s,

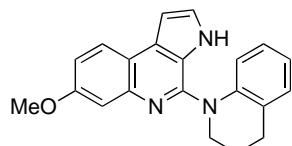

3H), 3.39 (t, J = 7.9 Hz, 2H), 2.85 (t, J = 7.5 Hz, 2H), 1.94 (quin, J = 7.5 Hz, 2H), 1.46 (sept, J = 7.4 Hz, 3H), 1.12 (d, J = 7.4 Hz, 18H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 157.9, 140.4, 137.2, 135.2, 132.8, 130.5, 129.5, 127.7, 127.4, 124.3, 123.8, 123.4, 123.1, 123.0, 110.9, 110.5, 109.9, 55.3, 45.9, 33.3, 31.2, 17.8, 11.6 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{30}\text{H}_{40}\text{BrN}_3\text{OSi}$, 565.2124; found, 565.2128; IR (ATR) ν (cm $^{-1}$): 2866.

***N*-[3-(2-Iodophenyl)propyl]-*N*'-[5-methoxy-2-(1-triisopropylsilyl-1*H*-pyrrol-3-yl)phenyl]carbodiimide (28b)**

The same procedure as above was carried out using the urea **27b** (350 mg, 0.56 mmol) to give the carbodiimide **28b** (262 mg, 77%). Yellow oil; ^1H NMR (300 MHz, CDCl_3) δ 7.80 (dd, J = 7.8 and 1.4 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.25 (s, 1H), 7.20–7.22 (m, 2H), 6.88 (td, J = 7.8 and 1.4 Hz, 1H), 6.78 (t, J = 8.5 Hz, 1H), 6.75 (d, J = 2.8 Hz, 1H), 6.69 (dd, J = 8.5 and 2.7 Hz, 1H), 6.62 (dd, J = 2.8 and 1.5 Hz, 1H), 3.80 (s, 3H), 3.40 (t, J = 6.6 Hz, 2H), 2.83 (t, J = 6.6 Hz, 1H), 1.91 (quin, J = 6.6 Hz, 2H) 1.46 (sept, J = 7.6 Hz, 3H), 1.12 (d, J = 7.6 Hz, 18H) ppm; ^{13}C NMR (75 MHz, CDCl_3) δ 158.0, 143.7, 139.6, 137.3, 135.2, 129.63, 129.58, 128.4, 127.9, 123.9, 123.5, 123.2, 123.0, 111.0, 110.5, 110.0, 100.4, 55.4, 46.0, 37.9, 31.6, 17.9, 11.7 ppm; HRMS (EI) m/z : [M $^+$] calcd for $\text{C}_{30}\text{H}_{40}\text{IN}_3\text{OSi}$, 613.1985; found, 613.1990; IR (ATR) ν (cm $^{-1}$): 2133.


***N*-[3-(2-Bromophenyl)propyl]-7-methoxy-3*H*-pyrrolo[2,3-*c*]quinolin-4-amine (30a)**

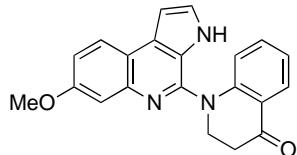
A solution of TBAF (1.0 M in THF, 0.6 mL, 0.60 mmol) was added dropwise to a solution of carbodiimide **28a** (281 mg, 0.50 mmol) in 1,2-dichlorobenzene (25 mL) under a N_2 atmosphere. After stirring at 80 °C for 30 min, the reaction mixture evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 3:2 (v/v) as an


eluent to give the pyrroloquinoline-4-amine **30a** (138 mg, 68%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 1H), 7.48 (dd, *J* = 8.0 and 1.3 Hz, 1H), 7.29 (d, *J* = 2.4 Hz, 1H), 7.24 (d, *J* = 2.8 Hz, 1H), 7.14 (td, *J* = 7.6 and 1.1 Hz, 1H), 7.04–7.08 (m, 2H), 6.94 (dd, *J* = 8.5 and 2.4 Hz, 1H), 6.85 (d, *J* = 2.8 Hz, 1H), 3.85 (s, 3H), 3.62 (t, *J* = 7.2 Hz, 2H), 2.70 (t, *J* = 7.2 Hz, 1H), 1.83 (quin, *J* = 7.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 147.6, 143.4, 140.4, 132.5, 130.0, 129.0, 127.4, 127.2, 125.4, 124.3, 123.9, 118.6, 114.9, 112.2, 106.3, 101.9, 55.3, 41.2, 33.0, 28.6 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₂₁H₂₀BrN₃O, 409.0790; found, 409.0791; IR (ATR) ν (cm⁻¹): 3309.

N-[3-(2-Iodophenyl)propyl]-7-methoxy-3*H*-pyrrolo[2,3-*c*]quinolin-4-amine (30b)

The same procedure as above was carried out using the carbodiimide **28b** (40 mg, 0.065 mmol) to give the pyrroloquinoline-4-amine **30b** (24 mg, 82%). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J* = 8.7 Hz, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 2.4 Hz, 1H), 7.29 (d, *J* = 2.8 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.91 (dd, *J* = 8.7 and 2.4 Hz, 1H), 6.83 (d, *J* = 2.8 Hz, 1H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 5.46 (br s, 1H), 3.77 (s, 3H), 3.36 (t, *J* = 7.6 Hz, 2H), 2.32 (t, *J* = 7.6 Hz, 1H), 1.36 (quin, *J* = 7.6 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 147.4, 143.83, 143.76, 139.3, 129.3, 129.0, 128.2, 127.7, 125.1, 123.8, 118.7, 115.0, 112.4, 106.6, 102.1, 100.6, 55.3, 41.2, 37.9, 29.3 ppm; HRMS (EI) *m/z*: [M⁺] calcd for C₂₁H₂₀IN₃O, 457.0651; found, 457.0653; IR (ATR) ν (cm⁻¹): 3313.

7-Methoxy-4-(1,2,3,4-tetrahydroquinolin-1-yl)-3*H*-pyrrolo[2,3-*c*]quinoline (31)


A mixture of pyrroloquinoline **30a** (147 mg, 0.36 mmol), Pd(OAc)₂ (4.0 mg, 0.018 mmol), Cu(OAc)₂ (33 mg, 0.18 mmol), and K₂CO₃ (248 mg, 1.8 mmol) in toluene (7 mL) was

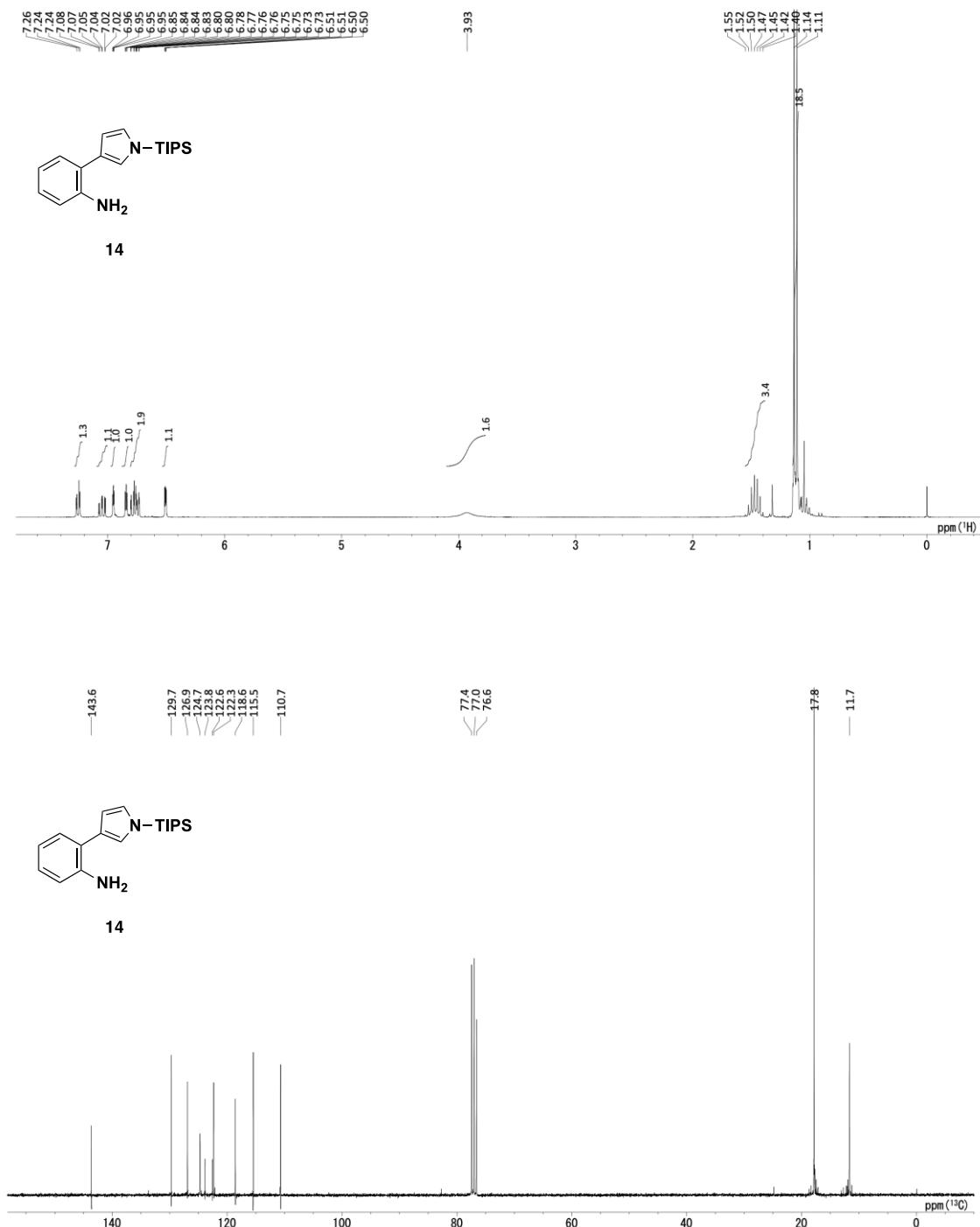
refluxed for 23 h under a N₂ atmosphere. The reaction mixture was filtered through Celite pad and the organic layer was evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:4 (v/v) as an eluent to give the tetrahydroquinoline **31** (30 mg, 25%). Yellow solid; mp = 159–160 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, *J* = 8.8 Hz, 1H), 7.82 (br s, 1H), 7.42 (d, *J* = 2.8 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 2.8 Hz, 1H), 7.10 (t, *J* = 2.8 Hz, 1H), 7.02 (td, *J* = 7.8 and 1.9 Hz, 1H), 6.95 (td, *J* = 7.2 and 1.3 Hz, 1H), 6.87–6.88 (m, 1H), 6.74 (dd, *J* = 8.8 and 1.9 Hz, 1H), 4.17 (t, *J* = 6.2 Hz, 2H), 3.95 (s, 3H), 2.91 (t, *J* = 6.2 Hz, 2H), 2.11 (sept, *J* = 6.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 145.4, 144.2, 141.2, 130.5, 129.2, 129.0, 126.3, 124.7, 123.5, 121.6, 121.1, 118.7, 116.1, 115.3, 107.6, 101.1, 55.4, 47.3, 27.5, 24.0; HRMS (EI) *m/z*:[M⁺] calcd for C₂₁H₁₉N₃O, 329.1528; found, 329.1533.

Synthesis of **31** from **30b**

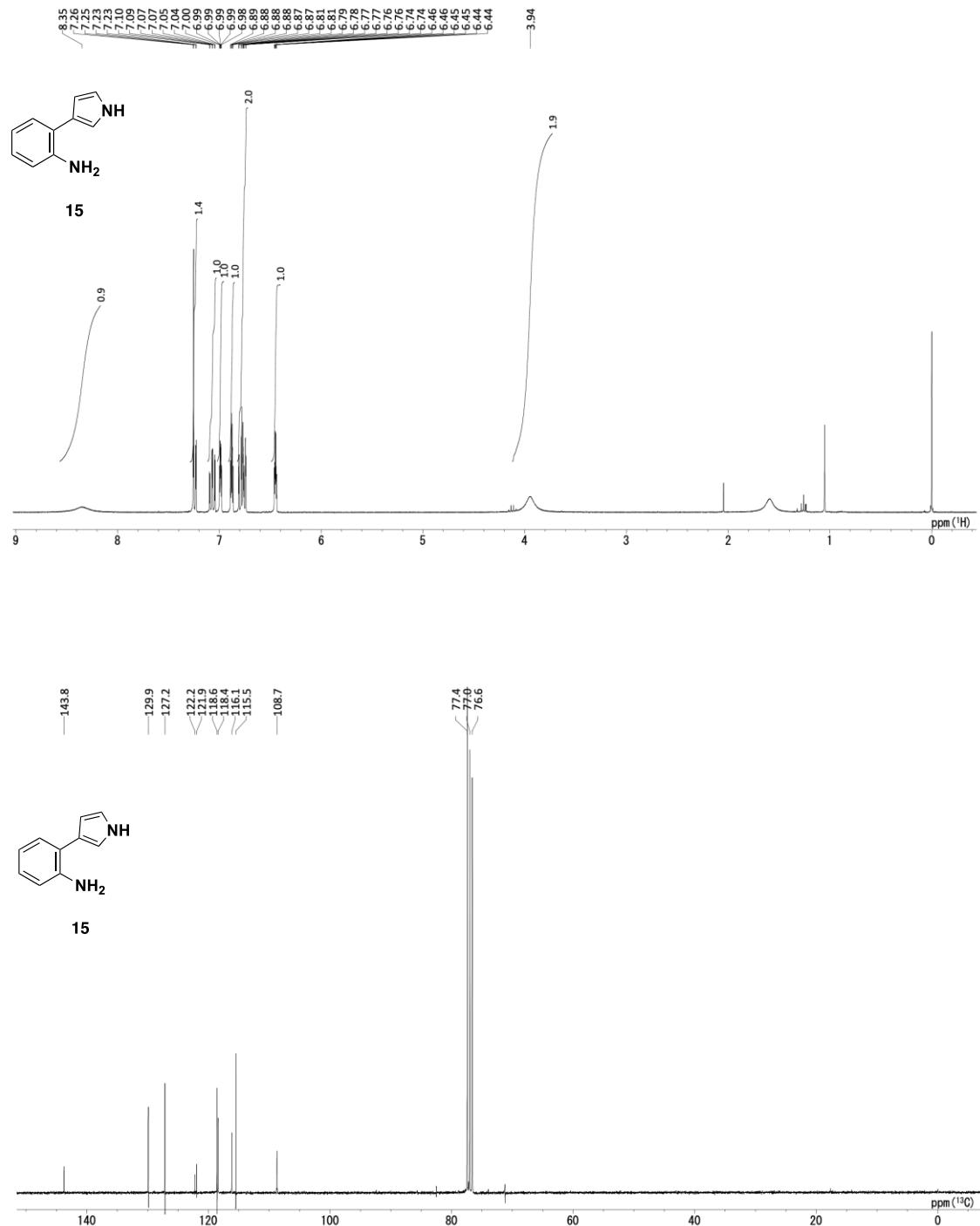
The same procedure as above was carried out using the urea **30b** (90 mg, 0.196 mmol) to give the tetrahydroquinoline **31** (47 mg, 73%).

