

Supporting Information

for

Lewis acid-catalyzed Pudovik reaction-phospha-Brook rearrangement sequence to access phosphoric esters

Jin Yang, Dang-Wei Qian and Shang-Dong Yang

Beilstein J. Org. Chem. 2022, 18, 1188-1194. doi:10.3762/bjoc.18.123

Experimental details and characterization data (¹H, ¹³C, and ³¹P NMR as well as chromatograms) of products

Table of Contents

1. General Information	33
2. General Procedure for the Synthesis of secondary p	phosphine
oxides	S3
3. General Procedure	S5
4. Experimental procedure for gram-scale reaction	S6
5. References	\$7
6. Characterization Data	S7
7. X-ray crystallographic data for 3ak	S26
8. Scanned ¹ H NMR, ¹³ C NMR, ³¹ P NMR and ¹⁹ F NM	R Spectra of All
products	S28

1.General Information

¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra were recorded at room temperature using a Avance-400 instruments (¹H NMR at 400 MHz, ¹³C NMR at 125 MHz, ³¹P NMR at 121 MHz and ¹⁹F-NMR at 282 MHz), NMR spectra of all products were reported in ppm with reference to solvent signals [¹H NMR: CD(H)Cl₃ (7.26 ppm), ¹³C NMR: CD(H)Cl₃ (77.00 ppm)]. Signal patterns are indicated as s, singlet; d, doublet; dd, doublets of doublet; t, triplet, and m, multiplet. The mass spectrometry was performed in the positive electrospray ionization (ESI+) mode. Reactions were monitored by thin-layer chromatography Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel (200-300 mesh). Analytical grade solvents and commercially available reagents were purchased from commercial sources and used directly without further purification unless otherwise stated. Anhydrous tetrahydrofuran (THF) was prepared by refluxing the analyzed tetrahydrofuran with sodium.

2. General Procedure for the Synthesis of secondary phosphine oxides

General procedure A: Synthesis of symmetric secondary phosphine oxides

Synthesis of 1b is representative

$$R \xrightarrow{\text{I. Mg, I}_{2}, \text{THF}} \qquad R \xrightarrow{\text{I. Mg, I}_{2}, \text{THF}}$$

To a mixture of magnesium (0.53 g, 22 mmol) and THF (10 mL) was added a solution of 1-bromo-4-methylbenzene (2.46 mL, 20 mmol) in THF (10 mL) dropwise with a dropping funnel at 0 °C and the resulting mixture was stirred for 1 h. After cooled to 0 °C, a solution of diethylphosphite (0.65 mL, 5.0 mmol) in THF (10 mL) was added dropwise with a dropping funnel at 0 °C. After stirring at 0 °C for 1 h, the reaction was quenched with 100 ml 0.1 N HCl and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over Na₂SO4 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate= 1:1) followed by recrystallization from a petroleum ether/ethyl acetate mixture to afford 1b.

The spectral data were in accordance with those previously reported in the literature.¹

General procedure B: Synthesis of asymmetric secondary phosphine oxides

$$\begin{array}{c} CI & 1. \, EtOH, \, Et_2O \\ \hline P & \\ CI & \hline \\ 2. \, R-M, \, THF, \, 0 \, ^{o}C \, to \, rt, \, 2 \, h \end{array} \qquad \begin{array}{c} H \\ P \nearrow R \end{array}$$

A 50 mL round-bottomed flask equipped with a magnetic stirrer under air atmosphere was charged with dichlorophenylphosphine (1.35 mL, 10.0 mmol) and Et₂O (25 mL). EtOH (1.45 mL, 25.0 mmol) was added dropwise over 5 mins and the resulting solution was stirred at r.t for 2 hours. The solvent was removed under vacuum and the resulting crude ethyl phosphinate was dissolved in THF (12 mL) under a nitrogen atmosphere. The appropriate organometallic reagent (2.2 equiv.) in THF was cooled to

0 °C under an inert atmosphere and the ethyl phosphinate solution was added dropwise at 0 °C over 30 mins. The reaction was stirred at r.t for 2 hours then quenched with sat. aq. NH₄Cl solution. Water (70 mL) was then added and the aqueous phase was then extracted with CHCl₂ (3 × 150 mL). The combined organic fractions were dried over anhydrous Na₂SO₄, concentrated in vacuo, and the crude residue purified by column chromatography to afford the desired secondary phosphine oxide.

The spectral data were in accordance with those previously reported in the literature.^{2,3,4}

3. General Procedure

3.1 Table S1. Screening of Optimal Reaction Conditions

entry	cat.	Solvent	Temp/°C	3aa(%) ^b	3aa(%) ^b
1	$Cu(OTf)_2$	THF	100	90	N.D.
2	$Zn(OTf)_2$	THF	100	80	trace
3	$Al(OTf)_3$	THF	100	83	trace
4	$Bi(OTf)_3$	THF	100	86	N.D.
5	AgOTf	THF	100	68	trace
6	$Sn(OTf)_2$	THF	100	71	trace
7	$Sc(OTf)_3$	THF	100	74	trace
8	$Cu(OTf)_2$	MeCN	100	53	N.D.
9	$Cu(OTf)_2$	DCM	100	53	N.D.
10	$Cu(OTf)_2$	AcOEt	100	61	N.D.
11	$Cu(OTf)_2$	Tol	100	62	N.D.
12	$Cu(OTf)_2$	THF	80	23	66
13	$Cu(OTf)_2$	THF	60	trace	83
14	$Cu(OTf)_2$	THF	40	N.D.	72
15	$Cu(OTf)_2$	THF	25	N.D.	56
16	$Cu(OTf)_2$	THF	120	74	N.D.

Table S1^aReaction conditions:diphenylphosphine oxide (0.2 mmol),2-Pyridinecarboxaldehyde (0.3 mmol), catalyst (10 mol%), solvent (2 mL) underArat 100 °C for 12 h. Isolated yields unlessotherwise noted.

3.2General Procedure for the Synthesis of O-Phosphination

To a 10 mL glass tube equipped with a stir bar was added picolinaldehyde (0.3 mmol, 1.5equiv, 28.5 ul), diphenylphosphine oxide (0.2 mmol, 1.0equiv, 40.0 mg), Cu(OTf)₂ (0.01 mmol, 10 mol%, 7.2 mg). The glass tube is sealed with a rubber stopper and the air in the tube is replaced with argon three times, then the anhydrous THF (2 ml) was added to the mixed solution by microinjector and stirred at 100 °C for 12 h until complete consumption of starting material diphenylphosphine oxide as monitored by TLC analysis. After the reaction was finished, the resulting solution was filtered and washed with ethyl acetate. The combined filtrates were concentrated under reduced pressure to give the crude product The residue was purified on a silica-gel column chromatography (eluent: petroleum ether/ethyl acetate. Df= 1 : 2) to provide the desired product (90%, 55.6 mg).

4. Experimental procedure for gram-scale reaction

To a 100 mL glass tube equipped with a stir bar was added picolinaldehyde (15 mmol, 1.5equiv, 1.43 ml), diphenylphosphine oxide (10 mmol, 1.0equiv, 2.02 g), Cu(OTf)₂ (0.01 mmol, 10 mol%, 0.362 g). The glass tube is sealed with a rubber stopper and the air in the tube is replaced with argon three times, then the anhydrous

THF (40 ml) was added to the mixed solution by microinjector and stirred at 100 °C for 12 h until complete consumption of starting material diphenylphosphine oxide as monitored by TLC analysis. After the reaction was finished, the resulting solution was filtered and washed with ethyl acetate. The combined filtrates were concentrated under reduced pressure to give the crude product The residue was purified on a silica-gel column chromatography (eluent: petroleum ether/ethyl acetate. Df= 1:2) to provide the desired product .(83%, 2.56g).

5. References

1.Zhang, X.; Wang, J.; Yang, S.D. ACS Catal. 2021, 11, 14008-14015. 2.Kuo, L. Y.; Baker, D. C.; Dortignacq, A. K.; Dill, K. M. Organometallics. 2013, 32, 4759-4765.

3. Beaud, R.; Phipps, R. J.; Gaunt, M. J. J. Am. Chem. Soc. 2016, 138, 13183-13186.

4. Petit,C.; Favre-Réguillon,A.;Mignani,G.; Lemaire,M. Green Chem. 2010, 12, 326-330.

6. Characterization Data

pyridin-2-ylmethyl diphenylphosphinate (3aa)

Compound 3aa was isolated in 90% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 4.6 Hz, 1H), 7.94 – 7.78 (m, 4H), 7.74 – 7.62 (m, 1H), 7.60 – 7.34 (m, 7H), 7.17 (dd, J = 7.0, 5.3 Hz, 1H), 5.19 (d, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.18 (d, J = 8.1 Hz), 149.06 (s), 136.84 (s), 132.34 (d, J = 2.7 Hz), 131.60 (d, J = 10.2 Hz), 130.21 (s), 128.64 (t, J = 11.8 Hz), 122.84 (s), 121.49 (s), 66.76 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 32.93 (s). HRMS (ESI): [M+H] ⁺calcd for C₁₈H₁₆NO₂P310.0991, found 310.0988.

pyridin-2-ylmethyl di-p-tolylphosphinate (3ab)

Compound 3ab was isolated in 90% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 4.6 Hz, 1H), 7.80 – 7.64 (m, 5H), 7.54 (t, J = 10.0 Hz, 1H), 7.26 (dd, J = 7.9, 3.0 Hz, 4H), 7.24 – 7.17 (m, 1H), 5.14 (d, J = 7.3 Hz, 2H), 2.38 (s, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 156.67 (d, J = 8.4 Hz), 149.12 (s), 142.84 (d, J = 2.8 Hz), 136.86 (s), 131.72 (d, J = 10.6 Hz), 129.36 (d, J = 13.6 Hz), 128.62 (s), 127.23 (s), 122.78 (s), 121.50 (s), 66.68 (d, J = 5.3 Hz), 21.66 (s). ³¹P NMR (162 MHz, CDCl₃) δ 33.98 (s). HRMS (ESI): [M+H] ⁺calcd for C₂₀H₂₀NO₂P338.1304, found 338.1306.

pyridin-2-ylmethyl bis(4-methoxyphenyl)phosphinate(3ac)

Compound 3ac was isolated in 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 4.1 Hz, 1H), 7.79 (dd, J = 11.5, 8.7 Hz,4H), 7.70 (t, J = 7.7 Hz, 1H), 7.56 (t, J = 7.0 Hz, 1H), 7.19 (dd, J = 17.6, 10.3 Hz, 1H), 6.96 (dd, J = 8.5, 2.1 Hz, 4H), 5.13 (d, J = 7.3 Hz, 2H), δ 3.83 (d, J = 2.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.68 (d, J = 3.0 Hz), 156.70 (d, J = 8.3 Hz), 149.12 (s), 136.84 (s), 133.71 (dd, J = 27.9, 11.4 Hz), 123.33 (s), 122.76 (s), 121.90 (s), 121.49 (s), 114.05 (t, J = 15.9 Hz), 66.59 (d, J = 5.2 Hz), 55.33 (s). ³¹P NMR (162 MHz, CDCl₃) δ 33.82 (s). HRMS (ESI): [M+H] ⁺calcd for C₂₀H₂₀NO₄P370.1203, found 370.1204.

$$\bigcap_{N} O - \bigcap_{P} CF_{3}$$

pyridin-2-ylmethyl bis(4-(trifluoromethyl)phenyl)phosphinate (3ad)

Compound 3ad was isolated in 67% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (d, J = 4.3 Hz, 1H), 8.02 (dd, J = 12.1, 8.0 Hz, 2H), 7.81 – 7.67 (m, 2H), 7.51 (t, J = 11.5 Hz, 1H), 7.26 (dd, J = 7.0, 5.1 Hz, 1H), 5.22 (d, J = 8.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 155.32 (d, J = 7.6 Hz), 149.49 (s), 136.96 (s), 134.45 (ddd, J = 53.5, 32.8, 25.7 Hz), 132.26 (d, J = 10.6 Hz), 125.67 (dq, J = 13.4, 3.7 Hz), 124.73 (s), 123.29 (s), 121.99 (s), 65.15 (t, J = 362.7 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.38 – -73.33 (m). ³¹**P NMR** (162 MHz, CDCl₃) δ 29.04 (s).**HRMS** (**ESI**): [M+H] ⁺calcd for $C_{20}H_{14}F_6NO_2P$ 446.0739, found 446.0740.

pyridin-2-ylmethyl bis(4-fluorophenyl)phosphinate (3ae)

Compound 3ae was isolated in 74% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (d, J = 4.5 Hz, 1H), 7.86 (ddd, J = 12.0, 8.5, 5.7 Hz, 4H), 7.71 (t, J = 7.7 Hz, 1H), 7.51 (t, J = 9.6 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.16 (td, J = 8.6, 2.3 Hz, 4H), 5.15 (d, J = 7.7 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.62 (d, J = 3.6 Hz), 164.09 (d, J = 3.5 Hz), 155.95 (d, J = 8.0 Hz), 149.36 (s), 136.93 (s), 134.29 (dd, J = 11.7, 8.9 Hz), 127.60 (d, J = 3.5 Hz), 126.19 (d, J = 3.3 Hz), 123.07 (s), 121.77 (s), 116.14 (dd, J = 21.5, 14.5 Hz), 67.05 (d, J = 5.4 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -105.54 (d, J = 1.0 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 31.14 (s).**HRMS** (**ESI**): [M+H] ⁺calcd for $C_{18}H_{14}F_{2}NO_{2}P346.0803$, found 346.0796.