Trigonoine B (**1**)⁴

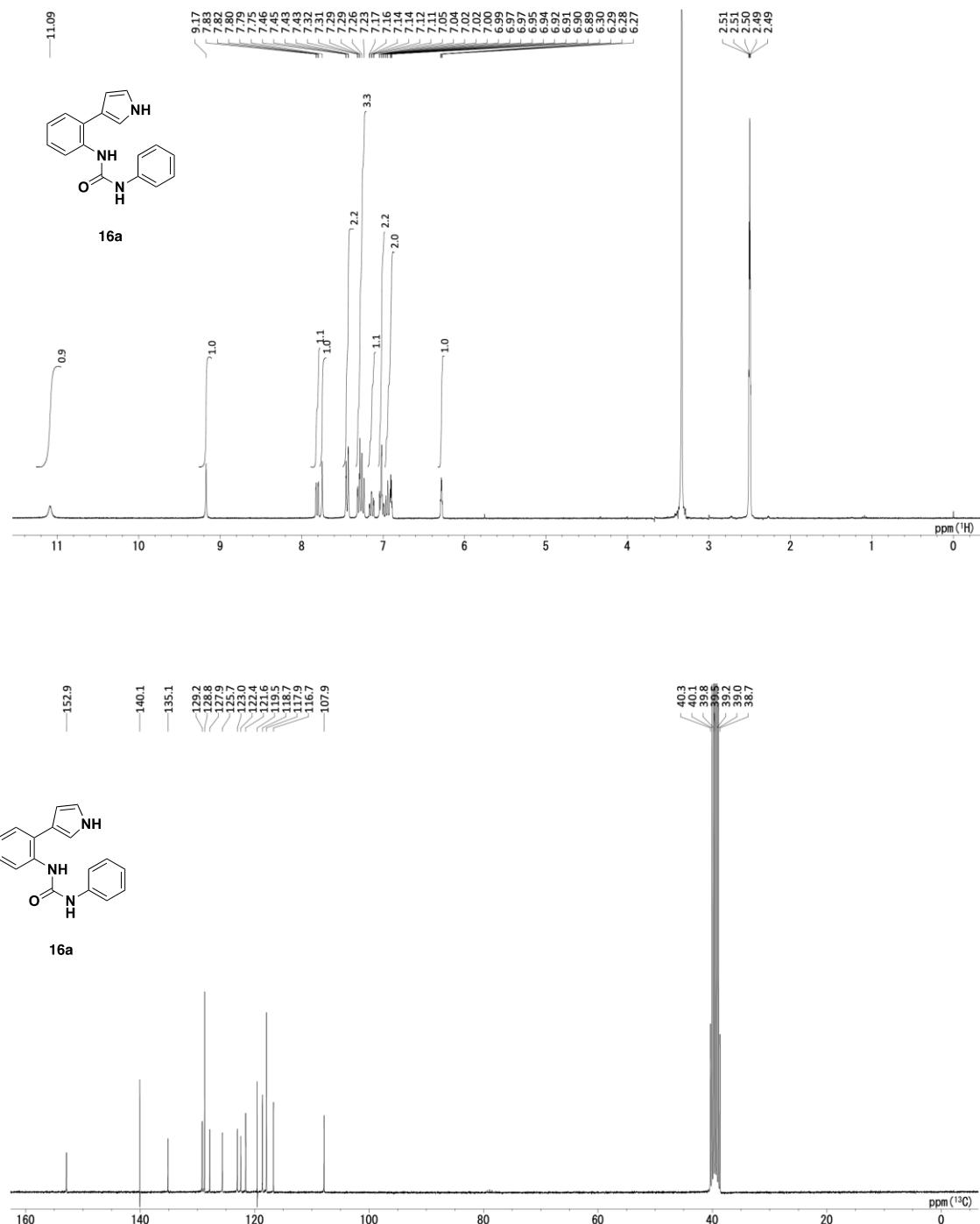
To a solution of tetrahydroquinoline **31** (27 mg, 0.082 mmol) in acetone (0.5 mL) at 0 °C was added anhydrous MgSO₄ (25 g, 0.21 mmol) and H₂O (0.2 mL). Subsequently, KMnO₄ (54 mg, 0.45 mmol) was added in small portions over 30 min. After stirring at rt for 36 h, the reaction was quenched with a saturated solution of K₂S₂O₅. The reaction mixture was filtered through a Celite pad, and washed with CH₂Cl₂ and H₂O. The organic layer was washed with water and brine, dried over Na₂SO₄, and evaporated *in vacuo*. The residue was purified by column chromatography using EtOAc/hexane 1:5 (v/v) to give trigonoine B (**1**) (12 mg, 43%). Yellow solid; mp = 277–278 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.63 (br s, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 7.88 (dd, *J* = 7.8 and 1.7 Hz, 1H), 7.51–7.54 (m, 1H), 7.36 (d, *J* = 2.6 Hz, 1H), 7.27 (td, *J* = 7.8 and 1.7 Hz, 1H), 7.19 (dd, *J* = 8.8 and 2.6 Hz, 1H), 7.09 (dd, *J* = 2.9 and 2.0 Hz, 1H), 6.92 (t, *J* = 7.8 Hz, 1H), 6.83

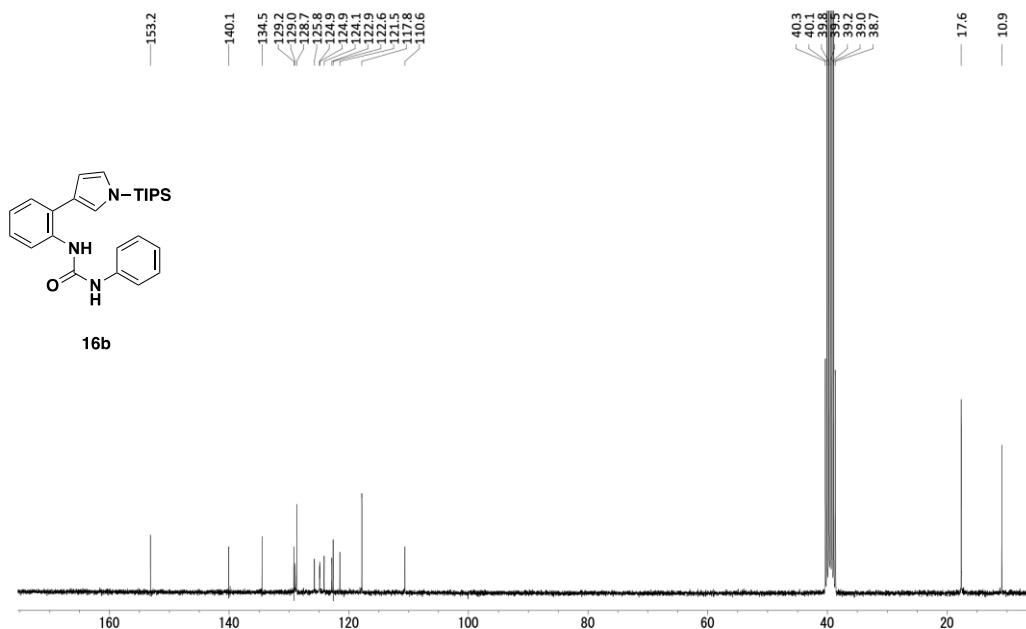
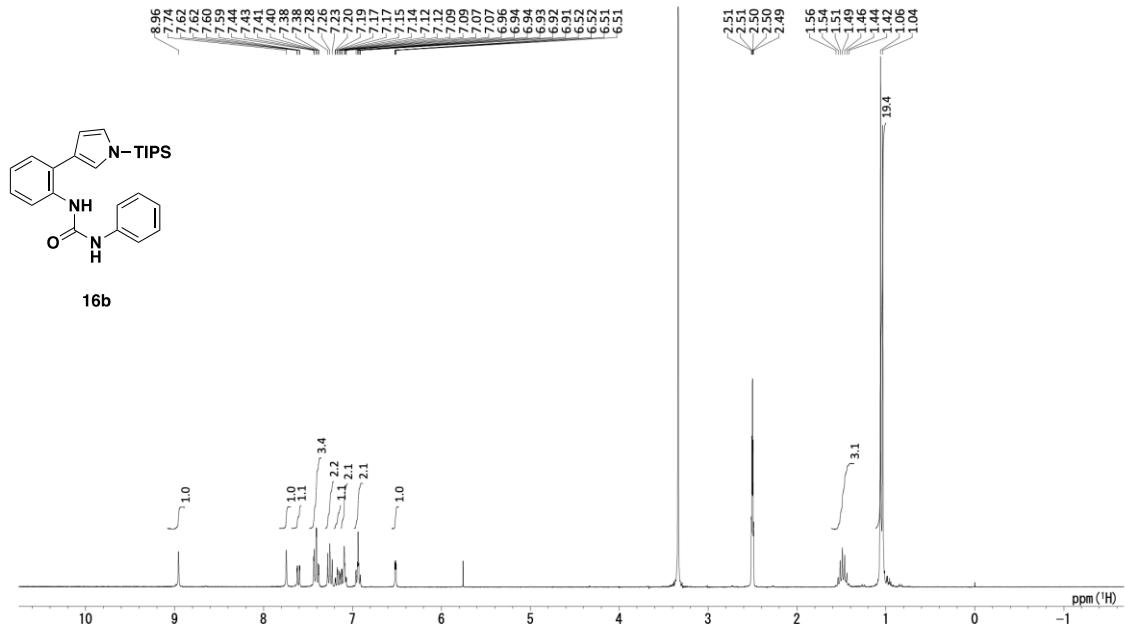

(d, $J = 7.8$ Hz, 1H), 4.21 (t, $J = 7.0$ Hz, 2H), 3.88 (s, 3H), 2.89 (t, $J = 7.0$ Hz, 2H) ppm; ^{13}C NMR (75 MHz, DMSO- d_6) δ 193.5, 157.8, 149.2, 144.5, 143.5, 134.7, 134.7, 130.5, 128.0, 127.2, 124.1, 122.7, 121.0, 119.4, 117.1, 116.3, 116.2, 108.1, 101.0, 55.2, 48.3 ppm; HRMS (EI) m/z :[M $^+$] calcd for C₂₁H₁₇N₃O₂, 343.1321; found, 343.1327. IR (ATR) ν (cm $^{-1}$): 1674.

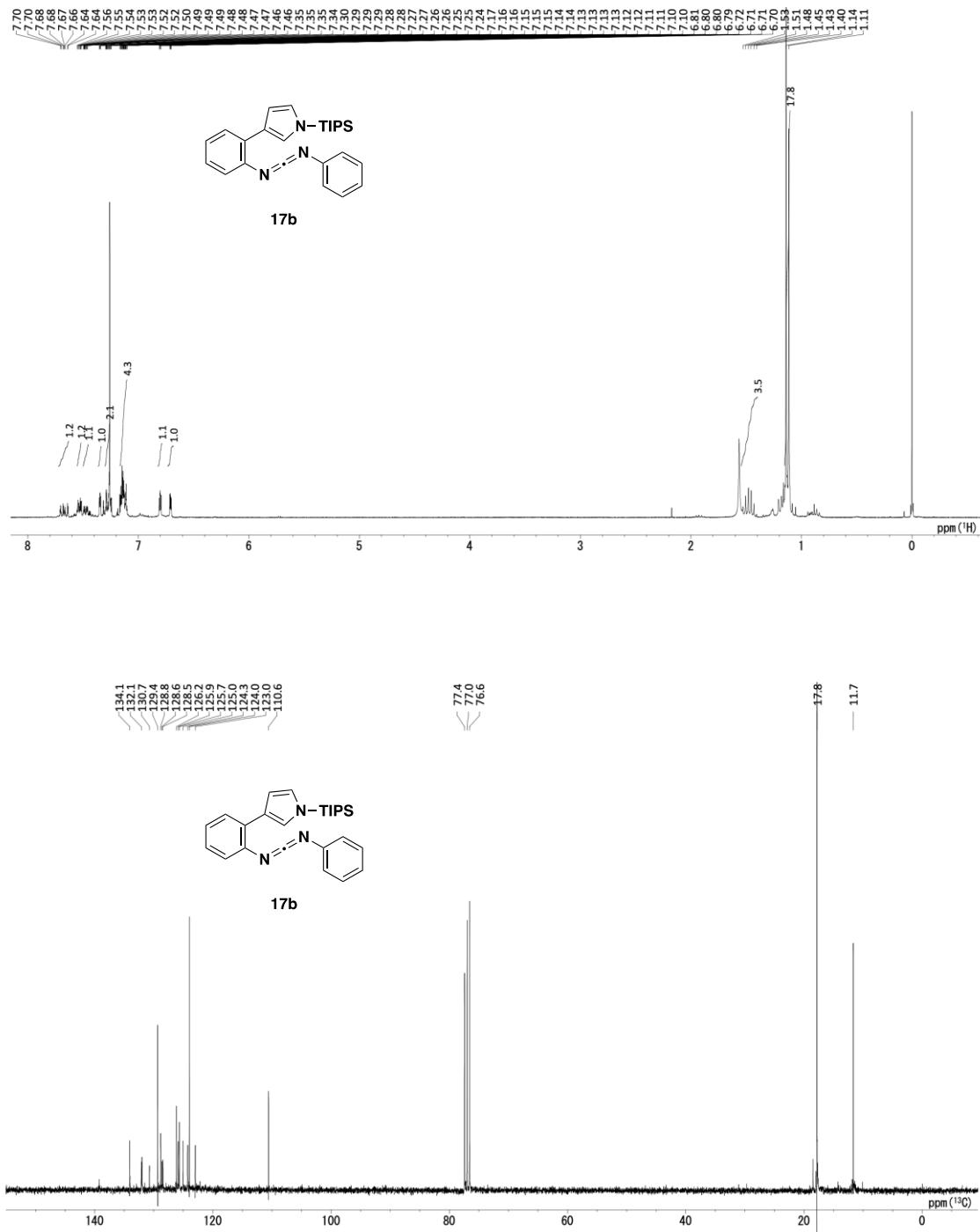
The spectral data were in agreement with the literature values.⁴