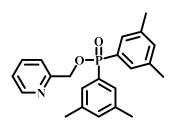
pyridin-2-ylmethyl bis(4-chlorophenyl)phosphinate (3af)

Compound 3af was isolated in 76% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (d, J = 4.5 Hz, 1H), 7.78 (dd, J = 11.9, 8.3 Hz, 4H), 7.71 (t, J = 7.7 Hz, 1H), 7.51 – 7.41 (m, 5H), 7.26 – 7.20 (m, 1H), 5.16 (d, J = 7.7 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 155.78 (d, J = 7.9 Hz), 149.39 (s), 139.24 (d, J = 3.6 Hz), 136.95 (s), 133.10 (d, J = 11.1 Hz), 129.88 (s), 129.14 (d, J = 13.9 Hz), 128.49 (s), 123.12 (s), 121.81 (s), 67.16 (d, J = 5.4 Hz). 31P NMR (162 MHz, CDCl₃) δ 31.01(s).**HRMS** (ESI): [M+H] +calcd for C₁₈H₁₄Cl₂NO₂P378.0212, found 378.0209.

$$\begin{array}{c}
O \\
O \\
P
\end{array}$$

$$\begin{array}{c}
O \\
Br$$

pyridin-2-vlmethyl bis(4-bromophenyl)phosphinate (3ag)


Compound 3ag was isolated in 76% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 4.5 Hz, 1H), 7.71 (dd, J = 12.0, 8.4 Hz, 5H), 7.61 (dd, J = 8.4, 3.0 Hz, 4H), 7.48 (d, J = 7.8 Hz, 1H), 7.24 (dd, J = 7.2, 5.1 Hz, 1H), 5.16 (d, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.74 (d, J = 8.0 Hz), 149.39 (s), 136.98 (s), 133.19 (d, J = 11.1 Hz), 132.10 (d, J = 13.8 Hz), 130.33 (s), 128.95 (s), 127.91 (d, J = 3.7 Hz), 123.15 (s), 121.84 (s), 67.17 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 31.27 (s). HRMS (ESI): [M+H] ⁺calcd for C₁₈H₁₄Br₂NO₂P 465.9202, found 465.9213.

pyridin-2-ylmethyl di-m-tolylphosphinate (3ah)

Compound 3ah was isolated in 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.73 – 7.61 (m, 5H), 7.56 (d, J = 7.8 Hz, 1H), 7.36 – 7.31 (m, 4H), 7.21 (dd, J = 6.9, 5.1 Hz, 1H), 5.16 (d, J = 7.6 Hz, 2H), 2.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.53 (d, J = 8.0 Hz), 149.07 (s), 138.48 (d, J = 13.2 Hz), 136.88 (s), 133.14 (d, J = 2.9 Hz), 132.20 (d, J = 10.3 Hz), 131.59 (s), 130.23 (s), 128.63 (dd, J = 22.1, 12.0 Hz), 122.85 (s), 121.69 (s), 66.82 (d, J = 5.4 Hz), 21.37 (s). ³¹P NMR (162 MHz, CDCl₃) δ 35.90 (s). **HRMS (ESI):** [M+H] ⁺calcd for C₂₀H₂₀NO₂P338.1304, found 338.1304.

pyridin-2-ylmethyl di-o-tolylphosphinate(3ai)

Compound 3ai was isolated in 21% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 4.7 Hz, 1H), 8.05 – 7.90 (m, 2H), 7.71 (td, J = 7.7, 1.7 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.49 – 7.37 (m, 2H), 7.30 (td, J = 7.5, 2.6 Hz, 2H), 7.21 (dd, J = 13.0, 8.0 Hz, 3H), 5.15 (d, J = 7.3 Hz, 2H), 2.36 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.54 (d, J = 8.2 Hz), 149.22 (s), 141.74 (d, J = 11.3 Hz), 136.86 (s), 133.61 (d, J = 9.9 Hz), 132.45 (d, J = 2.7 Hz), 131.50 (d, J = 12.7 Hz), 130.19 (s), 128.88 (s), 125.64 (d, J = 12.7 Hz), 122.85 (s), 121.83 (s), 66.57 (d, J = 5.1 Hz), 21.25 (d, J = 4.3 Hz). 31P NMR (121 MHz, CDCl₃) δ 34.1 (s). HRMS (ESI): [M+H] ⁺calcd for $C_{20}H_{20}NO_2P338.1304$, found 338.1301.

pyridin-2-ylmethyl bis(3,5-dimethylphenyl)phosphinate (3aj)

Compound 3aj was isolated in 45% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.69 – 8.39 (m, 1H), 7.72 (td, J = 7.7, 1.7 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 12.6 Hz, 4H), 7.25 – 7.20 (m, 1H), 7.16 (s, 2H), 5.17 (d, J = 7.7 Hz, 2H), 2.34 (s, 12H). ¹³**C NMR** (101 MHz, CDCl₃) δ 156.69 (d, J = 7.8 Hz), 149.08 (s), 138.30 (d, J = 13.9 Hz), 136.82 (s), 134.06 (d, J = 3.0 Hz), 131.50 (s), 130.15 (s), 129.25 (d, J = 10.2 Hz), 122.78 (s), 121.66 (s), 66.80 (d, J = 5.4 Hz), 21.28 (s). ³¹**P NMR** (162 MHz, CDCl₃) δ 34.38 (s).**HRMS** (**ESI**): [M+H] ⁺calcd for C₂₂H₂₄NO₂P366.1617, found 366.1612.

pyridin-2-ylmethyl bis(4-(tert-butyl)phenyl)phosphinate (3ak)

Compound 3ak was isolated in 90% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 4.7 Hz, 1H), 7.80 (dd, J = 12.0, 8.2 Hz, 4H), 7.74 – 7.67 (m, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.47 (dd, J = 8.3, 3.2 Hz, 4H), 7.24 – 7.17 (m, 1H), 5.14 (d, J = 7.3 Hz, 2H), 1.31 (s, 18H). ¹³C NMR (101 MHz, DMSO) δ 152.02 (d, J = 8.4 Hz), 150.98 (d, J = 2.9 Hz), 144.34 (s), 132.08 (s), 126.87 (d, J = 10.6 Hz), 123.91 (s), 122.52 (s), 120.86 (d, J = 13.4 Hz), 117.98 (s), 116.77 (s), 61.95 (d, J = 5.3 Hz), 30.28 (s), 26.34 (s). ³¹P NMR (162 MHz, CDCl₃) δ 33.77 (s). HRMS (ESI): [M+H] ⁺calcd for C₂₆H₃₂NO₂P 422.2243, found 422.2242.

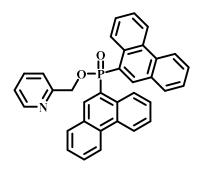
pyridin-2-ylmethyl bis(benzo[b]thiophen-5-yl)phosphinate (3al)

Compound 3al was isolated in 53% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.50 (m, 1H), 8.43 (d, J = 13.4 Hz, 2H), 7.95 (dd, J = 8.3, 2.8 Hz, 2H), 7.79 (dd, J = 10.3, 9.2 Hz, 2H), 7.75 – 7.65 (m, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.50 (dd, J = 5.3, 3.7 Hz, 2H), 7.37 (dt, J = 12.0, 5.9 Hz, 2H), 7.24 – 7.14 (m, 1H), 5.23 (d, J = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.44 (d, J = 8.1 Hz), 149.23 (s), 143.64 (d, J = 2.9 Hz), 139.32 (d, J = 15.1 Hz), 136.89 (s), 128.23 – 127.63 (m), 127.55 (s), 126.38 – 125.71 (m), 124.20 (s), 122.98 (d, J = 14.7 Hz), 121.73 (s), 67.04 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 34.58 (s).HRMS (ESI): [M+H] ⁺calcd for C₂₂H₁₆NO₂PS₂ 422.0433, found 422.0433.

pyridin-2-ylmethyl di(benzofuran-5-yl)phosphinate (3am)

Compound 3am was isolated in 67% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 – 8.51 (m, 1H), 8.24 (dd, J = 12.8, 0.9 Hz, 2H), 7.84 (ddd, J = 11.6, 8.5, 1.4 Hz, 2H), 7.77 – 7.67 (m, 3H), 7.65 – 7.55 (m, 3H), 7.23 (dd, J = 7.0, 5.4 Hz, 1H), 6.91 – 6.79 (m, 2H), 5.22 (d, J = 7.4 Hz, 2H). ¹³**C NM**R (101 MHz, CDCl₃) δ 156.93 (d, J = 3.0 Hz), 156.54 (d, J = 8.2 Hz), 149.20 (s), 146.29 (s), 136.88 (s), 124.87 (s), 122.87 (s), 121.67 (s), 106.88 (s), 66.91 (d, J = 5.3 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 34.81 (s). **HRMS** (**ESI**): [M+H] ⁺calcd for C₂₂H₁₆NO₄P 390.0890, found 390.0888.

pyridin-2-ylmethyl di(naphthalen-1-yl)phosphinate(3an)


Compound 3an was isolated in 76% yield; ¹H NMR (400 MHz, CDCl3) δ 8.68 – 8.59 (m, 2H), 8.45 (dd, J = 15.9, 4.8 Hz, 1H), 8.21 (ddd, J = 15.9, 7.1, 1.1 Hz, 2H), 8.01 (d, J = 8.2 Hz,2H), 7.84 (dd, J = 15.6, 8.4 Hz, 2H), 7.60 (t, J = 7.7 Hz, 1H), 7.47 (ddd, J = 14.8, 13.5, 7.4 Hz, 7H), 7.12 (dd, J = 12.7, 6.5 Hz, 1H), 5.27 (d, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl3) δ 156.38 (d, J = 8.4 Hz), 149.15 (s), 136.76 (s), 134.16 (d, J = 10.4 Hz), 133.88 – 133.49 (m), 133.00 (d, J = 10.5 Hz), 128.95 (d, J = 1.5 Hz), 128.11 (s), 127.55 (s), 126.79 (s), 126.55 (d, J = 4.9 Hz), 126.43 (s), 124.72 (d, J = 15.0 Hz), 122.80 (s), 121.71 (s), 67.13 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl3) δ 35.72 (s).HRMS (ESI): [M+H] ⁺calcd for C₂₆H₂₀NO₂P 410.1304, found 410.1306.

pyridin-2-ylmethyl di(naphthalen-2-yl)phosphinate (3ao)

Compound 3ao was isolated in 88% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (t, J = 9.9 Hz, 3H), 7.96 – 7.78 (m, 8H), 7.69 (td, J = 7.7, 1.7 Hz, 1H), 7.64 – 7.48 (m, 5H), 7.19 (dd, J = 6.7, 5.3 Hz, 1H), 5.27 (d, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.41 (d, J = 8.0 Hz), 149.26 (s), 136.92 (s), 134.96 (d, J = 2.4 Hz), 134.04 (d, J = 10.0 Hz), 132.48 (d, J = 14.5 Hz), 129.05 (s), 128.82 (s), 128.70 (s), 128.57 (s), 128.41 (s), 127.86 (s), 127.45 (s), 127.00 (s), 126.34 (d, J = 10.8 Hz), 122.94 (s), 121.75 (s), 67.13 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.39 (s).HRMS (ESI): [M+H] ⁺calcd for C₂₆H₂₀NO₂P 410.1304, found 410.1300.

pyridin-2-ylmethyl di([1,1'-biphenyl]-4-yl)phosphinate (3ap)

Compound 3ap was isolated in 91% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 4.6 Hz, 1H), 7.76 (dd, J = 12.0, 8.3 Hz, 4H), 7.50 (ddd, J = 11.3, 8.0, 2.4 Hz, 5H), 7.41 – 7.34 (m, 5H), 7.24 (t, J = 7.5 Hz, 4H), 7.17 (t, J = 7.3 Hz, 2H), 7.03 – 6.97 (m, 1H), 5.01 (d, J = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.47 (d, J = 8.1 Hz), 149.26 (s), 145.22 (d, J = 2.9 Hz), 139.93 (s), 136.91 (s), 132.28 (d, J = 10.5 Hz), 130.34 (s), 128.98 (s), 128.22 (s), 127.78 – 126.69 (m), 122.92 (s), 121.71 (s), 67.00 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.07 (s). HRMS (ESI): [M+H] +calcd for C₃₀H₂₄NO₂P 462.1617, found 462.1622.

pyridin-2-ylmethyl di(phenanthren-9-yl)phosphinate (3aq)

Compound 3aq was isolated in 47% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.75 – 8.68 (m, 7H), 8.63 (s, 1H), 8.50 (d, J = 4.8 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.81 – 7.71 (m, 2H), 7.62 (dd, J = 14.6, 7.3 Hz, 2H), 7.56 – 7.47 (m, 5H), 7.20 – 7.11 (m, 3H), δ 7.22 – 7.08 (m, 1H), 5.36 (d, J = 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.30 (d, J = 7.9 Hz), 149.20 (s), 137.57 (d, J = 10.1 Hz), 136.75 (s), 132.42 (d, J = 2.5 Hz), 130.65 (d, J = 10.2 Hz), 130.28 (t, J = 5.2 Hz), 130.05 (d, J = 15.6 Hz), 129.34 (s), 129.34 (s), 127.53 (d, J = 4.6 Hz), 127.39 (s), 127.15 (d, J = 2.6 Hz), 126.96 (s), 125.63 (s), 123.16 (s), 122.85 (s), 122.66 (s), 121.93 (s), 67.37 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 35.86 (s).HRMS (ESI): [M+H] ⁺calcd for C₃₄H₂₄NO₂P 510.1617, found 510.1612.

ethyl (pyridin-2-ylmethyl) phenylphosphonate (3ar)

Compound 3ar was isolated in 70% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (d, J = 4.7 Hz, 1H), 7.91 – 7.81 (m, 2H), 7.70 (td, J = 7.7, 1.5 Hz, 1H), 7.60 – 7.53 (m, 1H), 7.48 (dt, J = 11.7, 5.8 Hz, 3H), 7.21 (dd, J = 7.2, 5.1 Hz, 1H), 5.18 (qd, J = 13.2, 7.6 Hz, 2H), 4.42 – 3.99 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 156.30 (d, J = 8.3 Hz), 149.17 (s), 136.84 (s), 132.63 (d, J = 3.1 Hz), 131.85 (d, J = 10.0 Hz), 128.56 (d, J = 15.2 Hz), 126.78 (s), 122.83 (s), 121.30 (s), 67.76 (d, J = 5.0 Hz), 62.51 (d, J = 5.6 Hz), 16.35 (d, J = 6.4 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 19.38 (s).**HRMS** (**ESI**): [M+H] ⁺calcd for C₁₄H₁₆NO₂P 278.0941, found 278.0947.

pyridin-2-ylmethyl [1,1'-biphenyl]-2-yl(phenyl)phosphinate (3as)

Compound 3as was isolated in 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 4.3 Hz, 1H), 8.28 (ddd, J = 13.0, 7.7, 1.1 Hz, 1H), 7.78 (td, J = 7.7, 1.7 Hz, 1H), 7.69 (tt, J = 7.5, 1.4 Hz, 1H), 7.60 (tdd, J = 7.6, 2.7, 1.3 Hz, 1H), 7.48 (ddd, J = 11.0, 10.1, 7.5 Hz, 4H), 7.39 – 7.30 (m, 5H), 7.25 (q, J = 7.8 Hz, 4H), 5.17 (dd, J = 13.2, 7.4 Hz, 1H), 5.07 (dd, J = 13.2, 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.59 (d, J = 8.3 Hz), 149.01 (s), 146.53 (d, J = 11.6 Hz), 140.45 (d, J = 4.3 Hz), 136.75 (s), 133.01 (d, J = 9.0 Hz), 131.99 (d, J = 2.8 Hz), 131.77 – 131.64 (m), 131.57 (d, J = 6.7 Hz), 131.42 (s), 130.63 (d, J = 7.7 Hz), 129.76 (s), 128.02 (d, J = 13.4 Hz), 127.33 (d, J = 10.0 Hz), 126.85 (d, J = 12.4 Hz), 122.69 (s), 121.57 (s), 66.47 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.10 (s).HRMS (ESI): [M+H] ⁺calcd for C₂₄H₂₀NO₂P 386.1304, found 386.1305.

pyridin-2-ylmethyl dicyclohexylphosphinate (3at)

Compound 3at was isolated in 77% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (t, J = 6.7 Hz, 1H), 7.73 (td, J = 7.7, 1.6 Hz, 1H), 7.60 – 7.42 (m, 1H), 7.23 (dd, J = 7.2, 5.1 Hz, 1H), 5.16 (d, J = 6.9 Hz, 2H), δ 1.99 (d, J = 12.0 Hz, 2H), 1.85 (ddd, J = 14.1, 8.8, 3.0 Hz, 8H), 1.71 (s, 2H), 1.54 – 1.34 (m, 4H), 1.23 (t, J = 8.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.30 (d, J = 6.5 Hz), 149.25 (s), 136.80 (s), 122.74 (s), 121.56 (s), 66.77 (d, J = 6.5 Hz), 36.59 (s), 35.72 (s), 26.56 – 26.10 (m), 25.90 (d, J = 1.4 Hz), 25.43 (dd, J = 5.2, 3.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 60.33 (s). HRMS (ESI): [M+H] ⁺calcd for C₁₈H₂₈NO₂P 322.1930, found 322.1924.

pyridin-2-ylmethyl tert-butyl(phenyl)phosphinate (3au)

Compound 3au was isolated in 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 4.5 Hz, 1H), 7.80 (dd, J = 9.4, 8.0 Hz, 2H), 7.74 (td, J = 7.7, 1.5 Hz, 1H), 7.56 (t, J = 6.0 Hz, 2H), 7.47 (td, J = 7.4, 3.1 Hz, 2H), 7.23 (dd, J = 7.0, 5.2 Hz, 2H), 5.23 (dd, J = 13.2, 7.3 Hz, 1H), 4.94 (dd, J = 13.2, 6.6 Hz, 1H), 1.31 – 1.07 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.95 (d, J = 7.4 Hz), 149.17 (s), 136.84 (s), 133.22 (d, J = 8.9 Hz), 132.24 (d, J = 2.6 Hz), 128.38 (d, J = 11.7 Hz), 127.28 (s), 122.77 (s), 121.45 (s), 66.65 (d, J = 6.7 Hz), 33.34 (s), 32.35 (s), 24.31 (s). ³¹P NMR (162 MHz, CDCl₃) δ 52.83 (s). HRMS (ESI): [M+H] ⁺calcd for C₃₀H₂₄NO₂P 290.1304, found 290.1309.

(3-methylpyridin-2-yl)methyl diphenylphosphinate (3ba)

Compound 3ba was isolated in 32% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (d, J = 4.1 Hz, 1H), 7.91 – 7.73 (m, 4H), 7.51 (dt, J = 15.3, 4.4 Hz, 3H), 7.43 (td, J = 7.4, 3.5 Hz, 4H), 7.18 (dd, J = 7.6, 4.8 Hz, 1H), 5.20 (d, J = 6.5 Hz, 2H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.56 (d, J = 8.5 Hz), 146.80 (s), 138.43 (s), 133.24 (s), 132.23 (d, J = 2.8 Hz), 131.80 (t, J = 8.2 Hz), 130.52 (s), 128.54 (d, J = 13.2 Hz), 123.73 (s), 66.21 (d, J = 5.6 Hz), 18.21 (s). ³¹**P NMR** (162 MHz, CDCl₃) δ 32.58 (s). **HRMS** (**ESI**): [M+H] ⁺calcd for C₁₉H₁₈NO₂P 324.1148, found 324.1159.

(4-methylpyridin-2-yl)methyl diphenylphosphinate (3bb)

Compound 3bb was isolated in 92% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 5.0 Hz, 1H), 7.93 – 7.79 (m, 4H), 7.53 (dd, J = 10.5, 4.3 Hz, 2H), 7.46 (td, J = 7.3, 3.5 Hz, 4H), 7.33 (s, 1H), 7.02 (d, J = 4.9 Hz, 1H), 5.13 (d, J = 7.5 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.03 (d, J = 8.0 Hz), 148.98 (s), 148.13 (s), 132.35 (d, J = 2.8 Hz), 132.06 – 131.29 (m), 130.38 (s), 128.63 (d, J = 13.2 Hz), 123.88 (s), 122.61 (s), 66.98 (d, J = 5.5 Hz), 21.18 (s). ³¹P NMR (162 MHz, CDCl₃) δ 32.89 (s). HRMS (ESI): [M+H] ⁺calcd for C₁₉H₁₈NO₂P 324.1148, found 324.1151.

(5-methylpyridin-2-yl)methyl diphenylphosphinate (3bc)

Compound 3bc was isolated in 82% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.92 – 7.77 (m, 4H), 7.55 – 7.48 (m, 3H), 7.48 – 7.40 (m, 5H), 5.13 (d, J = 7.4 Hz, 2H), 2.26 (d, J = 41.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.41 (d, J = 8.1 Hz), 149.59 (s), 137.31 (s), 132.45 (s), 132.28 (d, J = 2.8 Hz), 131.75 (t, J = 7.6 Hz), 130.46 (s), 128.59 (d, J = 13.2 Hz), 121.38 (s), 66.90 (d, J = 5.5 Hz), 18.19 (s). ³¹P NMR (162 MHz, CDCl₃) δ 32.81 (s). HRMS (ESI): [M+H] ⁺calcd for C₁₉H₁₈NO₂P 324.1148, found 324.1146.

(6-methylpyridin-2-yl)methyl diphenylphosphinate (3bd)

Compound 3bd was isolated in45% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.81 (m, 4H), 7.58 (t, J = 7.7 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.48 – 7.40 (m, 4H), 7.35 (d, J = 7.7 Hz, 1H), 7.05 (d, J = 7.7 Hz, 1H), 5.13 (d, J = 7.5 Hz, 2H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.86 (s), 155.75 (d, J = 8.1 Hz), 137.04 (s), 132.30 (d, J = 2.8 Hz), 131.74 (d, J = 10.3 Hz), 130.43 (s), 128.58 (d, J = 13.2 Hz), 122.39 (s), 118.35 (s), 66.97 (d, J = 5.4 Hz), 24.29 (s). ³¹P NMR (162 MHz, CDCl₃) δ 32.71 (s). HRMS (ESI): [M+H] ⁺calcd for C₁₉H₁₈NO₂P 324.1148, found 324.1139.

(5-fluoropyridin-2-yl)methyl diphenylphosphinate (3be)

Compound 3be was isolated in 67% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, J = 2.8 Hz, 1H), 7.97 – 7.77 (m, 4H), 7.58 – 7.51 (m, 3H), 7.50 – 7.40 (m, 5H), 5.15 (d, J = 7.8 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.18 (s), 157.64 (s), 152.32 (dd, J = 7.9, 3.9 Hz), 137.48 (d, J = 24.0 Hz), 132.45 (d, J = 2.8 Hz), 131.67 (t, J = 7.4 Hz),

130.25 (s), 128.68 (d, J = 13.2 Hz), 123.55 (d, J = 18.5 Hz), 122.96 (d, J = 4.5 Hz), 68.00 – 64.42 (m). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.92 (s). ³¹**P NMR** (162 MHz, CDCl₃) δ 33.15 (s).**HRMS (ESI):** [M+H] + calcd for C₁₈H₁₅FNO₂P 328.0897, found 328.0903.

(5-chloropyridin-2-yl)methyl diphenylphosphinate (3bf)

Compound 3bf was isolated in 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 1.3 Hz, 1H), 7.88 (dd, J = 11.1, 8.3 Hz, 4H), 7.75 – 7.65 (m, 1H), 7.62 – 7.39 (m, 8H), 5.15 (dd, J = 7.7, 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.61 (d, J = 8.0 Hz), 148.08 (s), 136.58 (s), 132.48 (d, J = 2.8 Hz), 131.70 (d, J = 10.3 Hz), 131.50 (s), 131.24 (s), 130.14 (s), 128.70 (d, J = 13.2 Hz), 122.53 (s), 66.28 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.30 (s). HRMS (ESI): [M+H] + calcd for C₁₈H₁₅ClNO₂P 344.0602, found 344.0607.

(5-bromopyridin-2-yl)methyl diphenylphosphinate (3bg)

Compound 3bg was isolated in 88% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 1.8 Hz, 1H), 7.93 – 7.77 (m, 5H), 7.54 (t, J = 7.1 Hz, 2H), 7.51 – 7.42 (m, 5H), 5.12 (d, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.02 (d, J = 7.9 Hz), 150.25 (s), 139.44 (s), 132.49 (d, J = 2.8 Hz), 131.70 (d, J = 10.3 Hz), 131.49 (s), 130.13 (s), 128.70 (d, J = 13.2 Hz), 123.02 (s), 119.89 (s), 66.30 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.33 (s). HRMS (ESI): [M+H] + calcd for C₁₈H₁₅BrNO₂P 388.0097,

found 388.0097.

(5-phenylpyridin-2-yl)methyl diphenylphosphinate (3bh)

Compound 3bh was isolated in 88% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 1.8 Hz, 1H), 8.01 – 7.85 (m, 5H), 7.65 (d, J = 8.1 Hz, 1H), 7.61 – 7.53 (m, 4H), 7.53 – 7.47 (m, 6H), 7.43 (t, J = 7.3 Hz, 1H), 5.25 (d, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.12 (d, J = 8.0 Hz), 147.69 (s), 137.48 (s), 135.93 (s), 135.25 (s), 132.41 (d, J = 2.8 Hz), 131.76 (d, J = 10.2 Hz), 130.35 (s), 129.14 (s), 128.68 (d, J = 13.2 Hz), 128.21 (s), 127.14 (s), 121.71 (s), 66.83 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.08 (s).HRMS (ESI): [M+H] + calcd for C₂₄H₂₀NO₂P 386.1304, found 386.1301.

methyl 6-(((diphenylphosphoryl)oxy)methyl)nicotinate (3bi)

Compound 3bi was isolated in 94% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 9.13 (d, J = 1.6 Hz, 1H), 8.32 (dd, J = 8.2, 2.1 Hz, 1H), 7.96 – 7.83 (m, 4H), 7.66 (d, J = 8.2 Hz, 1H), 7.55 (td, J = 7.5, 1.3 Hz, 2H), 7.51 – 7.43 (m, 4H), 5.22 (d, J = 7.6 Hz, 2H), 4.19 – 3.45 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.50 (s), 160.86 (d, J = 8.0 Hz), 150.35 (s), 138.01 (s), 132.52 (d, J = 2.8 Hz), 131.69 (d, J = 10.3 Hz), 131.43 (s), 130.07 (s), 128.72 (d, J = 13.2 Hz), 125.14 (s), 120.75 (s), 66.44 (d, J = 5.3 Hz), 52.42 (s). ³¹**P NMR** (162 MHz, CDCl₃) δ 33.45 (s).**HRMS** (**ESI**): [M+H] + calcd for C₂₀H₁₈NO₄P 368.1046, found 368.1040.