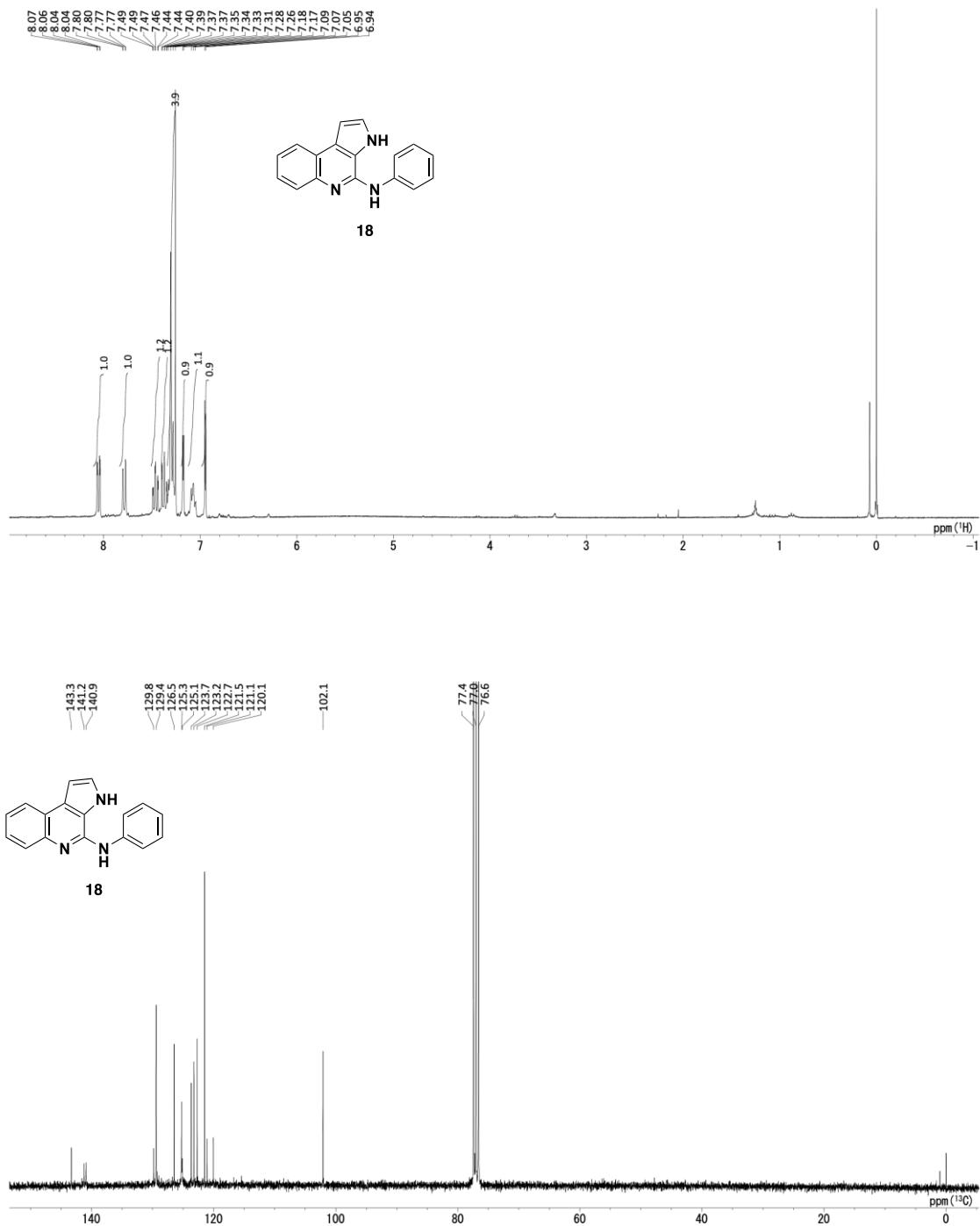

References

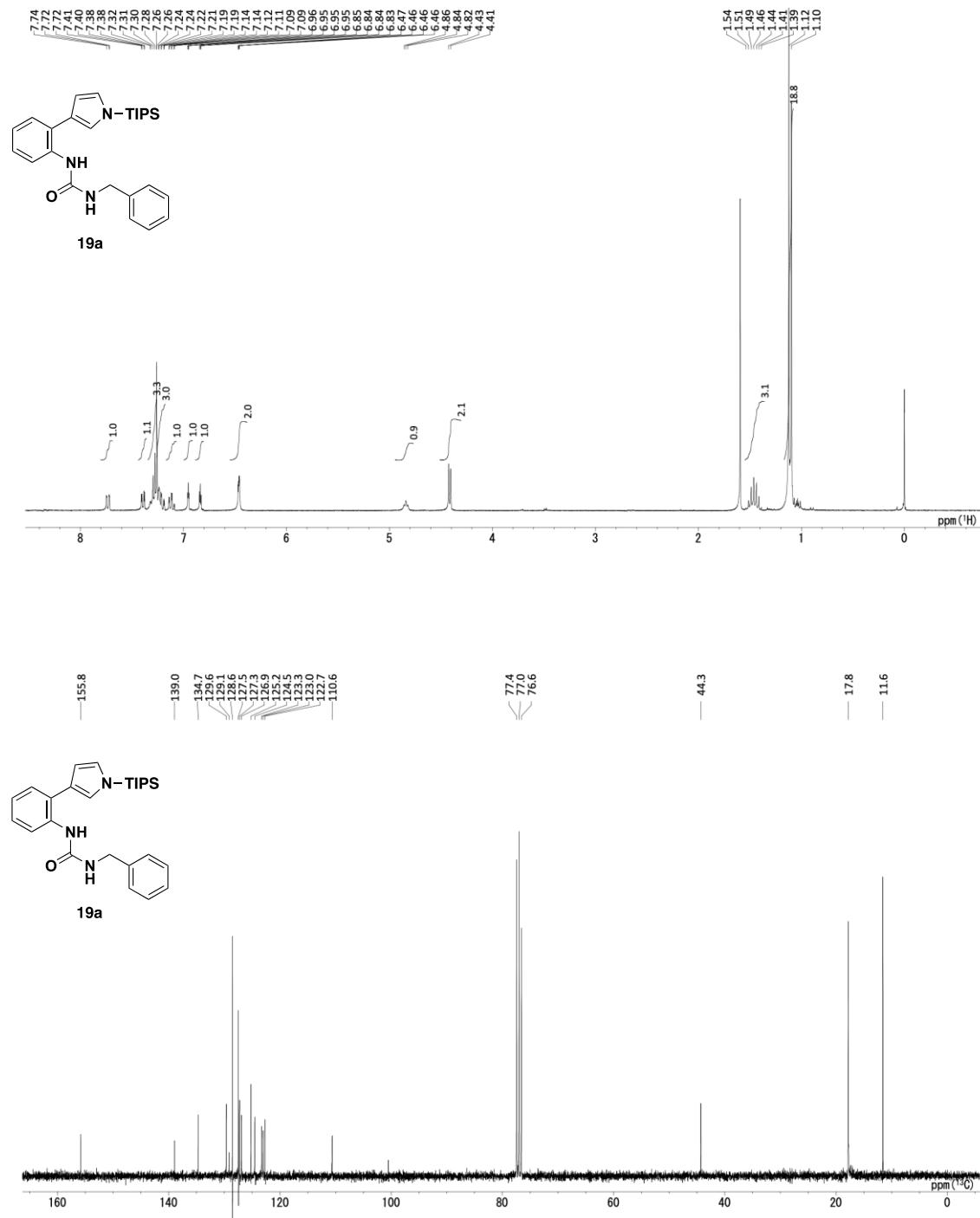
1. Morrison, M. D.; Hanthorn, J. J; Pratt, D. A. *Org. Lett.*, **2009**, *11*, 1051–1054.
2. Zhenhua Gu, Z.; Zakarian, A. *Org. Lett.*, **2010**, *12*, 4224–4227.
3. Nishiyama, T.; Murakami, M.; Taninaka, K.; Hamada, E.; Endo, M.; Kinou, D.; Hatae, N.; Choshi, T. *Heterocycles*, **2021**, DOI: 10.3987/COM-20-S(K)14.
4. Li, S.-F.; Di, Y.-T.; He, H.-P.; Zhang, Y.; Wang, Y.-H.; Yin, J.-L.; Tan, C.-J.; Li, S.-L.; Hao, X.-J. *Tetrahedron Lett.*, **2011**, *52*, 3186–3188.

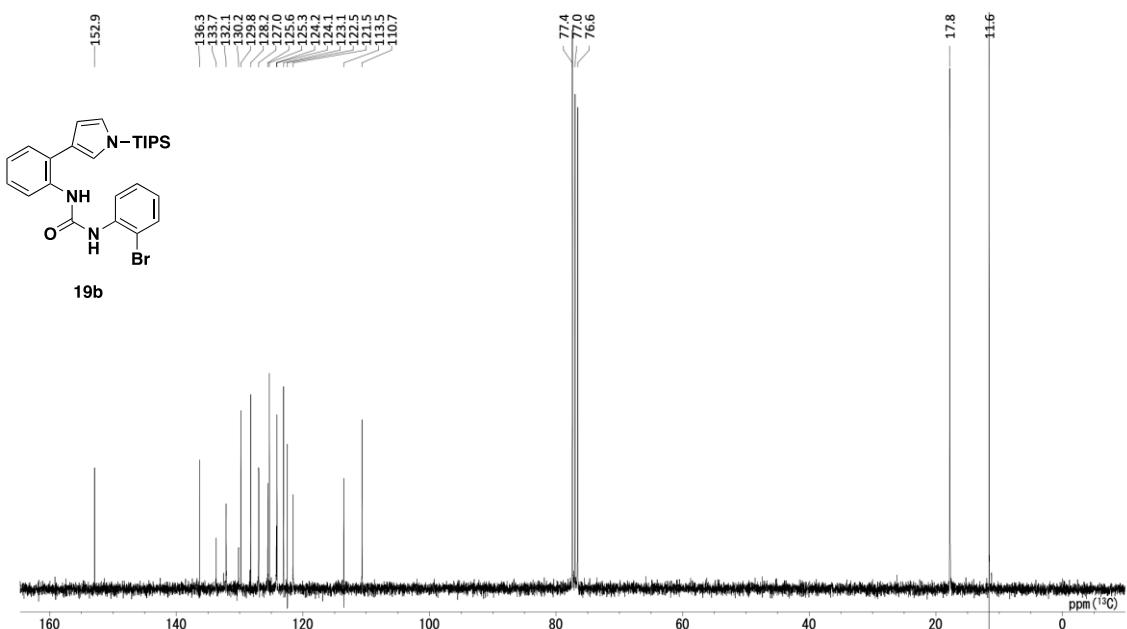
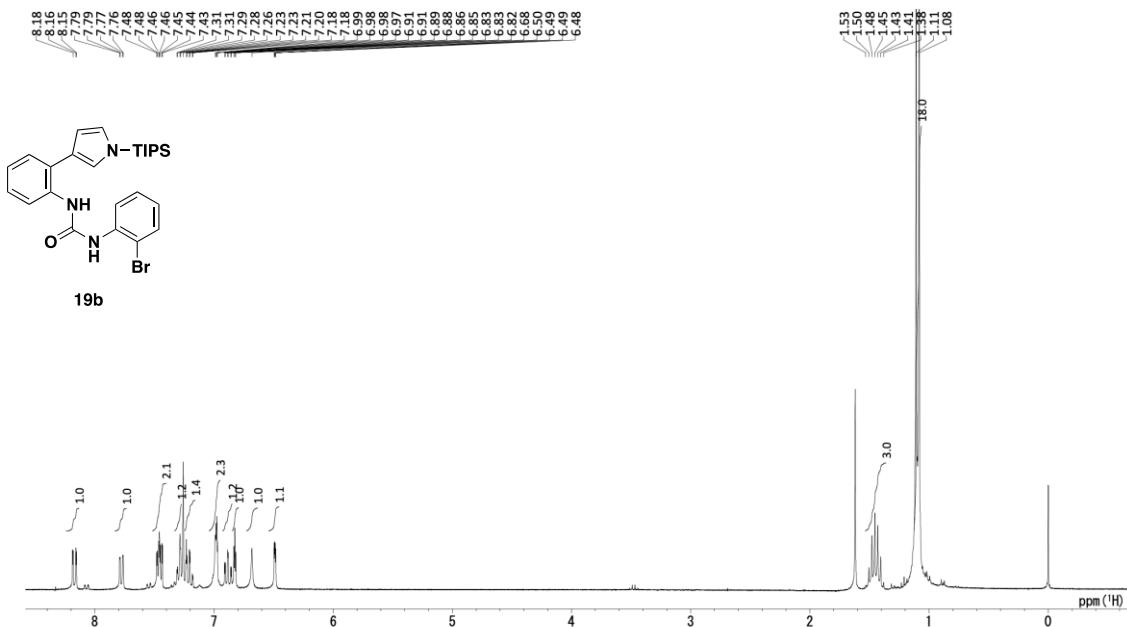