(5-methoxypyridin-2-yl)methyl diphenylphosphinate (3bj)

Compound 3bj was isolated in 52% yield; ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 2.8 Hz, 1H), 7.89 – 7.80 (m, 4H), 7.55 – 7.49 (m, 2H), 7.48 – 7.41 (m, 5H), 7.19 (dd, J = 8.6, 2.9 Hz, 1H), 5.12 (d, J = 7.6 Hz, 2H), 3.85 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 155.22 (s), 148.16 (d, J = 8.0 Hz), 136.99 (s), 132.29 (d, J = 2.8 Hz), 131.78 (t, J = 9.3 Hz), 130.51 (s), 128.60 (d, J = 13.2 Hz), 122.84 (s), 120.97 (s), 66.84 (d, J = 5.5 Hz), 55.65 (s). ³¹**P NMR** (162 MHz, CDCl₃) δ 32.71 (s).**HRMS** (**ESI**): [M+H] + calcd for C₁₉H₁₈NO₃P 340.1097, found 340.1090.

(5-(trifluoromethyl)pyridin-2-yl)methyl diphenylphosphinate (3bk)

Compound 3bk was isolated in 73% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 7.95 (dd, J = 8.3, 2.0 Hz, 1H), 7.93 – 7.84 (m, 4H), 7.72 (d, J = 8.2 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.48 (tdd, J = 8.2, 3.5, 1.2 Hz, 4H), 5.23 (d, J = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.52 (d, J = 6.5 Hz), 146.09 (d, J = 4.0 Hz), 134.09 (d, J = 3.5 Hz), 132.59 (d, J = 2.8 Hz), 131.68 (d, J = 10.3 Hz), 131.34 (s), 129.97 (s), 128.75 (d, J = 13.3 Hz), 125.78 (d, J = 33.1 Hz), 124.76 (s), 122.05 (s), 121.03 (s), 66.29 (d, J = 5.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -54.50 – -70.75 (m). ³¹P NMR (162 MHz, CDCl₃) δ 33.64 (s). HRMS (ESI): [M+H] + calcd for C₁₉H₁₅F₃NO₂P 378.0865, found 378.0855.

1-(pyridin-2-yl)ethyl diphenylphosphinate (3bl)

Compound 3bl was isolated in 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.48 (m, 1H), 7.93 – 7.83 (m, 2H), 7.78 – 7.70 (m, 2H), 7.65 (dd, J = 10.8, 4.5 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.50 – 7.42 (m, 4H), 7.35 (ddd, J = 5.5, 4.4, 2.1 Hz, 2H), 7.20 – 7.13 (m, 1H), 5.57 (dq, J = 8.9, 6.5 Hz, 1H), 1.70 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.75 (d, J = 5.3 Hz), 148.98 (s), 136.77 (s), 132.66 (s), 132.17 (d, J = 2.8 Hz), 132.06 (d, J = 2.8 Hz), 131.69 (dd, J = 10.2, 6.0 Hz), 131.29 (s), 130.79 (s), 122.66 (s), 120.48 (s), 74.93 (d, J = 5.5 Hz), 23.25 (d, J = 3.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 31.47 (s).HRMS (ESI): [M+H] + calcd for C₁₉H₁₈NO₂P 324.1148, found 324.1143.

pyridine-2,6-diylbis(methylene) bis(diphenylphosphinate) (3bm)

Compound 3bm was isolated in 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 8H), 7.74 (t, J = 7.8 Hz, 1H), 7.56 – 7.50 (m, 4H), 7.49 – 7.41 (m, 10H), 5.10 (d, J = 7.5 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 155.96 (d, J = 8.1 Hz), 137.75 (s), 132.42 (d, J = 2.8 Hz), 131.70 (t, J = 8.0 Hz), 130.27 (s), 128.66 (d, J = 13.2 Hz), 120.59 (s), 66.65 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.05 (s). HRMS (ESI): [M+H] + calcd for C₃₁H₂₇NO₄P₂540.1488, found 540.1489.

pyridine-2,6-diylbis(ethane-1,1-diyl) bis(diphenylphosphinate) (3bn)

Compound 3bn was isolated in 43% yield; **H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.82 (m, 4H), 7.78 – 7.70 (m, 4H), 7.64 (t, J = 7.7 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.49 – 7.41 (m, 6H), 7.35 (ddd, J = 9.4, 8.3, 4.8 Hz,6H), 5.60 – 5.38 (m, 2H), 1.71 – 1.51 (m, 6H). **NMR** (101 MHz, CDCl₃) δ 160.06 (t, J = 5.1 Hz), 137.59 (d, J = 10.4 Hz), 132.63 (d, J = 7.5 Hz), 132.14 (d, J = 10.4 Hz), 131.70 (ddd, J = 10.1, 4.7, 3.2 Hz), 131.26 (d, J = 7.1 Hz), 130.77 (d, J = 7.9 Hz), 128.68 – 128.08 (m), 119.09 (d, J = 5.3 Hz), 74.89 (t, J = 5.7 Hz), 23.24 (dd, J = 6.6, 3.5 Hz). **P NMR** (162 MHz, CDCl₃) δ 31.30 (d, J = 8.7 Hz). **HRMS (ESI):** [M+H] + calcd for C₃₃H₃₁NO₄P₂568.1801, found 568.1785.

di(pyridin-2-yl)methyl diphenylphosphinate (3bo)

Compound 3bo was isolated in 73% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 4.5 Hz, 2H), 7.86 – 7.74 (m, 4H), 7.62 (q, J = 7.6 Hz, 4H), 7.46 (t, J = 7.4 Hz, 2H), 7.36 (td, J = 7.5, 3.5 Hz, 4H), 7.11 (dd, J = 8.4, 3.3 Hz, 2H), 6.58 (d, J = 10.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.62 (d, J = 4.7 Hz), 149.35 (s), 136.72 (s), 132.20 (d, J = 2.8 Hz), 131.83 (t, J = 8.8 Hz), 130.55 (s), 128.39 (d, J = 13.3 Hz), 122.82 (s), 122.10 (s), 79.38 (d, J = 5.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 32.85 (s). HRMS (ESI): [M+H] + calcd for C₂₃H₁₉N₂O₂P 387.1257, found 387.1262.

quinolin-2-ylmethyl diphenylphosphinate (3bp)

Compound 3bp was isolated in88% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.95 – 7.85 (m, 4H), 7.82 – 7.77 (m, 1H), 7.74 – 7.65 (m, 2H), 7.51 (ddd, J = 7.2, 4.7, 2.4 Hz, 3H), 7.48 – 7.41 (m, 4H), 5.33 (d, J = 7.5 Hz,2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.73 (d, J = 8.1 Hz), 147.41 (s), 137.09 (s), 132.42 (d, J = 2.8 Hz), 131.74 (t, J = 7.6 Hz), 130.31 (s), 129.81 (s), 129.05 (s), 128.67 (d, J = 13.2 Hz), 127.63 (d, J = 9.5 Hz), 126.69 (s), 119.42 (s), 67.56 (d, J = 5.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.22 (s).HRMS (ESI): [M+H] + calcd for C₂₂H₁₈NO₂P 360.1148, found 360.1149.

isoquinolin-1-ylmethyl diphenylphosphinate (3bq)

Compound 3bq was isolated in 94% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, J = 8.5, 4.5 Hz, 2H), 7.91 – 7.76 (m, 5H), 7.72 – 7.58 (m, 3H), 7.48 (dd, J = 10.3, 4.5 Hz, 2H), 7.40 (dt, J = 10.4, 4.1 Hz, 4H), 5.63 (d, J = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.76 (d, J = 8.8 Hz), 141.74 (s), 136.48 (s), 132.31 (d, J = 2.8 Hz), 131.73 (t, J = 7.6 Hz), 130.33 (s), 128.56 (d, J = 13.2 Hz), 127.92 (s), 127.18 (s), 125.51 (s), 121.84 (s), 66.31 (d, J = 5.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 33.09 (s). HRMS (ESI): [M+H] + calcd for C₂₂H₁₈NO₂P 360.1148, found 360.1148.

7. X-ray crystallographic data for 3ak.

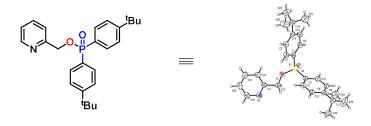
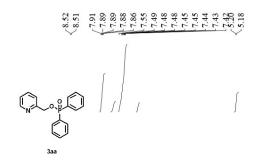
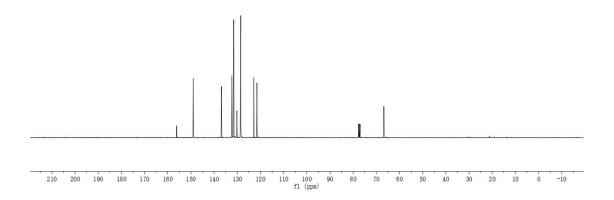


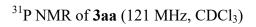
Figure S1. The structure of 3ak

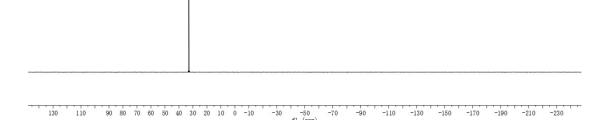

 $\label{eq:continuous_state} Table~S1.~\text{Crystal data and structure refinement for}~3ak$

Identification code	3ak		
Empirical formula	C ₂₆ H ₃₂ NO ₂ P		
Formula weight	421.49		
Temperature/K	300.12(10)		
Crystal system	monoclinic		
Space group	P21		
a/Å	12.3652(2)		
b/Å	8.67120(10)		
c/Å	23.3663(3)		
α/°	90		
β/°	103.9070(10)		
γ/°	90		
Volume/Å ³	2431.92(6)		
Z	4		
pcalcg/cm ³	1.151		
μ/mm ⁻¹	1.155		
F(000)	904.0		
Crystal size/mm ³	$0.14 \times 0.11 \times 0.08$		
Radiation	Cu Kα (λ = 1.54184)		
2Θ range for data collection/°	9.354 to 154.844		
Index ranges	$-15 \le h \le 15, -10 \le k \le 10, -25 \le 1 \le 29$		
Reflections collected	34396		
Independent reflections	4990 [Rint = 0.0616, Rsigma = 0.0387]		
Data/restraints/parameters	4990/0/277		
Goodness-of-fit on F ²	1.044		
Final R indexes [I>=2σ (I)]	R1 = 0.0567, wR2 = 0.1617		
Final R indexes [all data]	R1 = 0.0617, wR2 = 0.1669		
Largest diff. peak/hole / e Å ⁻³	0.40/-0.34		

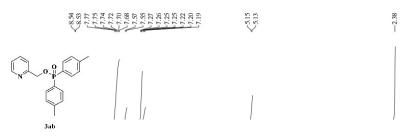
Single crystals of C₂₆H₃₂NO₂P [yangjin309_1102_auto] were collected. A suitable crystal was selectedand collected on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 300 Kduring data collection. Using Olex2, the structure was solved with the SHELXT structure solutionprogram using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squaresminimisation. Refined structure and crystallographic parameters are summarized in Figure S1 andTableS2. CCDC 2177793 contains the supplementary crystallographic data for yangjin309_1102_auto.Thecrystallographic data of the compound can be obtained free of charge from The CambridgeCrystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

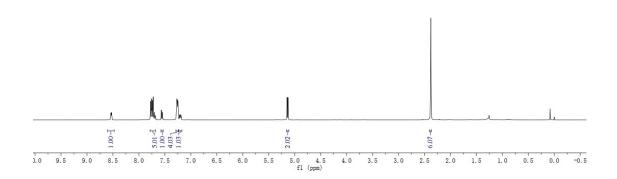

8. Scanned ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR Spectra of All products

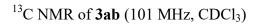

¹H NMR of **3aa** (400 MHz, CDCl₃)

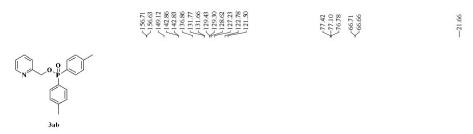


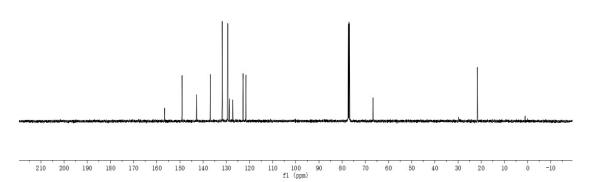
 13 C NMR of **3aa** (101 MHz, CDCl₃)

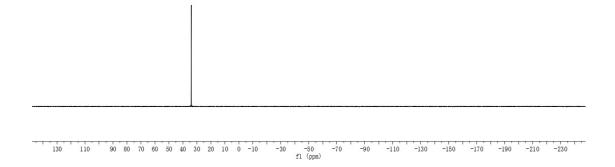


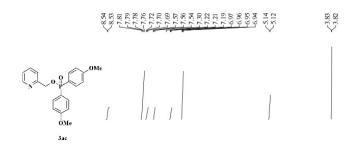


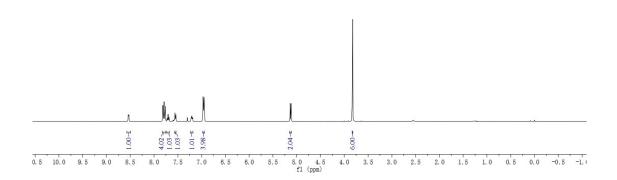

-32.93



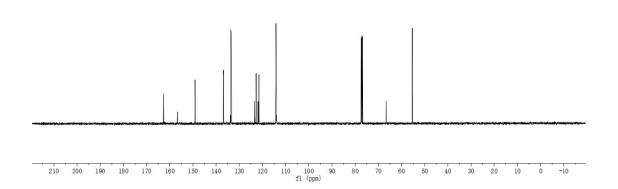

1 H NMR of **3ab** (400 MHz, CDCl₃)






³¹P NMR of **3ab** (121 MHz, CDCl₃)

-33.98


1 H NMR of **3ac** (400 MHz, CDCl₃)

13 C NMR of 3ac (101 MHz, CDCl₃)

| 102.00 | 102.00 | 156.00 | 156.00 | 138.50 | 133.00 | 133.00 | 133.00 | 133.00 | 144.00 | 1

³¹P NMR of **3ac** (121 MHz, CDCl₃)

¹H NMR of **3ad** (400 MHz, CDCl₃)

CL²

CL²

S S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

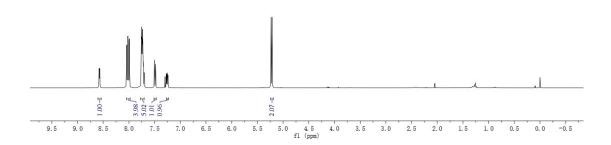
S S S

S S S

S S S

S S S

S S S

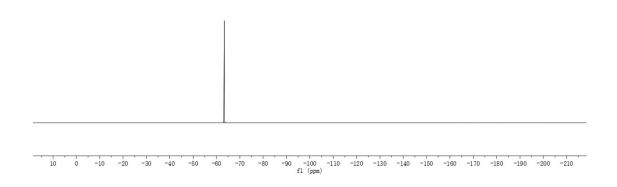

S S S

S S S

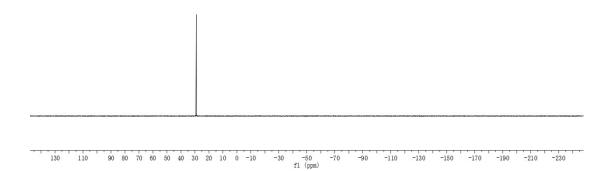
S S S

S S S

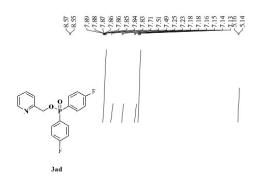
S S S

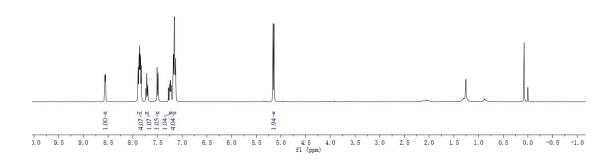

13 C NMR of **3ad** (101 MHz, CDCl₃)

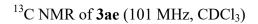
$$\bigcap_{\mathbf{C}} \mathbf{O} \bigcap_{\mathbf{D}} \mathbf{C}^{\mathbf{C}\mathbf{F}_3}$$


¹⁹F NMR of **3ad** (282 MHz, CDCl₃)

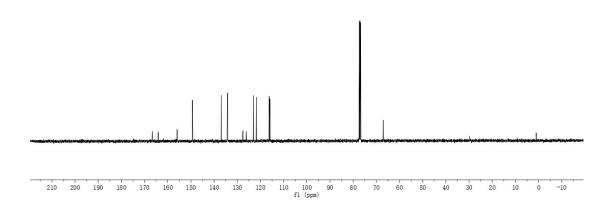
--63.36

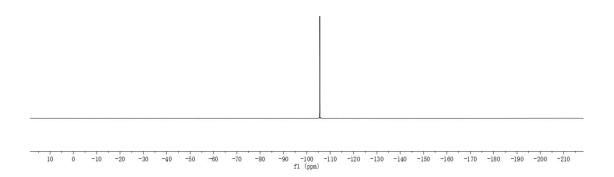


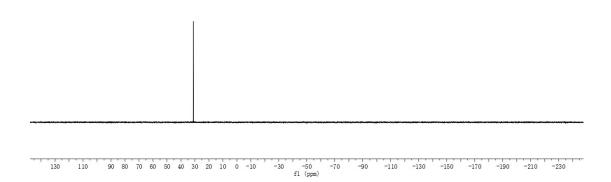

³¹P NMR of **3ad** (121 MHz, CDCl₃)


-29.04

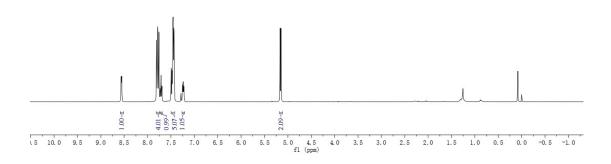
¹H NMR of **3ae** (400 MHz, CDCl₃)





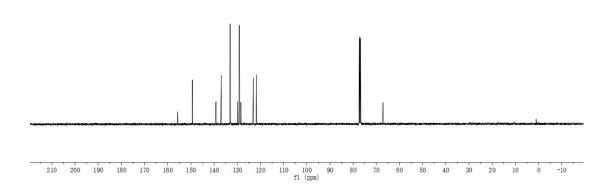

¹⁹F NMR of **3ae** (282 MHz, CDCl₃)

<-105.54 <-105.54

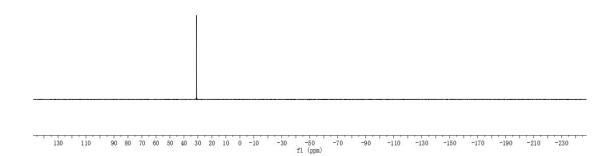

³¹P NMR of **3ae** (121 MHz, CDCl₃)

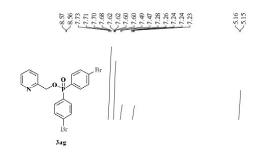
-31.14

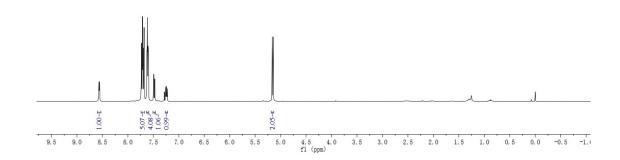
¹H NMR of **3af** (400 MHz, CDCl₃)


8.8.8 8.8.8 1.7.8 1.7.8 1.7.8 1.7.9 1.

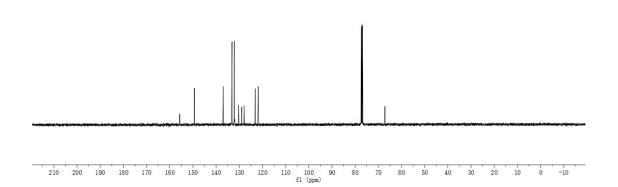
13 C NMR of **3af** (101 MHz, CDCl₃)

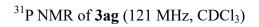


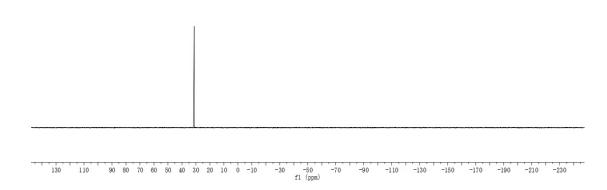


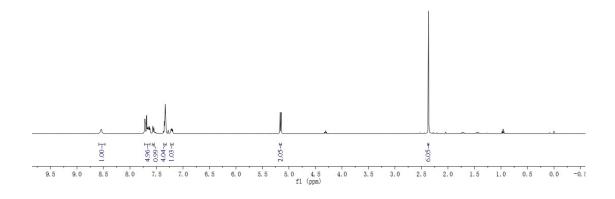

³¹P NMR of **3af** (121 MHz, CDCl₃)

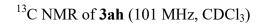
-31.01


¹H NMR of **3ag** (400 MHz, CDCl₃)

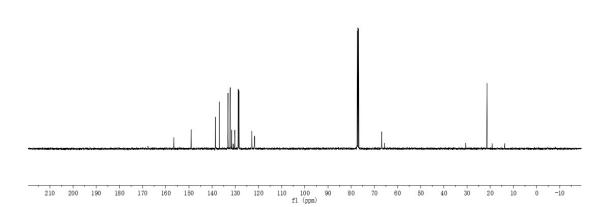


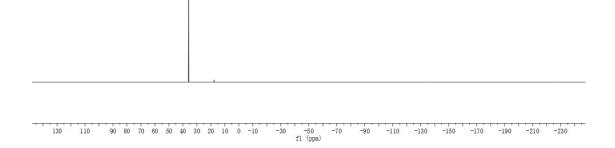

13 C NMR of 3ag (101 MHz, CDCl₃)

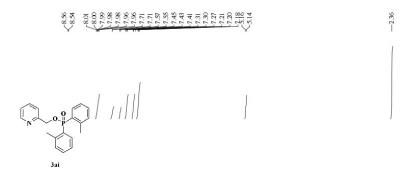



-31.27

¹H NMR of **3ah** (400 MHz, CDCl₃)

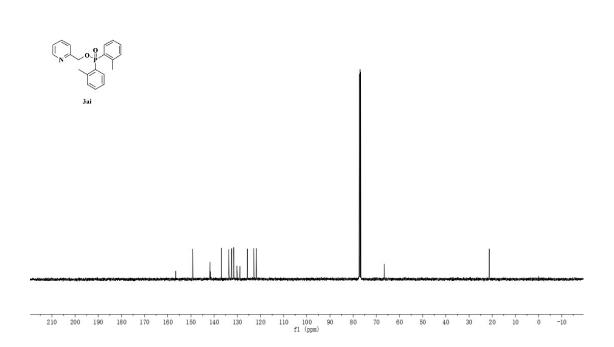

8.54 17.77 17.78 17.79 17.



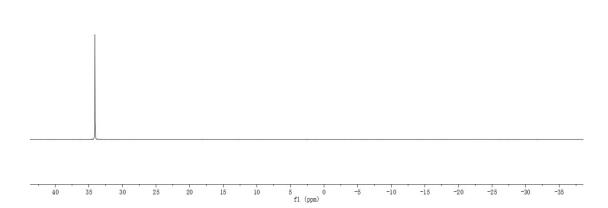


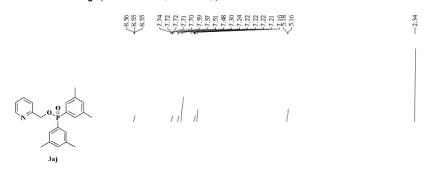

³¹P NMR of **3ah** (121 MHz, CDCl₃)

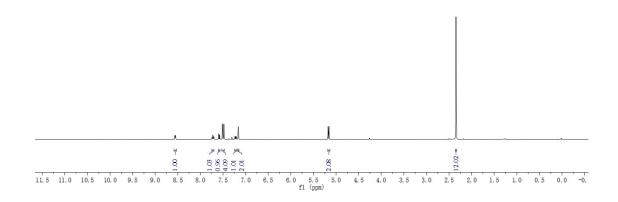
-35.90

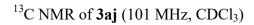


| 186.88 | 186.89 | 19.27 | 19.28 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.24 | 13.25 | 13.25 | 13.26 | 13

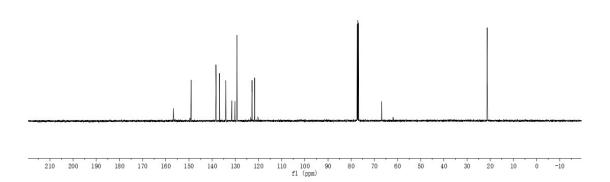

¹³C NMR of **3ai** (101 MHz, CDCl₃)

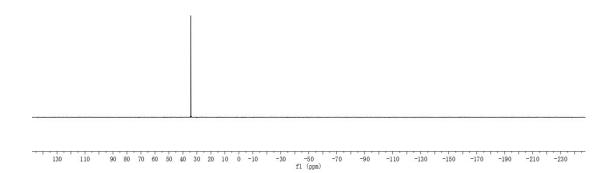


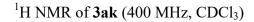

-34.10

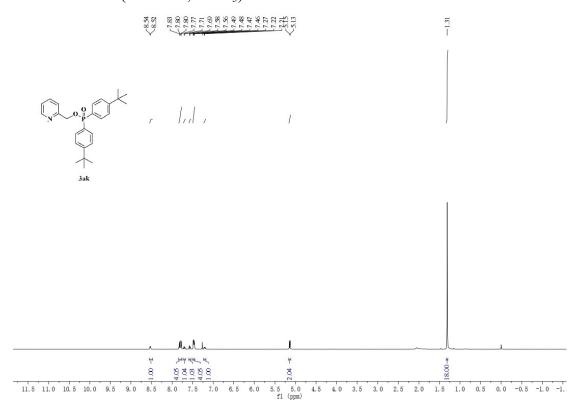


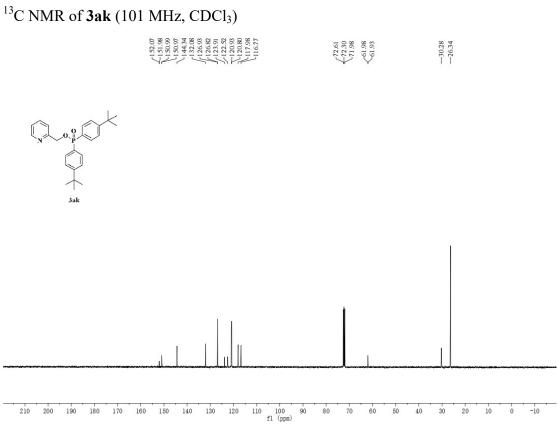
¹H NMR of **3aj** (400 MHz, CDCl₃)