^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **14**

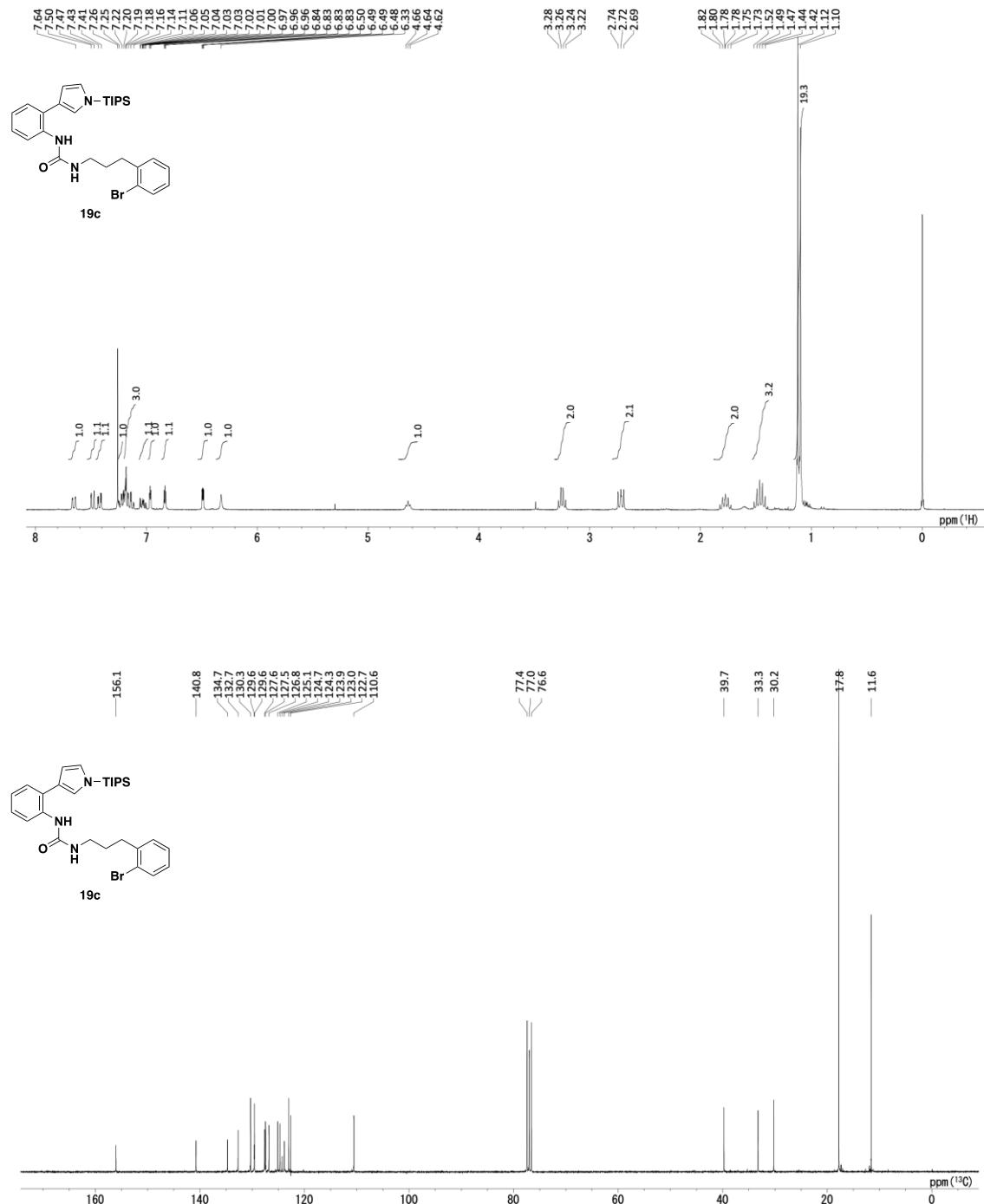


^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **15**

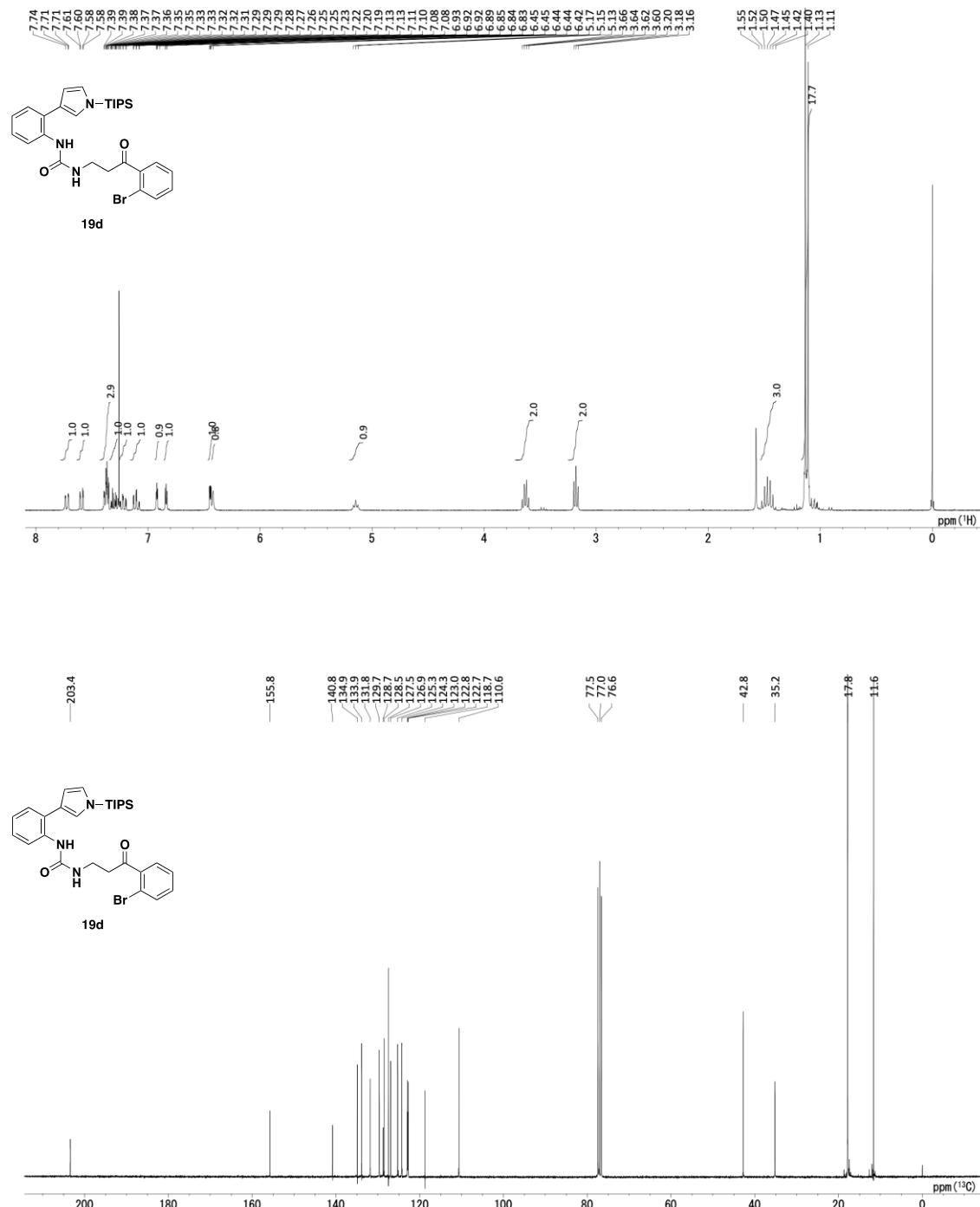

¹H NMR (300 MHz, DMSO-*d*₆) and ¹³C NMR (75 MHz, DMSO-*d*₆) spectra of **16a**

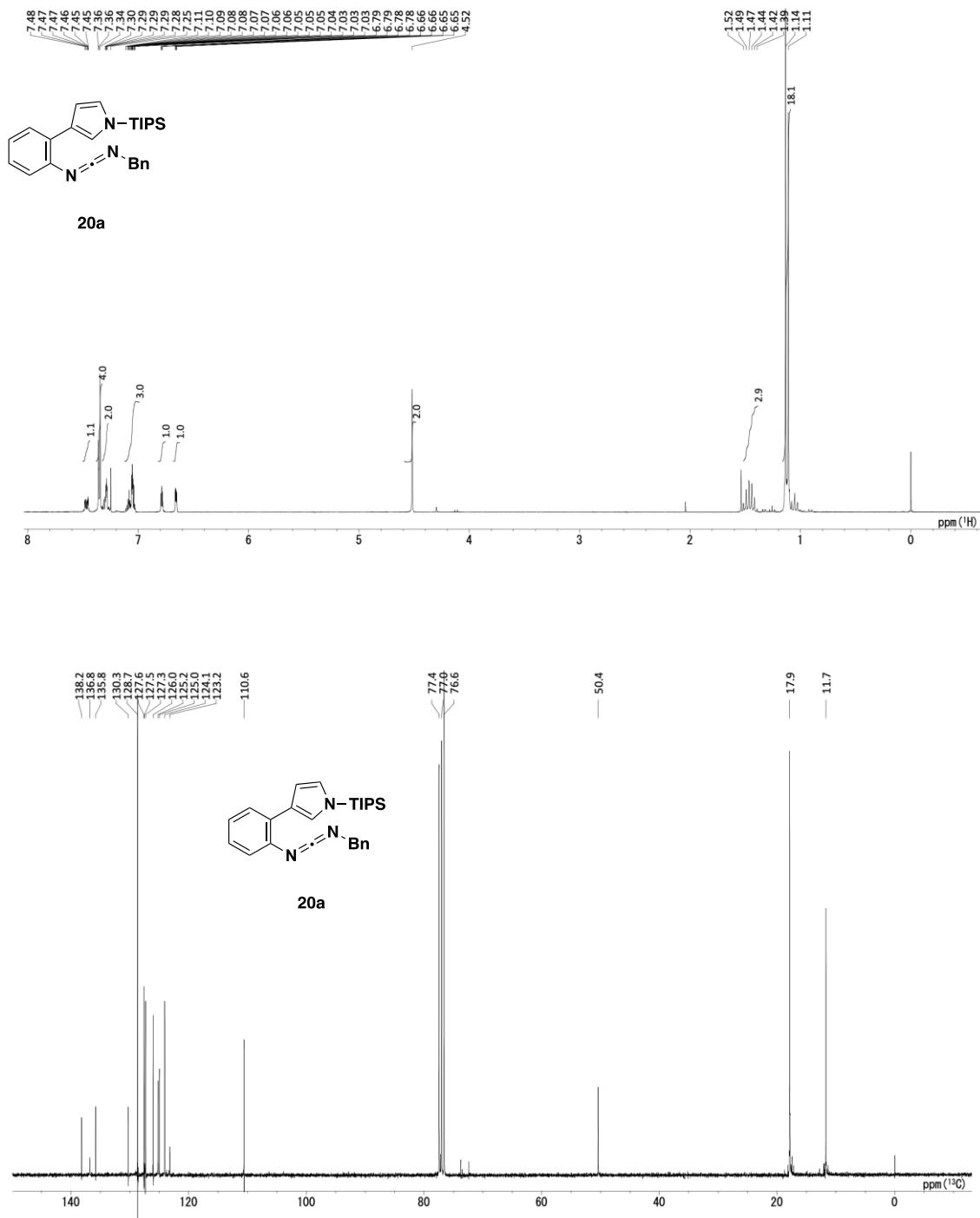