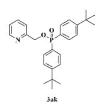


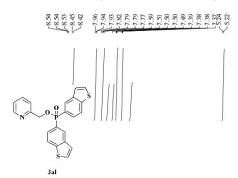





 31 P NMR of $\mathbf{3aj}$ (121 MHz, CDCl₃)

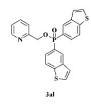
-34.38

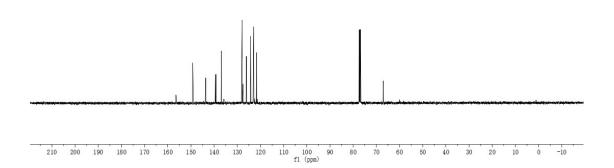



³¹P NMR of **3ak** (121 MHz, CDCl₃)

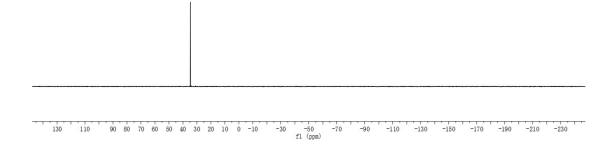
-28.82

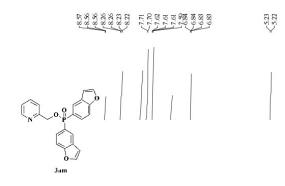
130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

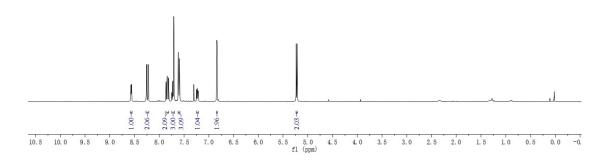

¹H NMR of **3al** (400 MHz, CDCl₃)



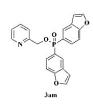
13 C NMR of **3al** (101 MHz, CDCl₃)

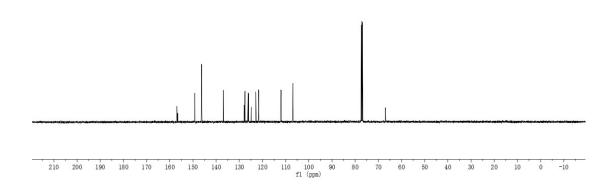

| 156.88 | 156.40 | 1




³¹P NMR of **3al** (121 MHz, CDCl₃)

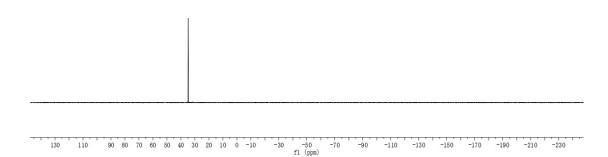
-34.58


¹H NMR of **3am** (400 MHz, CDCl₃)

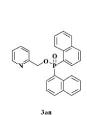


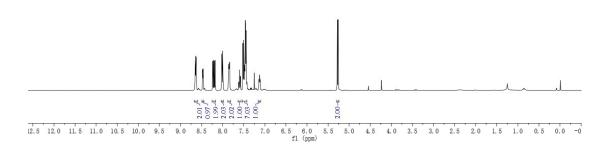
¹³C NMR of **3am** (101 MHz, CDCl₃)

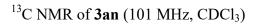
| 156.94 | 156.89 | 127.63 | 1

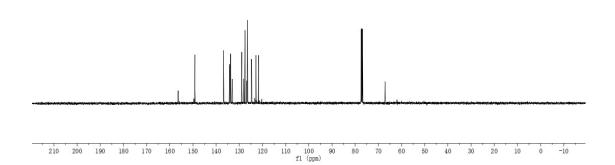


 $^{31}\mbox{P}$ NMR of $\boldsymbol{3am}$ (121 MHz, CDCl3)

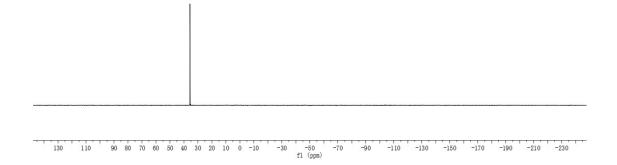

-34.81

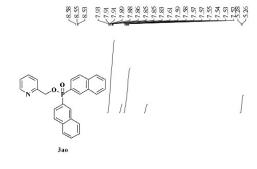


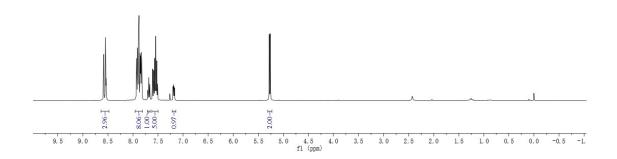

 1 H NMR of **3an** (400 MHz, CDCl₃)



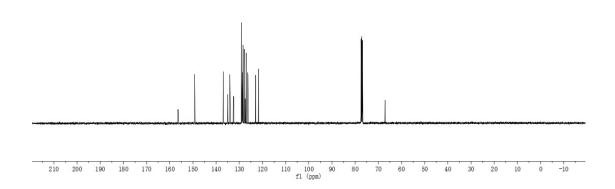
], | | | ,





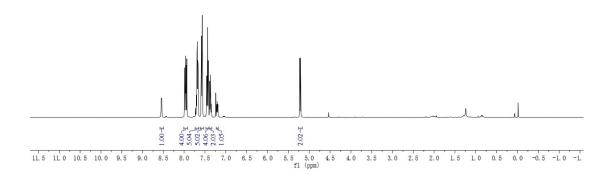

³¹P NMR of **3an** (121 MHz, CDCl₃)

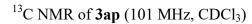
-35.72

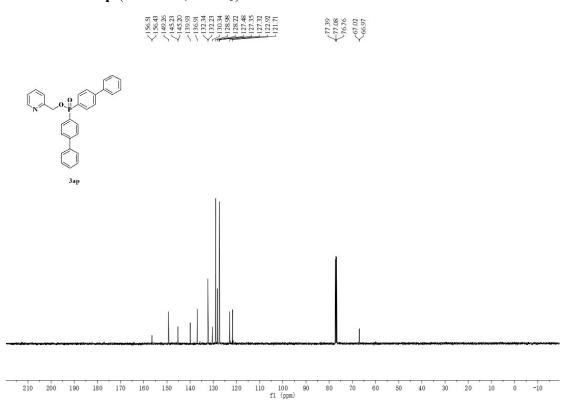


¹H NMR of **3ao** (400 MHz, CDCl₃)

¹³C NMR of **3ao** (101 MHz, CDCl₃)

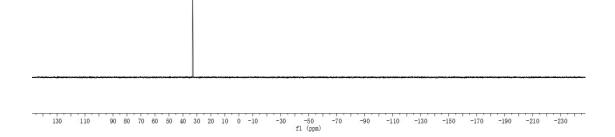

 $^{31}\text{P NMR}$ of 3ao (121 MHz, CDCl3)

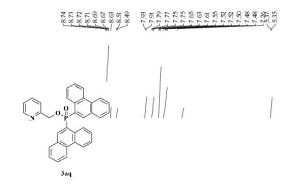

-33.39

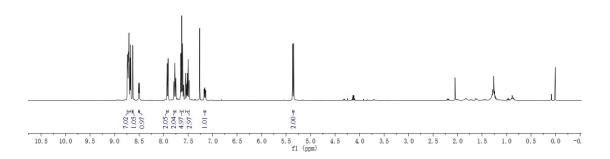

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

1 H NMR of **3ap** (400 MHz, CDCl₃)

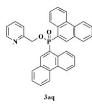
3ap

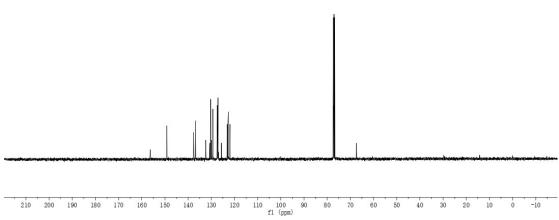


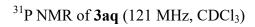



³¹P NMR of **3ap** (121 MHz, CDCl₃)

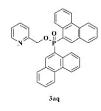
-33.07

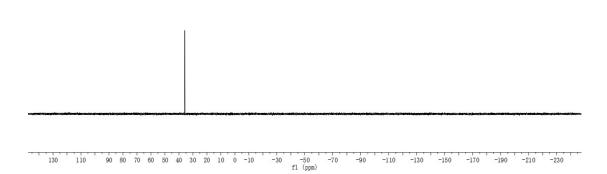

¹H NMR of **3aq** (400 MHz, CDCl₃)

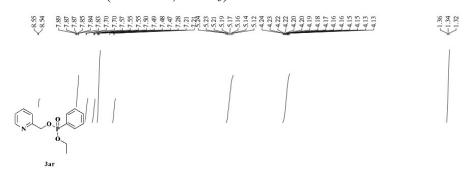


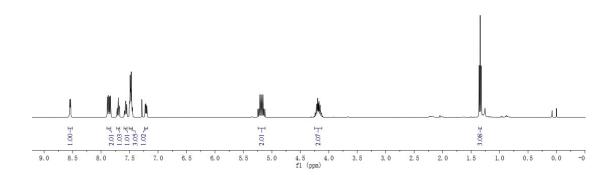


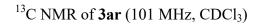
13 C NMR of 3aq (101 MHz, CDCl₃)

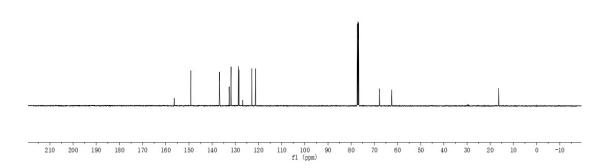

| 156.34 | 156.26 | 137.27 | 137.27 | 137.27 | 137.27 | 137.27 | 137.27 | 127.39 | 1

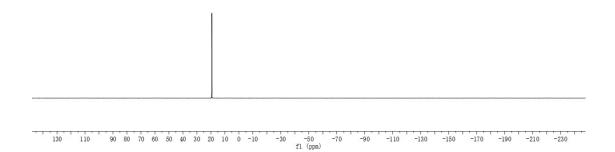




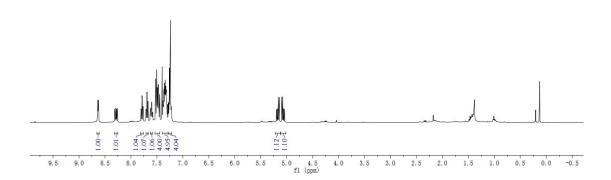

-35.86



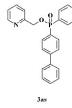

¹H NMR of **3ar** (400 MHz, CDCl₃)

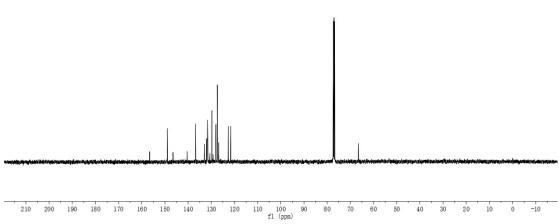


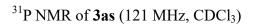
| 156.34 | 156.26 | 130.07 | 131.06 | 131.06 | 131.06 | 131.06 | 131.06 | 131.06 | 131.06 | 131.06 | 131.07 | 1


³¹P NMR of **3ar** (121 MHz, CDCl₃)

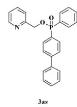
¹H NMR of **3as** (400 MHz, CDCl₃)





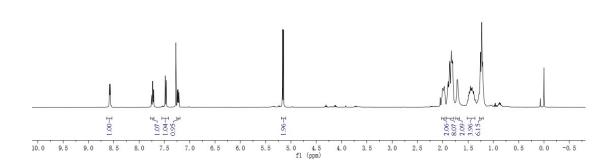


¹³C NMR of **3as** (101 MHz, CDCl₃)

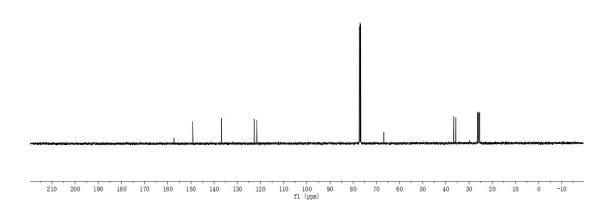

| 156.83 | 156.85 | 156.75 | 1

-33.10

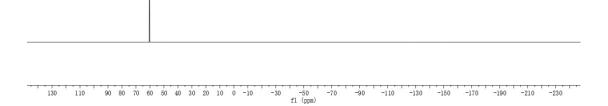
130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230


¹H NMR of **3at** (400 MHz, CDCl₃)

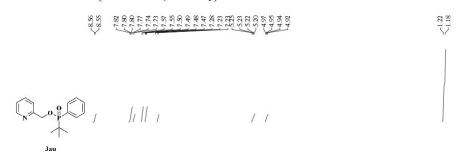
5.16

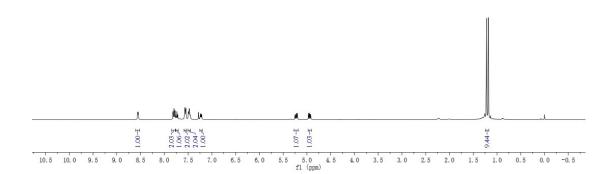

151

ſ

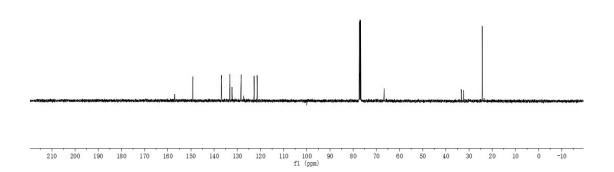


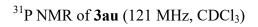
¹³C NMR of **3at** (101 MHz, CDCl₃)


| 157.33 | 157.37 | 157.27 | 157.27 | 122.74 | 77.36 | 77.04 | 77.04 | 77.04 | 77.04 | 77.04 | 76.04 |