¹H NMR (300 MHz, DMSO-*d*₆) and ¹³C NMR (75 MHz, DMSO-*d*₆) spectra of **16b**

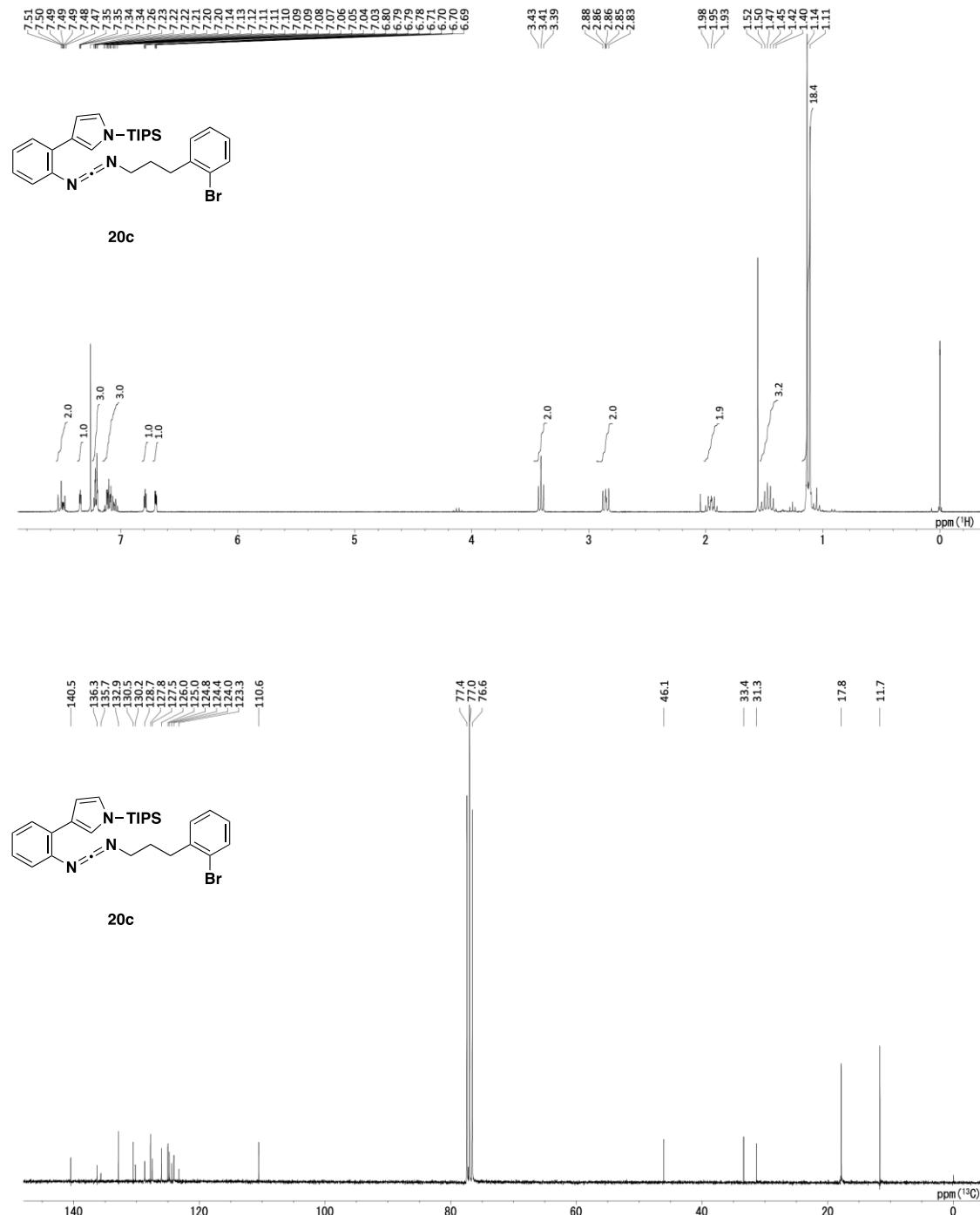

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **17b**

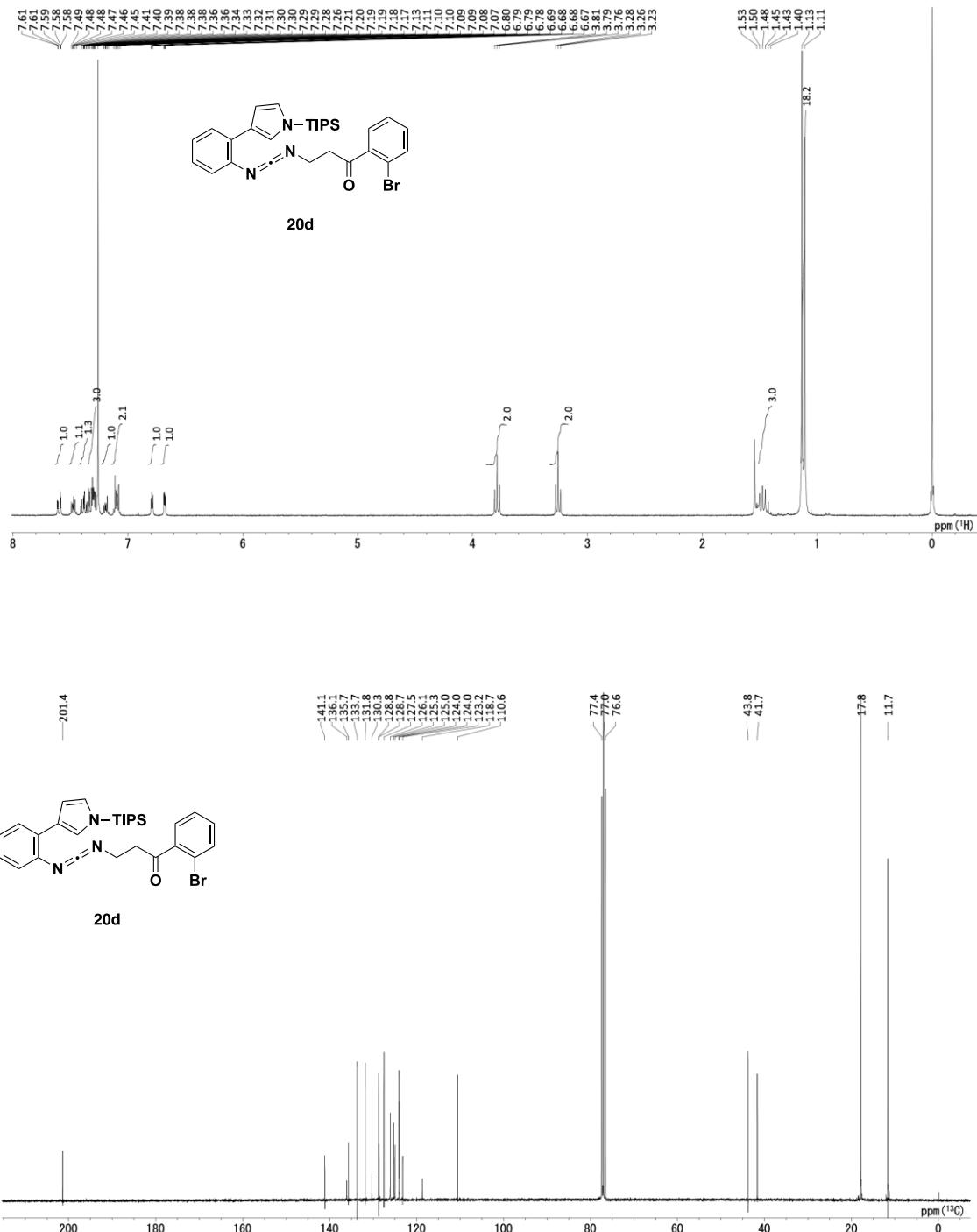


¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **18**

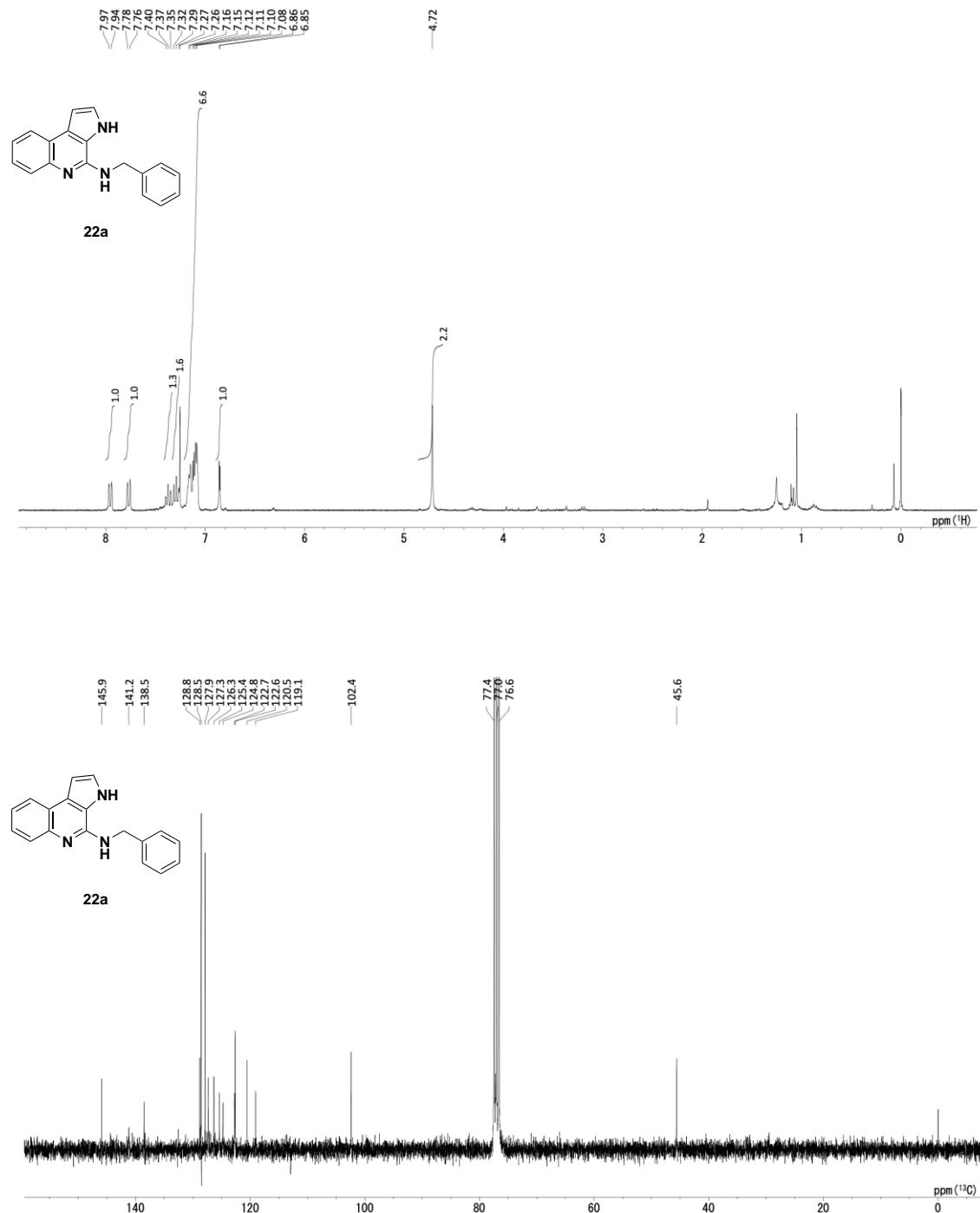

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **19a**

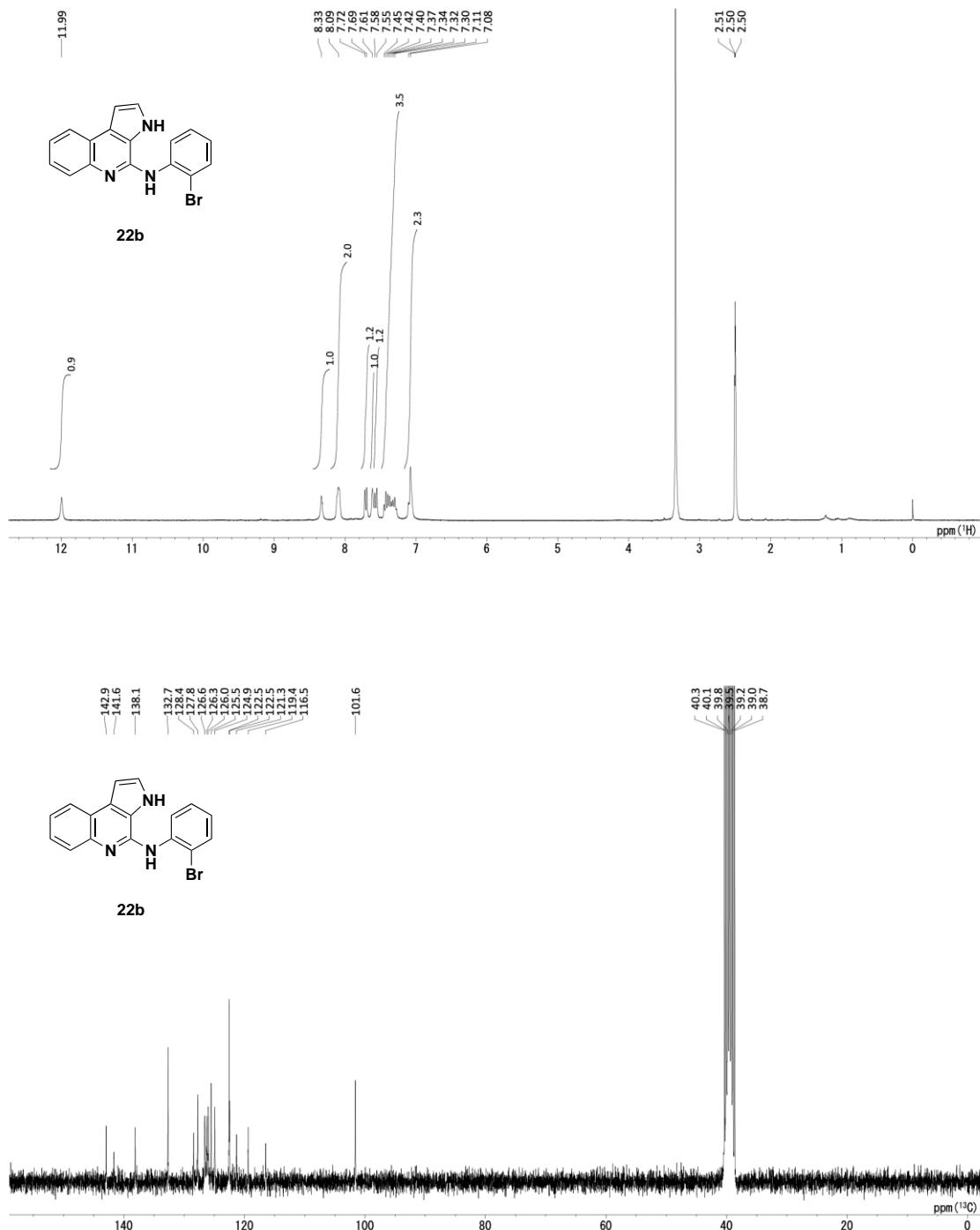

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **19b**

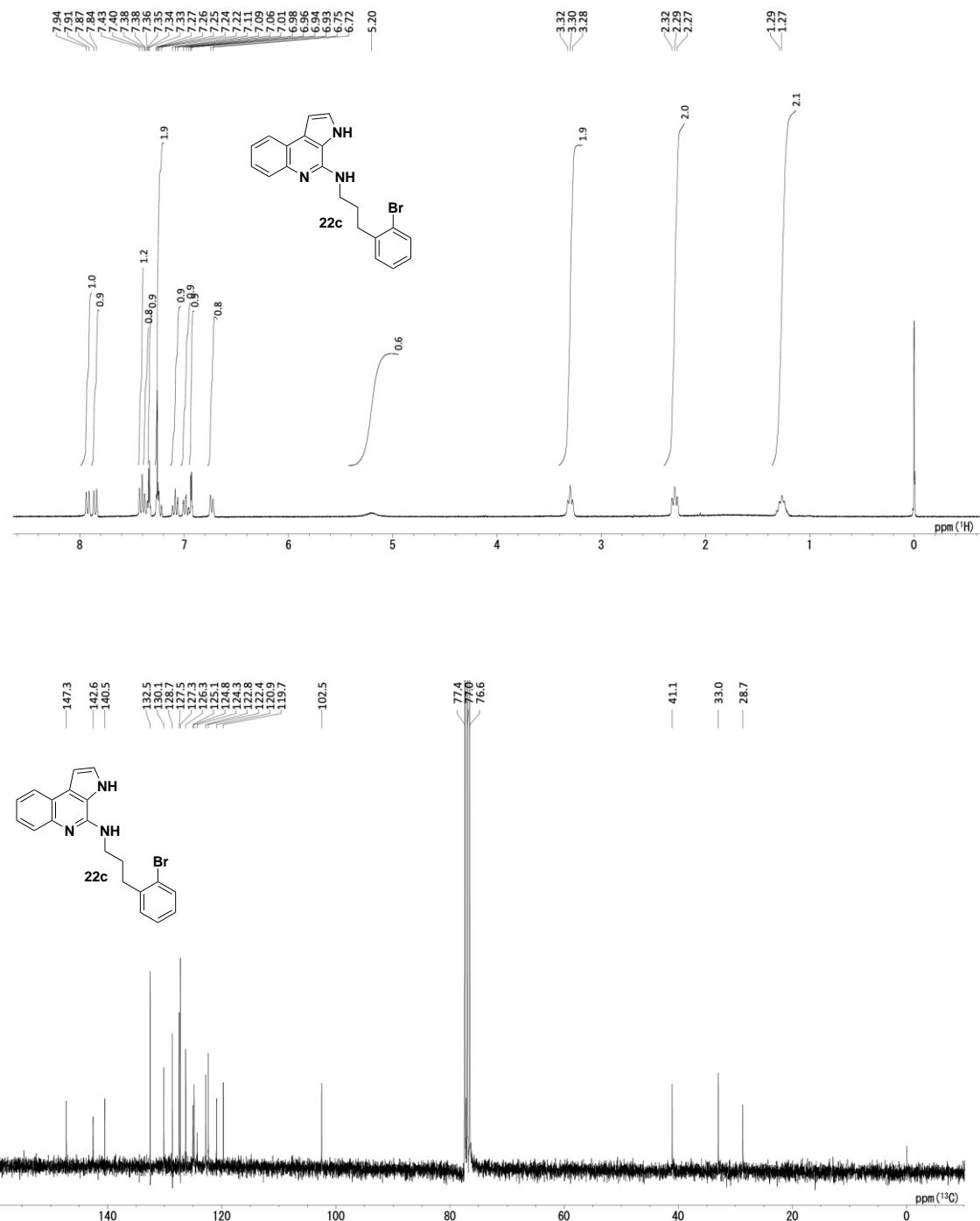

^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **19c**

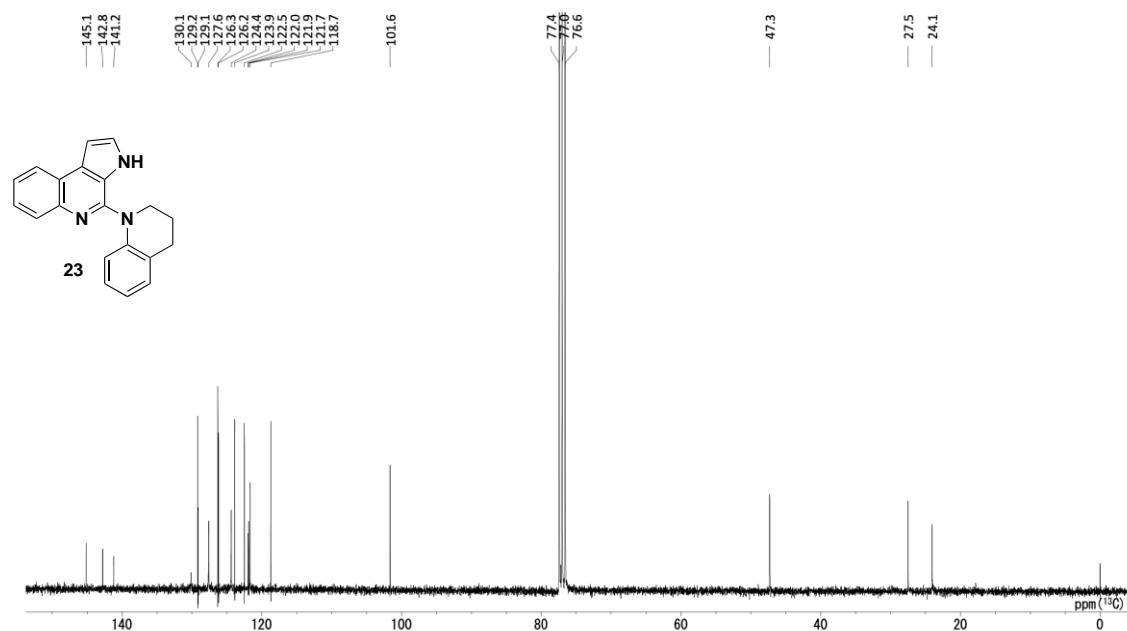
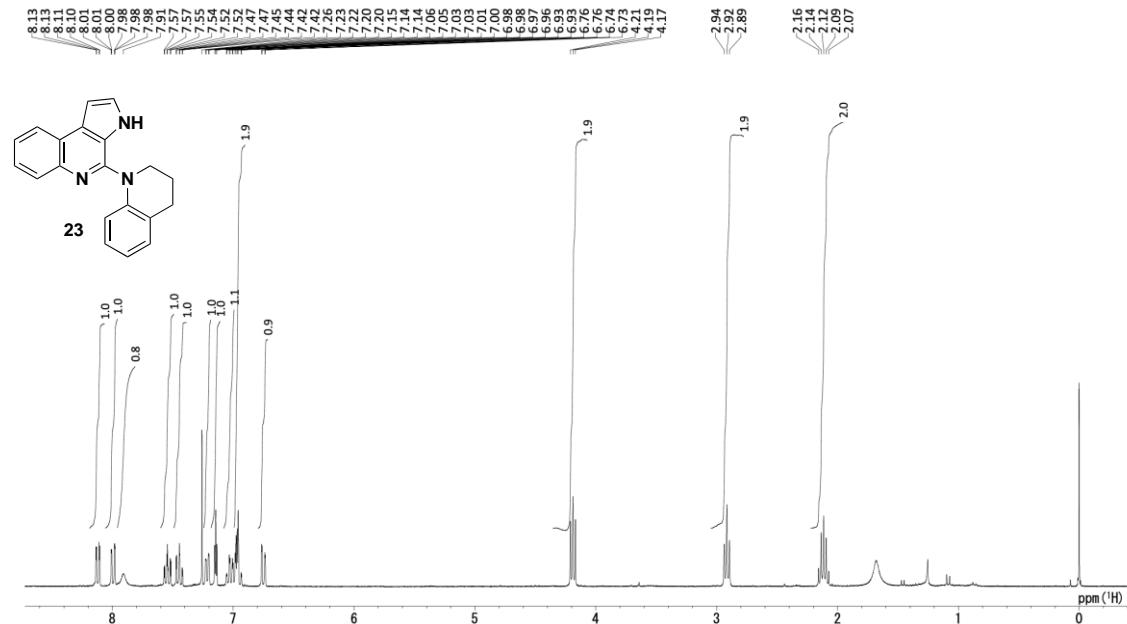