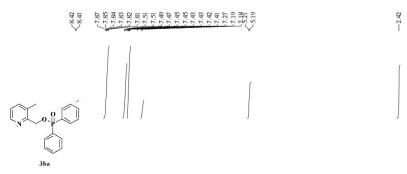


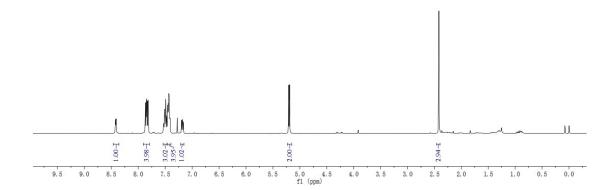
³¹P NMR of **3at** (121 MHz, CDCl₃)

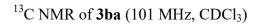



¹H NMR of **3au** (400 MHz, CDCl₃)

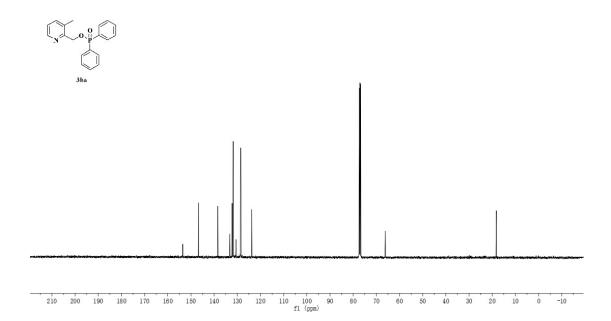
¹³C NMR of **3at** (101 MHz, CDCl₃)

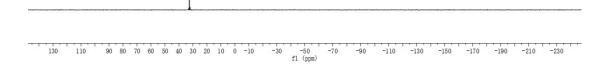


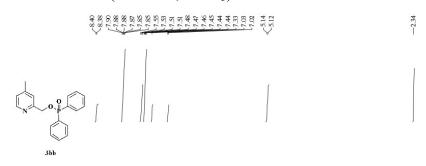


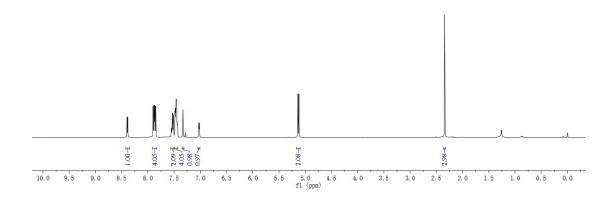

-52.83

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)


¹H NMR of **3ba** (400 MHz, CDCl₃)

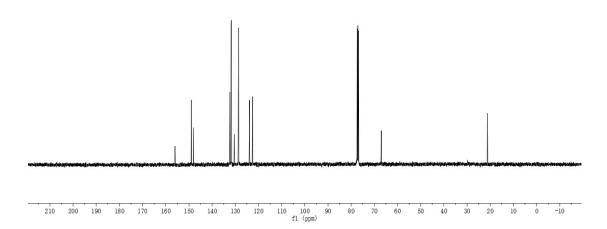




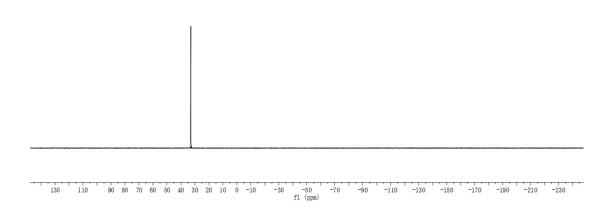

³¹P NMR of **3ba** (121 MHz, CDCl₃)

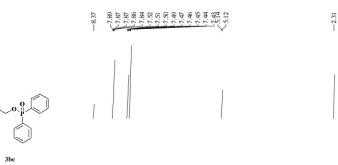
-32.58

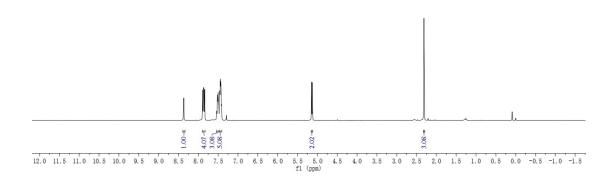
¹H NMR of **3bb** (400 MHz, CDCl₃)

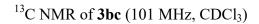


¹³C NMR of **3bb** (101 MHz, CDCl₃)

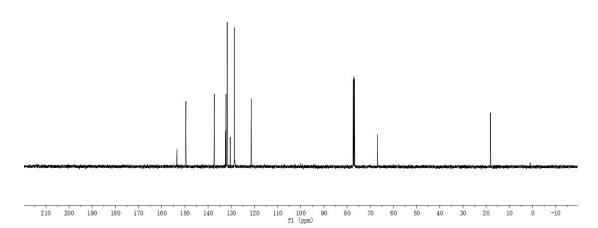


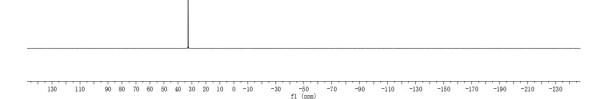

³¹P NMR of **3bb** (121 MHz, CDCl₃)

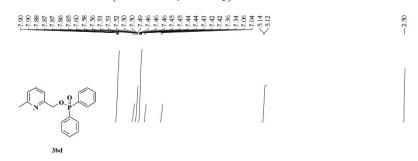

-32.89

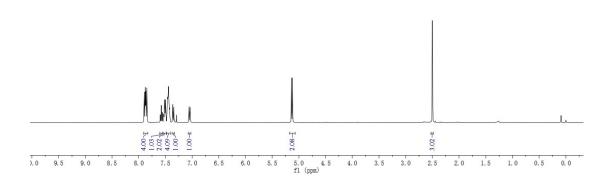


¹H NMR of **3bc** (400 MHz, CDCl₃)



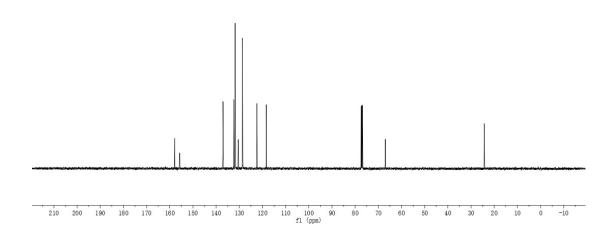




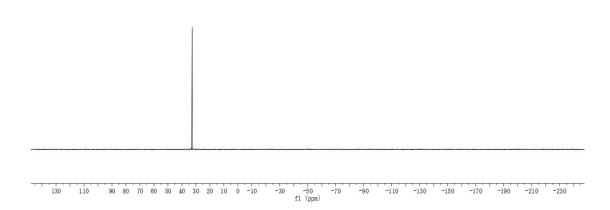

³¹P NMR of **3bc** (121 MHz, CDCl₃)

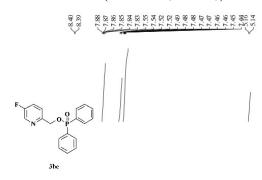
-32.81

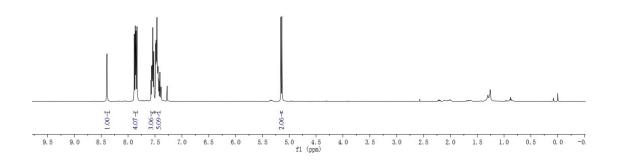
1 H NMR of **3bd** (400 MHz, CDCl₃)

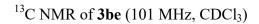


¹³C NMR of **3bd** (101 MHz, CDCl₃)

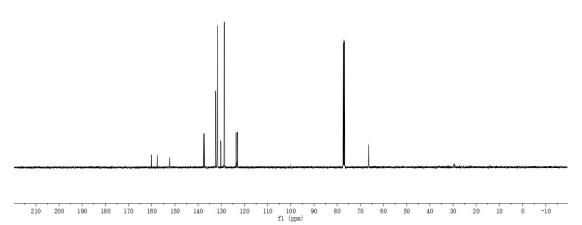


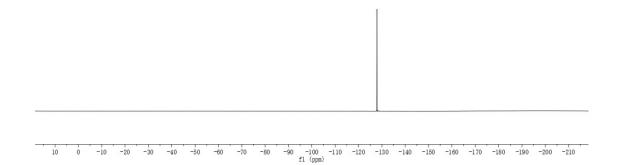


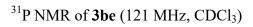

³¹P NMR of **3bd** (121 MHz, CDCl₃)

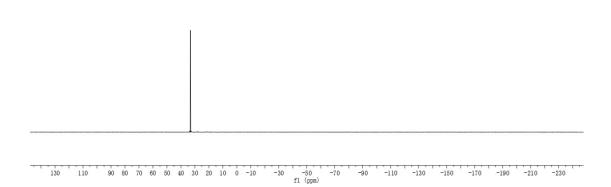

-32.71

¹H NMR of **3be**(400 MHz, CDCl₃)

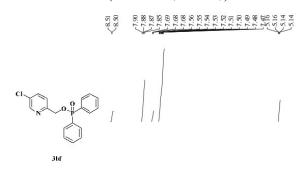


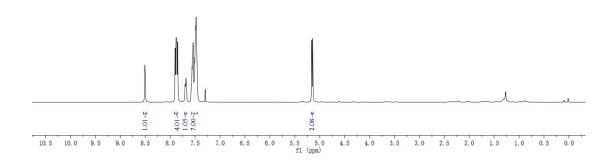


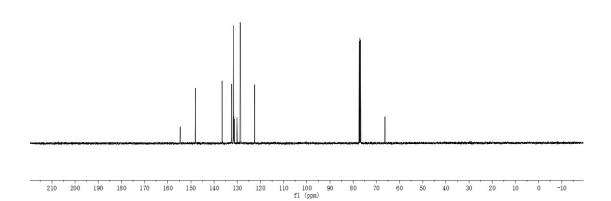


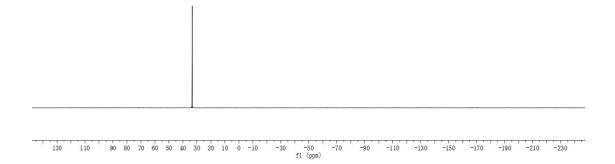

¹⁹F NMR of **3be** (282 MHz, CDCl₃)

---127.92

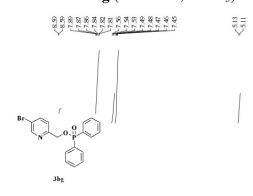


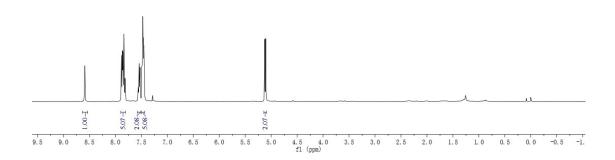



¹H NMR of **3bef**(400 MHz, CDCl₃)

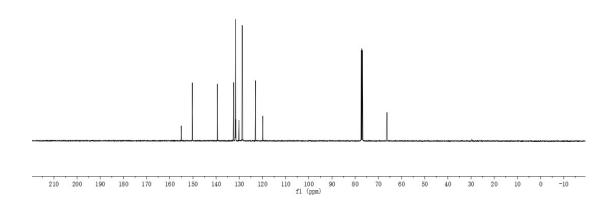

¹³C NMR of **3bf** (101 MHz, CDCl₃)

154.66 148.89 132.80 133.80 133.80 133.80 133.80 133.80 133.80 133.80 122.83 122.83 122.83 122.83 123.84 124.84 12

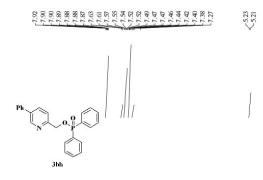


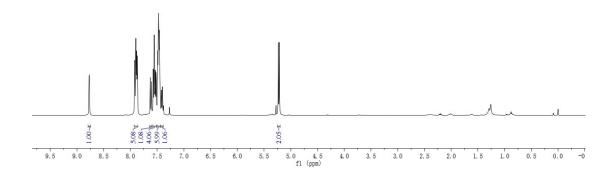

³¹P NMR of **3bf** (121 MHz, CDCl₃)

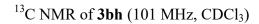
-33.30


1 H NMR of **3bg** (400 MHz, CDCl₃)

13 C NMR of **3bg** (101 MHz, CDCl₃)

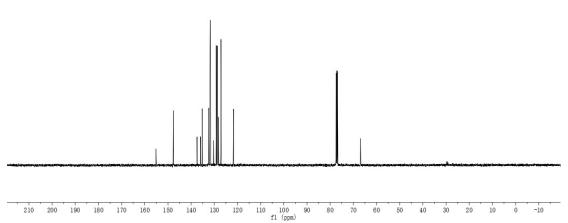


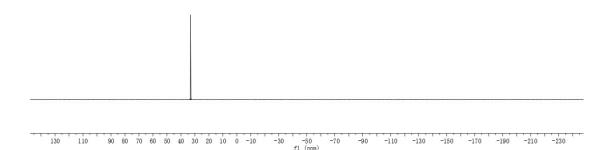

 31 P NMR of **3bg** (121 MHz, CDCl₃)

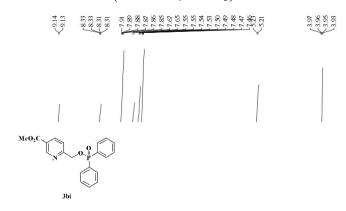

-33.33

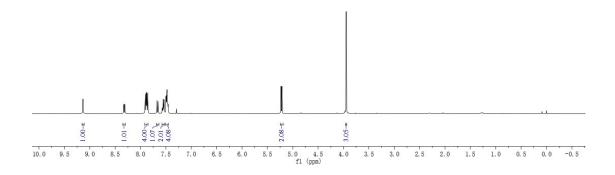
130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230