^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **19d**

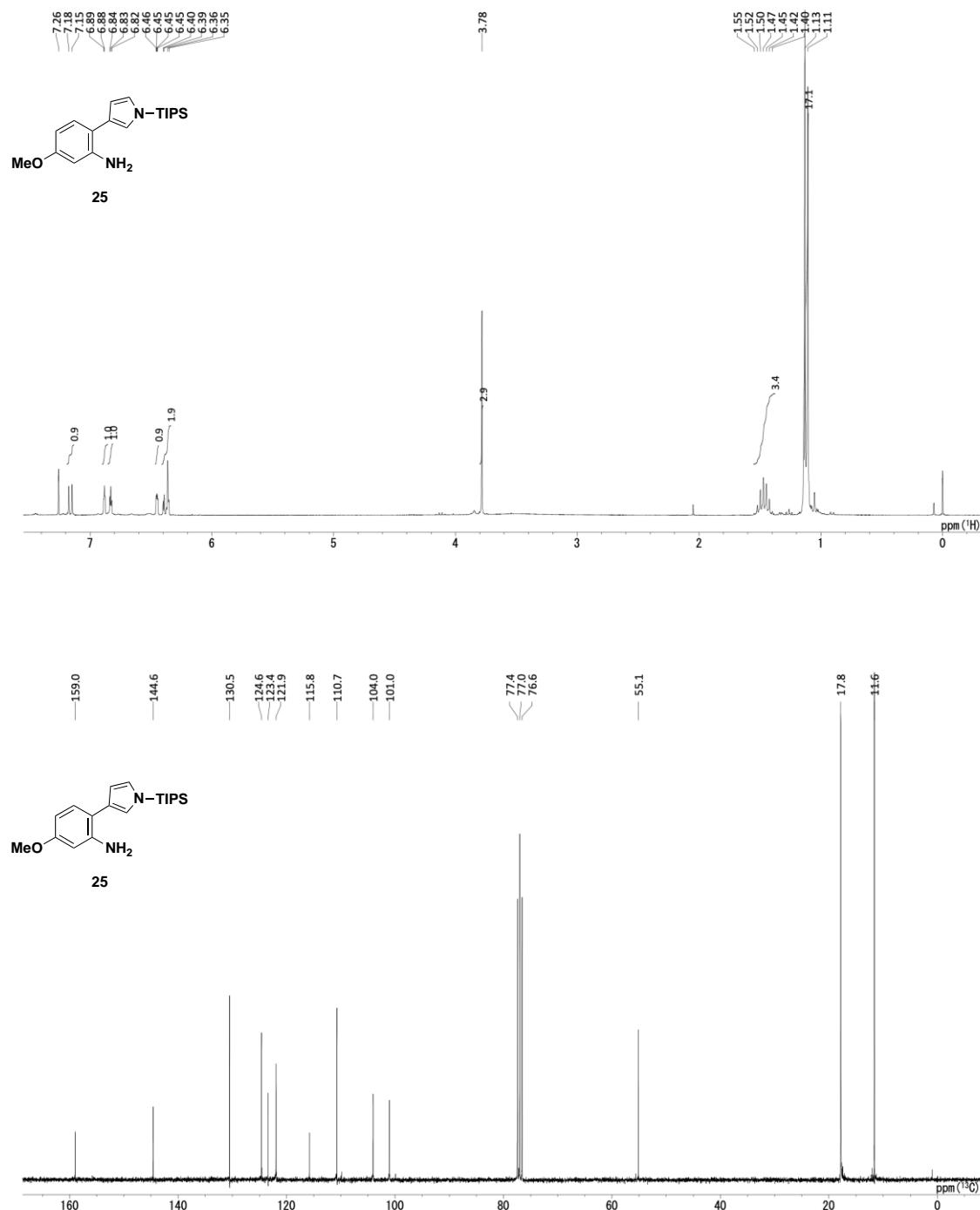

^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **20a**

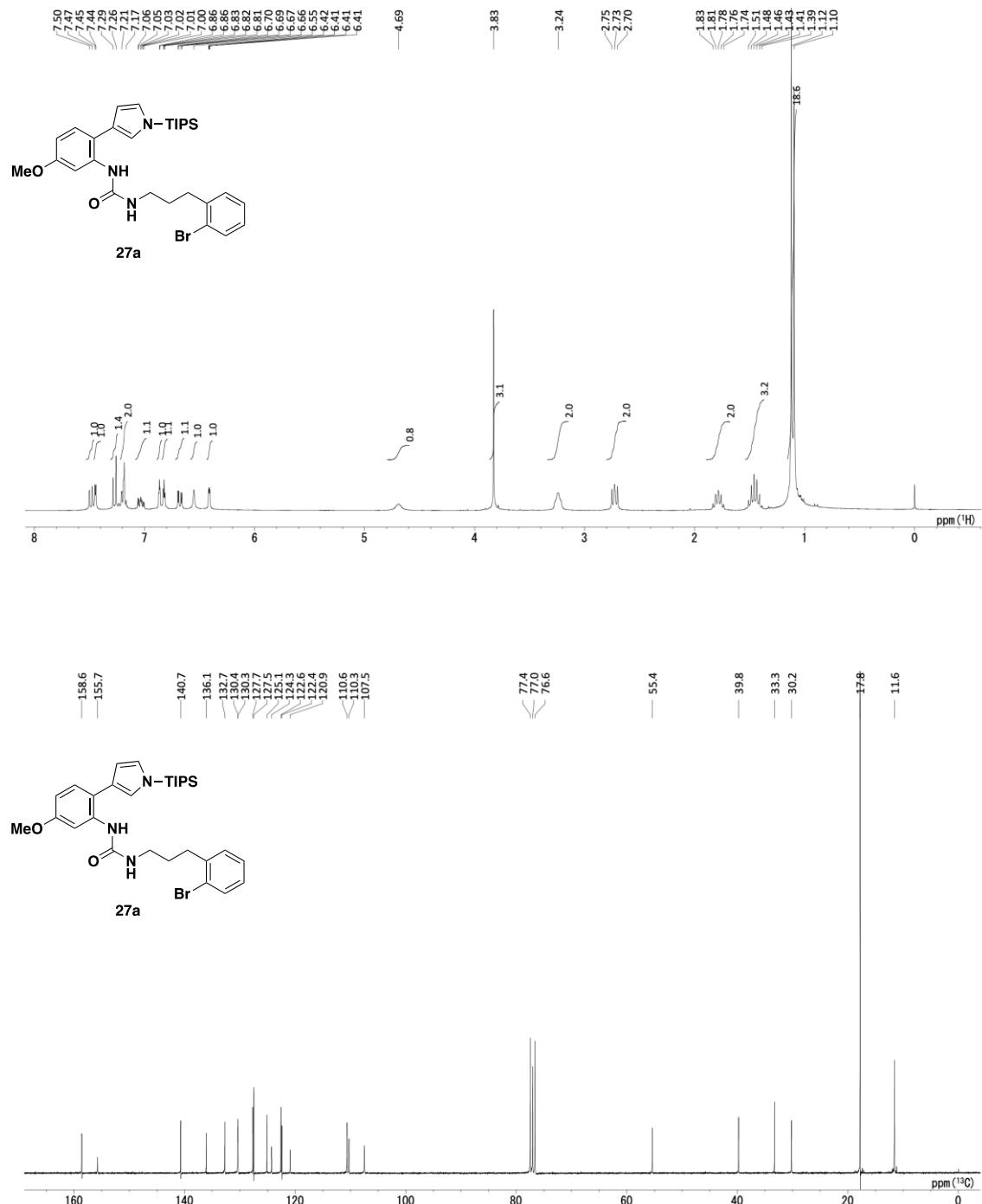

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **20c**

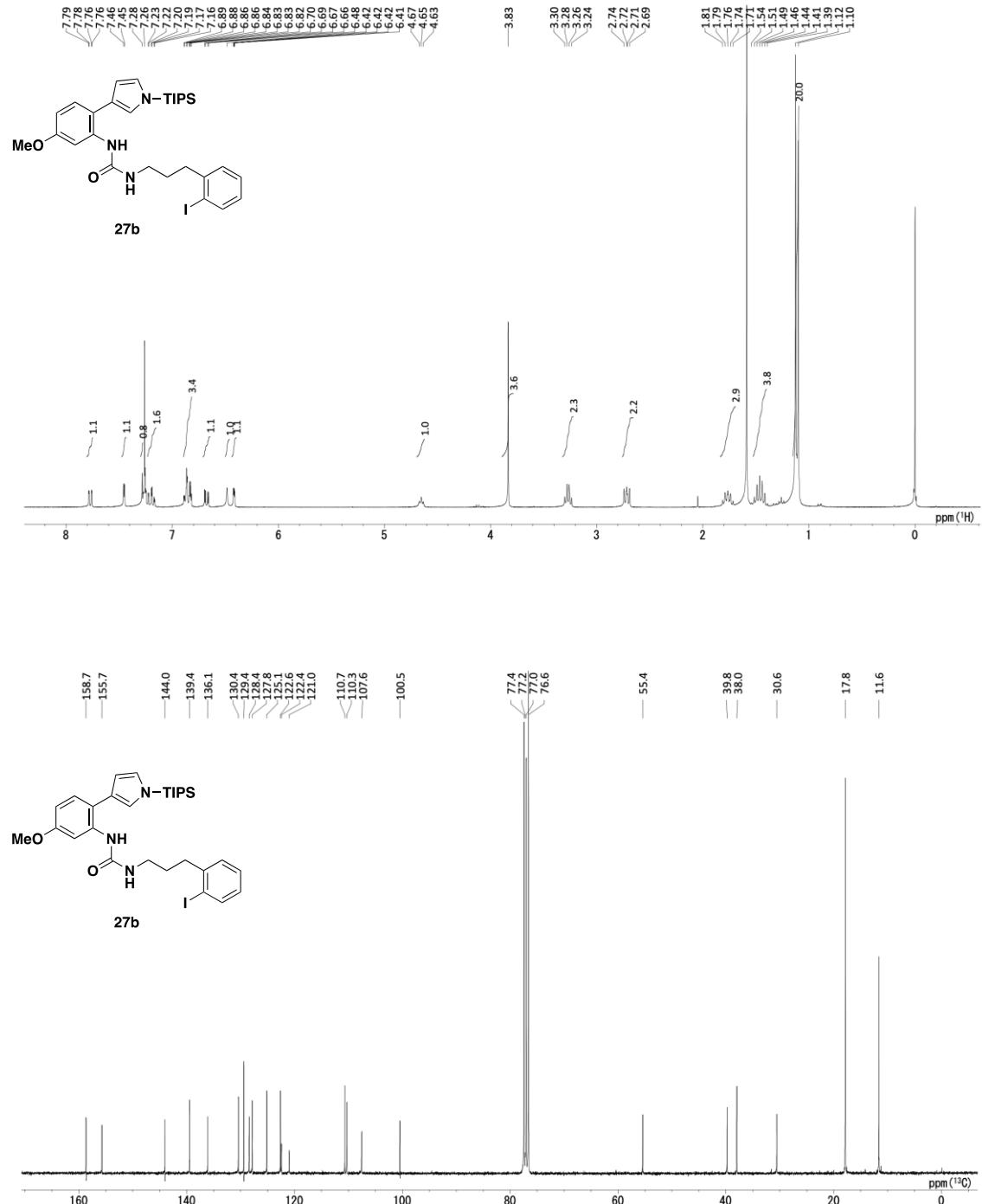

^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **20d**

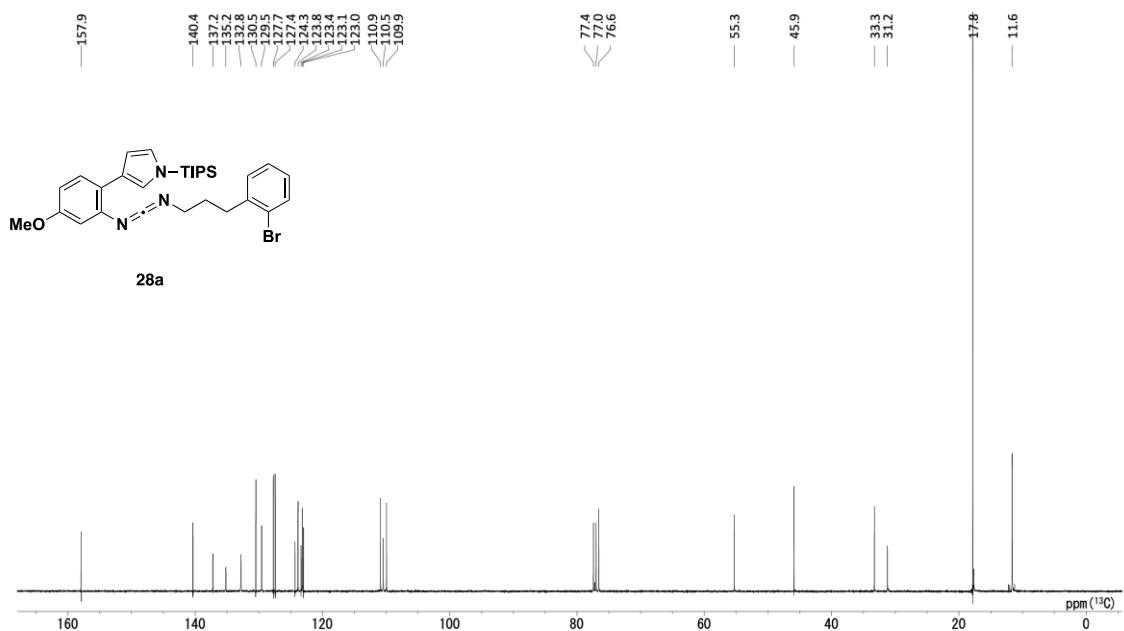
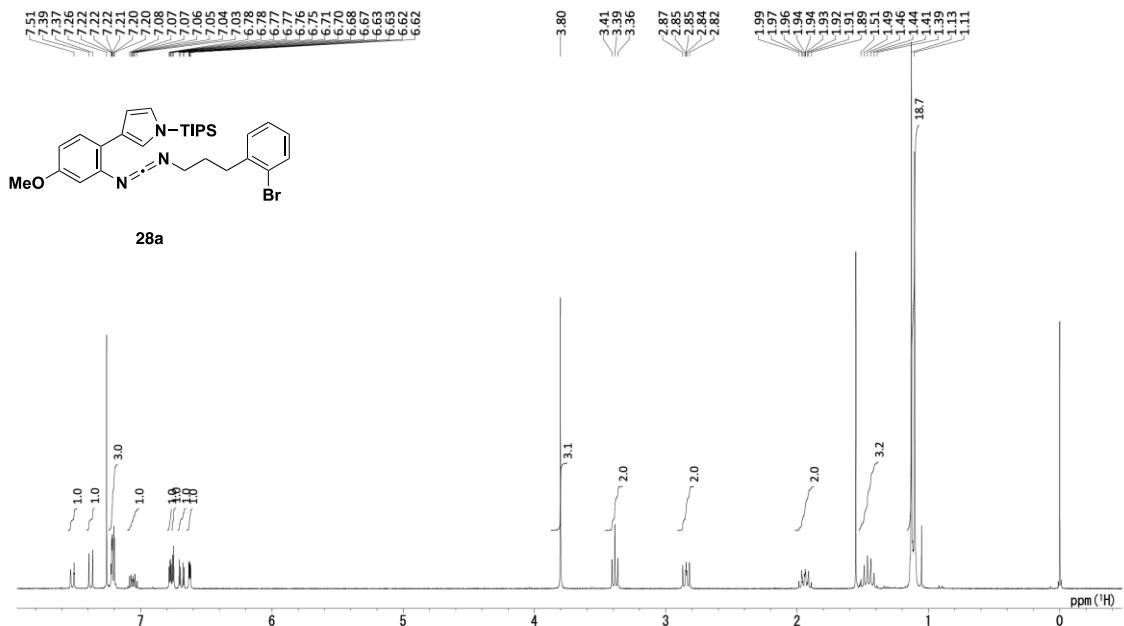

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **22a**

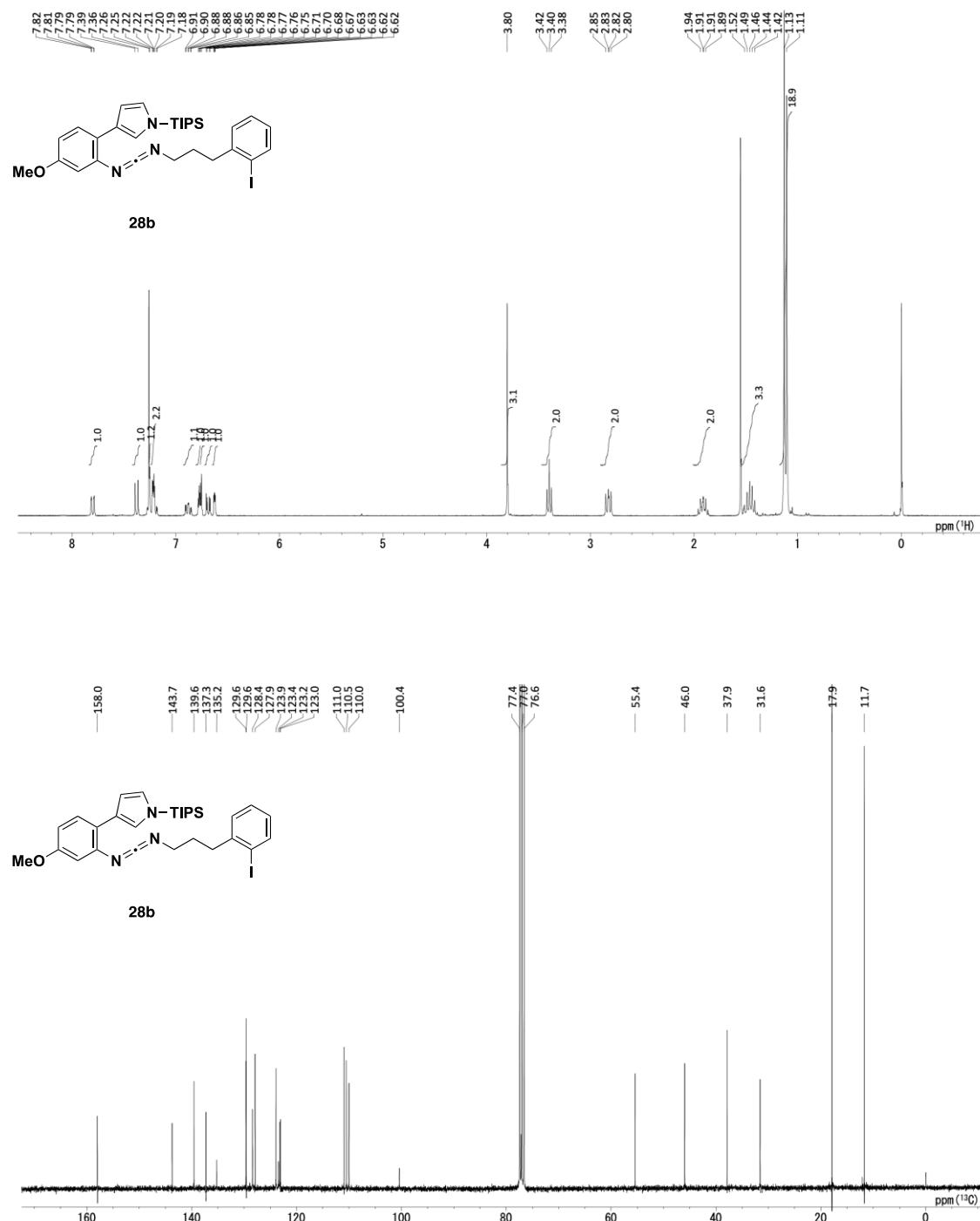


^1H NMR (300 MHz, $\text{DMSO}-d_6$) and ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$) spectra of **22b**