1 H NMR of **3bh** (400 MHz, CDCl₃)

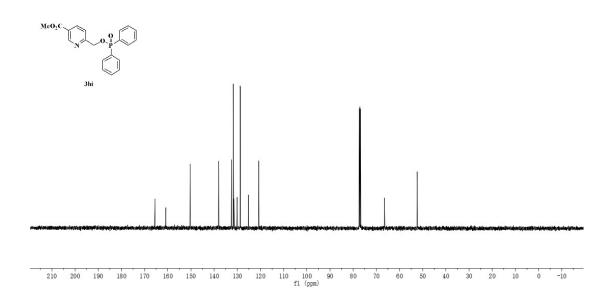






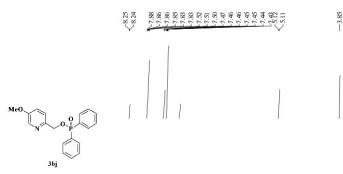

³¹P NMR of **3bh** (121 MHz, CDCl₃)

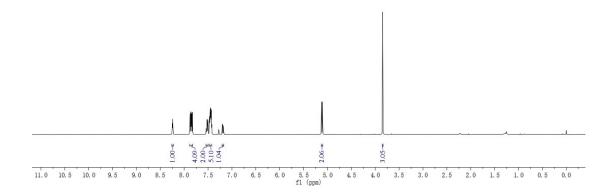
-33.08

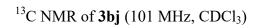

1 H NMR of **3bi** (400 MHz, CDCl₃)

¹³C NMR of **3bi** (101 MHz, CDCl₃)

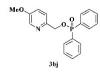
100.80 100.80 100.80 110.80 131.63 131.64	77.42 77.10 76.78 \$6.47	-52.42
--	-----------------------------------	--------

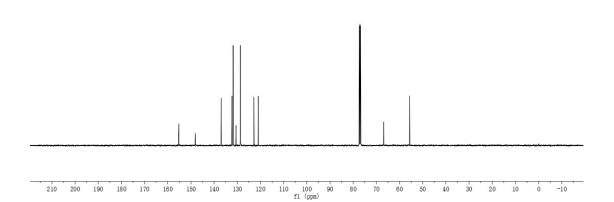


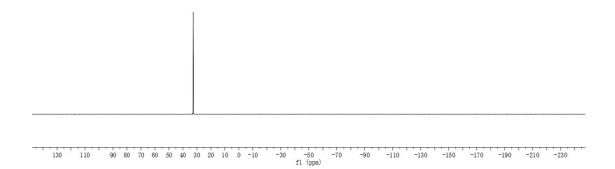

³¹P NMR of **3bi** (121 MHz, CDCl₃)

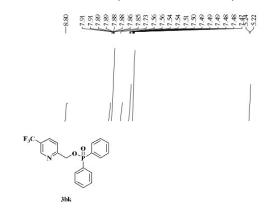

-33.45

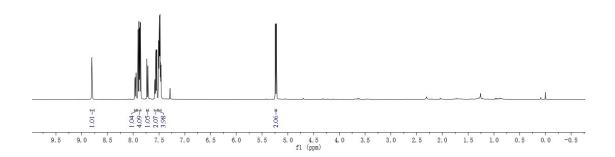
130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230


¹H NMR of **3bj** (400 MHz, CDCl₃)

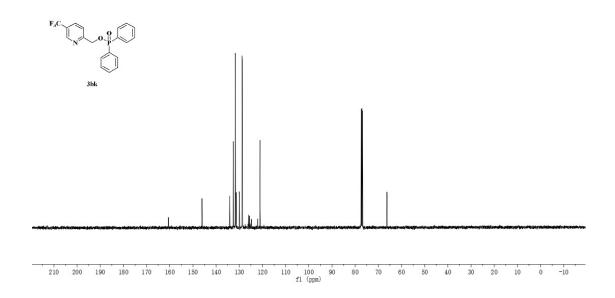







³¹P NMR of **3bj** (121 MHz, CDCl₃)

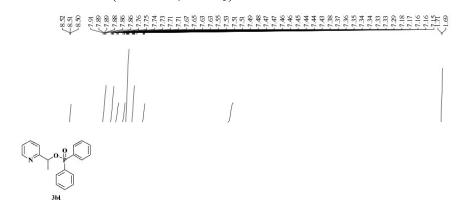
-32.71

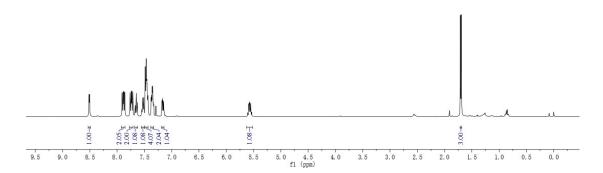

1 H NMR of 3bk (400 MHz, CDCl₃)

¹³C NMR of **3bk** (101 MHz, CDCl₃)

¹⁹F NMR of **3bk** (282 MHz, CDCl₃)

--62.36

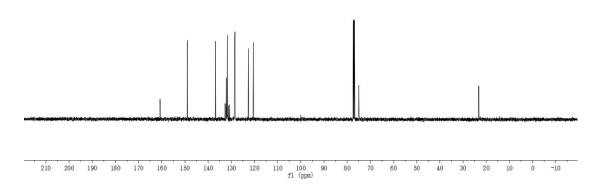

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)


³¹P NMR of **3bk** (121 MHz, CDCl₃)

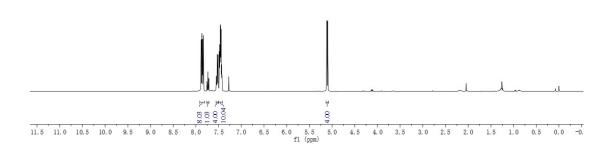
-33.64

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

¹H NMR of **3bl** (400 MHz, CDCl₃)

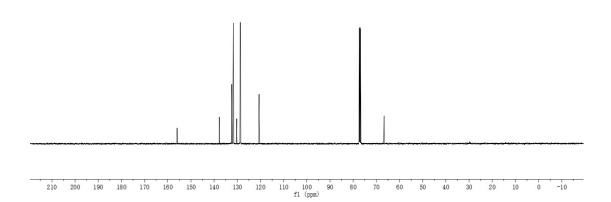


¹³C NMR of **3bl** (101 MHz, CDCl₃)

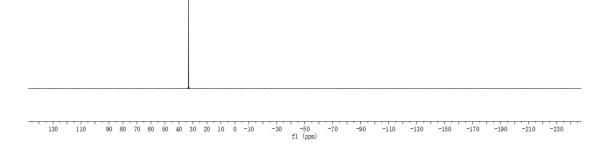

³¹P NMR of **3bl** (121 MHz, CDCl₃)

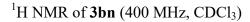
-31.47

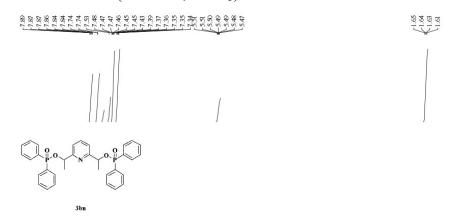
130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fi (ppm)

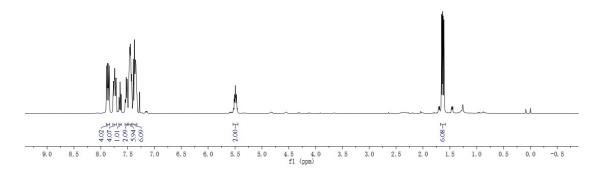

$^{1}\text{H NMR of 3bm } (400 \text{ MHz, CDCl}_{3})$

3pm

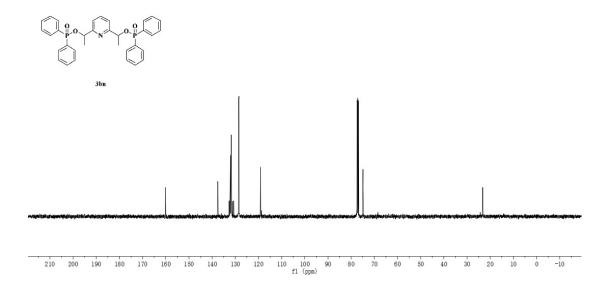

¹³C NMR of **3bm** (101 MHz, CDCl₃)

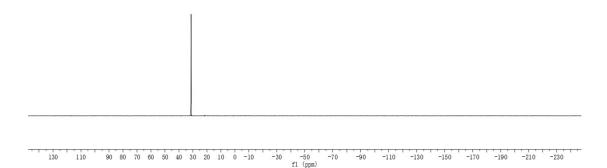

(155.00 (155.00 (131.0 77.41

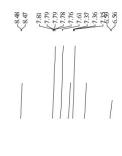


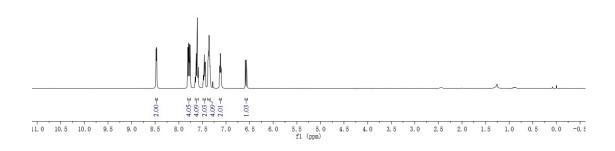

³¹P NMR of **3bm** (121 MHz, CDCl₃)

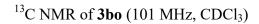
-33.05

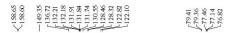


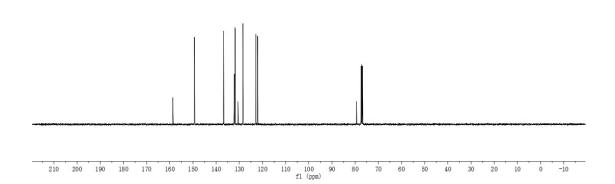

¹³C NMR of **3bn** (101 MHz, CDCl₃)

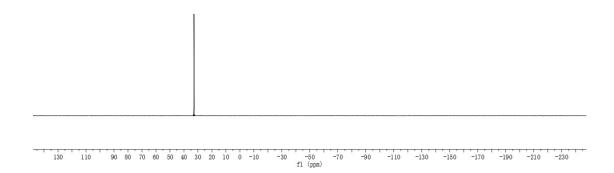


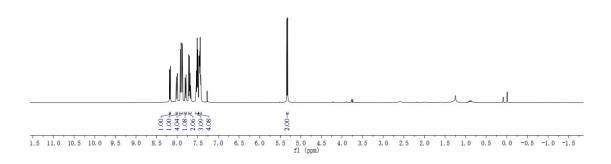

³¹P NMR of **3bn** (121 MHz, CDCl₃)


31.33



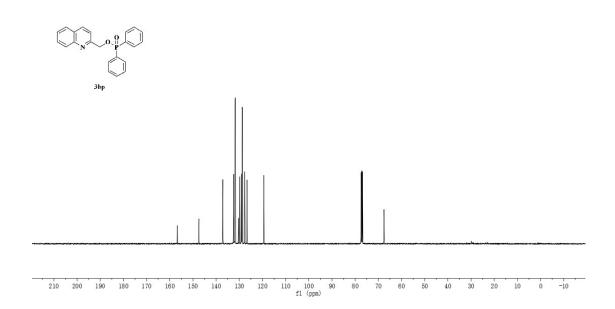

1 H NMR of **3bo** (400 MHz, CDCl₃)




 31 P NMR of **3bo** (121 MHz, CDCl₃)

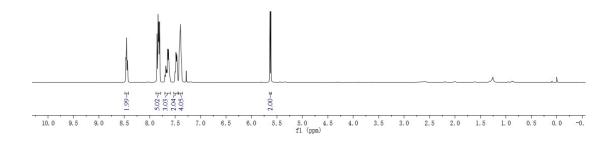
-32.85

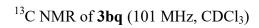
1 H NMR of **3bp** (400 MHz, CDCl₃)



¹³C NMR of **3bp** (101 MHz, CDCl₃)

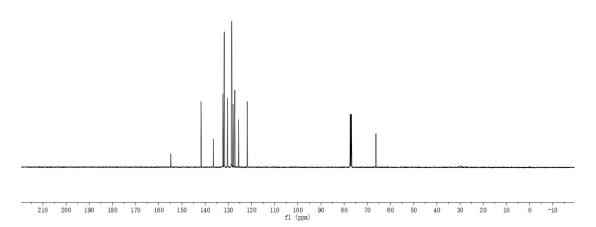
77.46 77.15 76.83 67.59

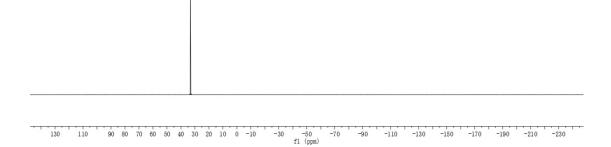

³¹P NMR of **3bp** (121 MHz, CDCl₃)


-33.22

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 _-50 _ -70 -90 -110 -130 -150 -170 -190 -210 -230

1 H NMR of $\mathbf{3bq}$ (400 MHz, CDCl₃)


3pd



31 P NMR of $\mathbf{3bq}$ (121 MHz, CDCl₃)

-33.09