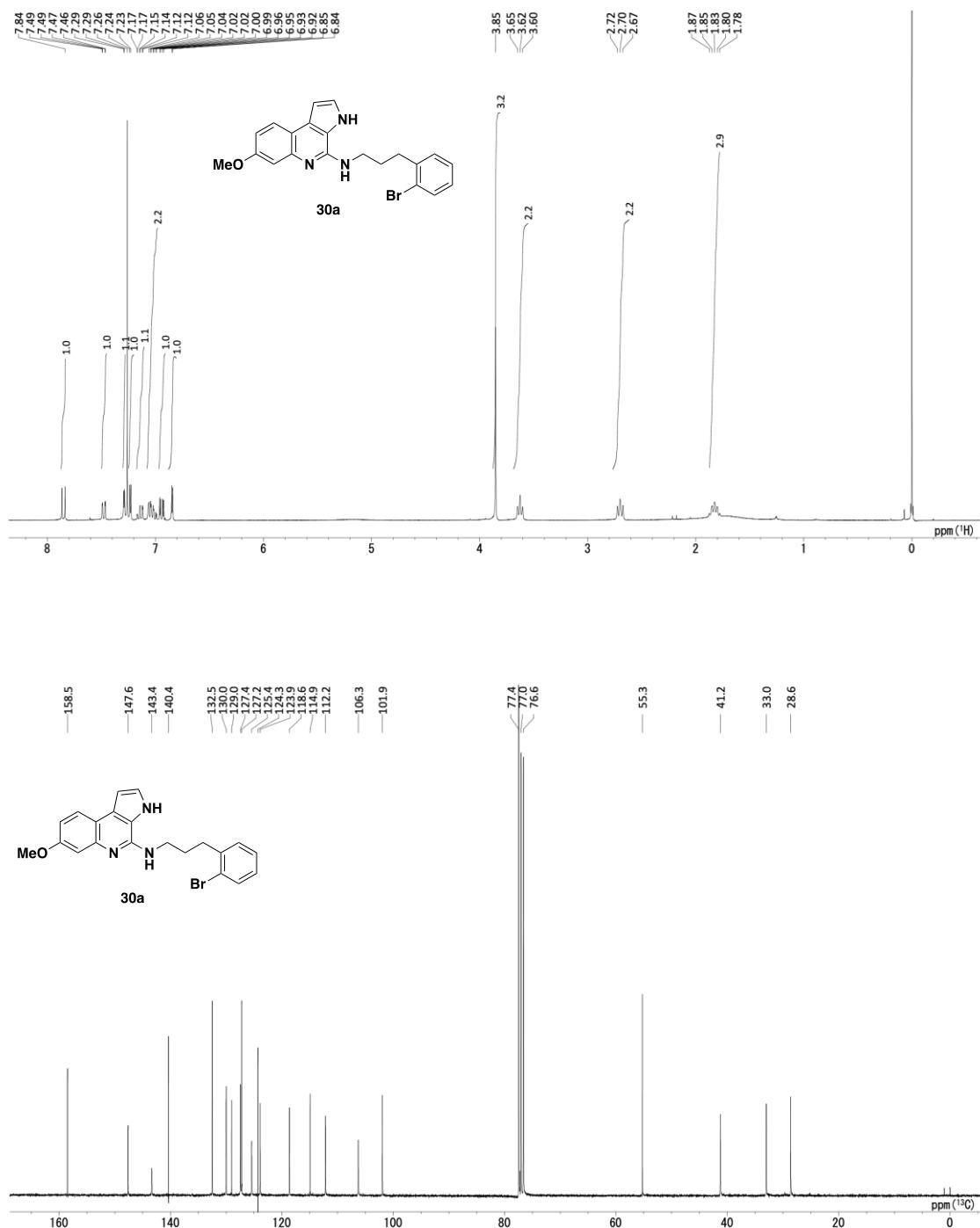

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **22c**

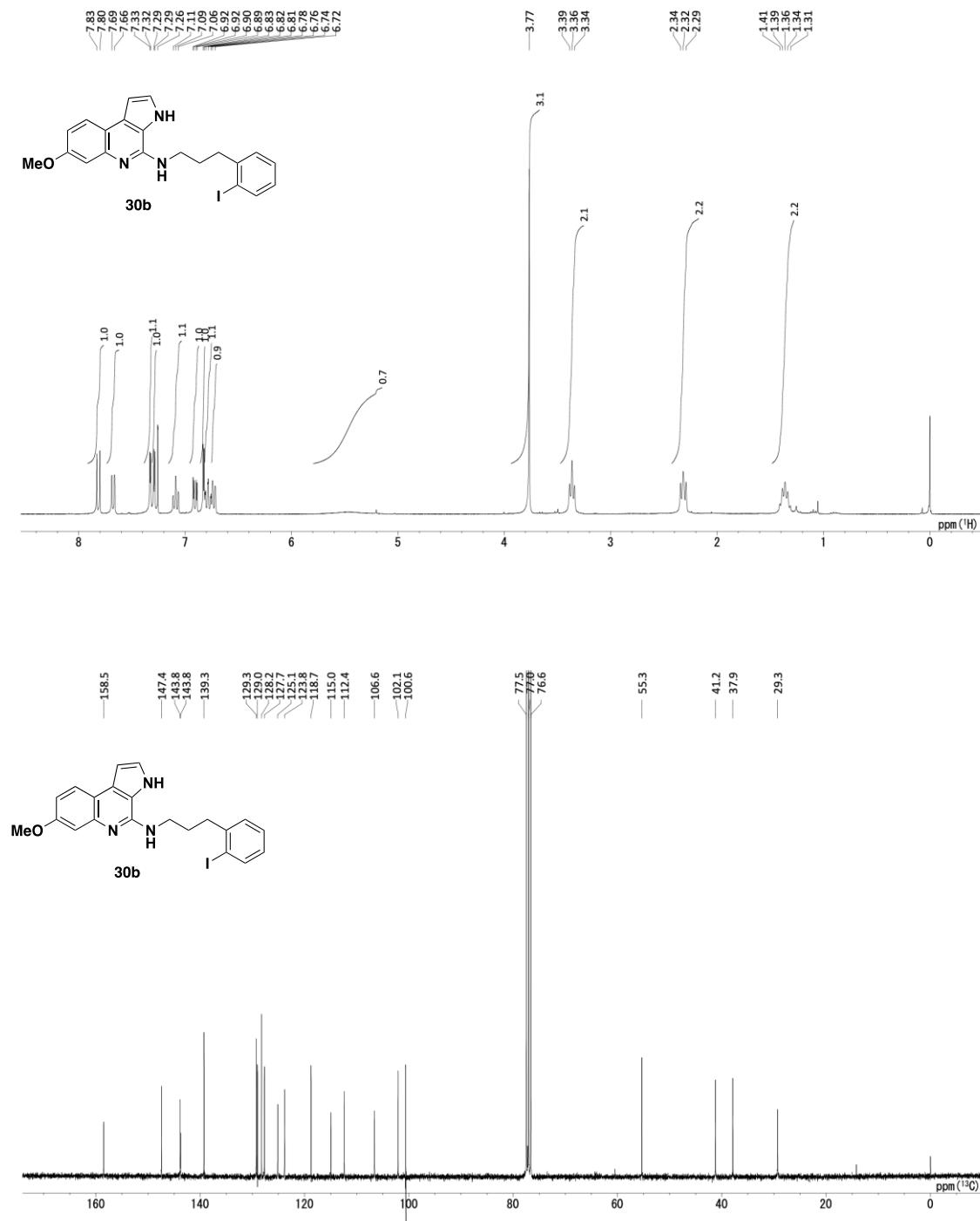

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **23**

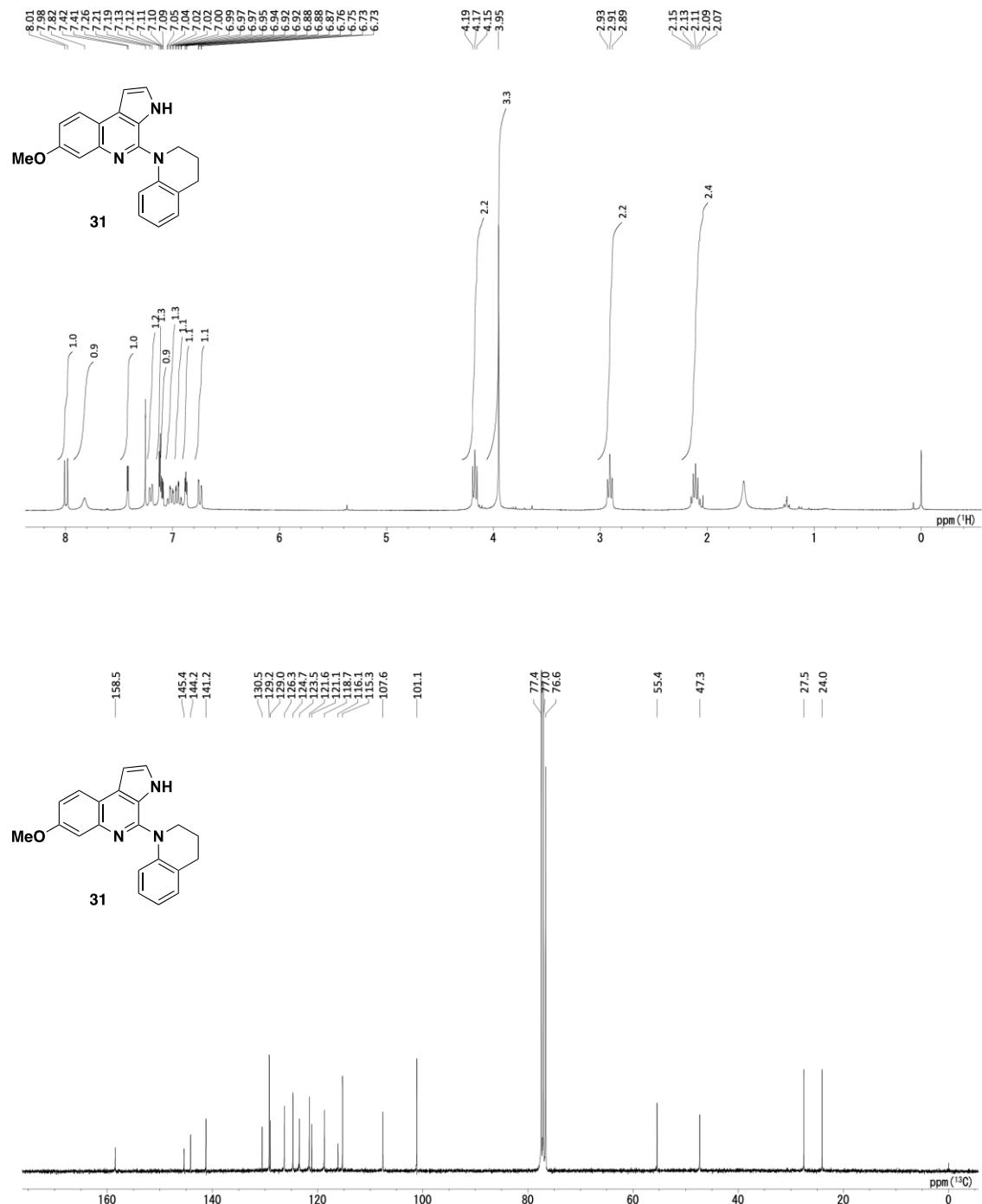

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **25**

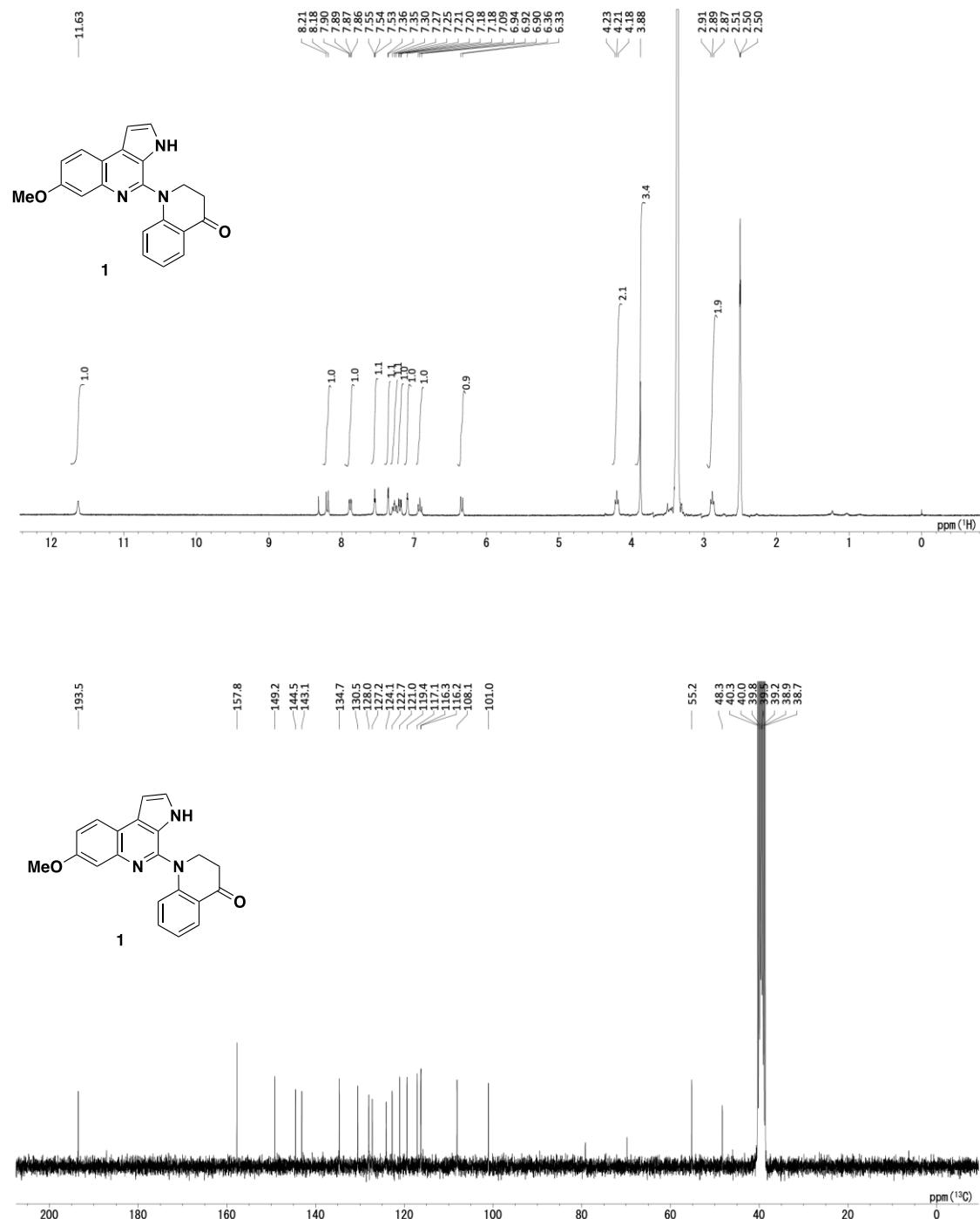


^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **27a**


¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **27b**


^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **28a**


¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **28b**


^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) spectra of **30a**


¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **30b**

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) spectra of **31**

^1H NMR (300 MHz, $\text{DMSO}-d_6$) and ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$) spectra of **1**

