Supporting Information

for

Abstract

Mechanochemical synthesis of unsymmetrical salens for the preparation of Co-salen complexes and their evaluation as catalysts for the synthesis of α-aryloxy alcohols via asymmetric phenolic kinetic resolution of terminal epoxides

Shengli Zuo, Shuxiang Zheng, Jianjun Liu and Ang Zuo

Beilstein J. Org. Chem. 2022, 18, 1416-1423. doi:10.3762/bjoc.18.147

Experimental section and copies of spectra

Table of contents

General experimental details S1
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S19
IR spectra S43

General experimental details

All starting materials were purchased from commercial sources and used without further treatment. Trans-cyclohexanediamine and ethylenediamine unilateral hydrochloride were synthesized according to the method reported in the literature [1-3]. Analytical thin-layer chromatography (TLC) was performed on GF254 silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were obtained and recorded in a Bruker Avance III spectrometer at 400 MHz with tetramethylsilane as an internal standard. Multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), dd (double doublet), m (multiplet), and b (broad). Coupling constants (J) are reported in hertz (Hz). General NMR data were obtained at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K})$. Infrared (IR) spectra were measured using an AVATAR-370 as KBr pellets, $\left(v\left[\mathrm{~cm}^{-1}\right]\right)$. High-resolution mass (HRMS) spectra were performed on a Waters Xevo G2 Qtof spectrometer. Optical rotation was determined on a WXG-4 polarimeter. Chiral HPLC analysis was carried out with a Chiracel OD column ($24 \mathrm{~cm} \times 0.46 \mathrm{~mm}$, Chiral Technologies, Inc.) equipped with a Waters 510 pump (flow rate at $1 \mathrm{~mL} / \mathrm{min}$) and a UV detector.

The volume of the filling container of the self-made ball mill is 37 mL . The grinding media were 16.6 g . The working speed is $700 \mathrm{r} / \mathrm{min}$, and the maximum speed of the machine is $3500 \mathrm{r} / \mathrm{min}$. XD-3420 permanent magnet DC motor DC: 12 V.

Figure S1: Grinding using mortar and pestle.

Figure S2: Self-made ball mill.

Figure S3: Zirconia and alumina balls.

General procedure for the synthesis of unsymmetrical salen ligands 1a-h

The synthesis of asymmetric salen-type ligands was performed using a one-pot two-step method. Firstly, salicylaldehyde $(1 \mathrm{mmol})$ and trans-cyclohexanediamine or ethylenediamine unilateral salt (2 mmol), were grinded in an agate mortar for 10 min . In the second step, 2 equivalents of triethylamine (4 mmol), methanol $(0.12 \mu \mathrm{~L} / \mathrm{mg})$, and another salicylaldehyde $(1 \mathrm{mmol})$ were added to the reaction mixture, and grinded for further 20 min . A yellow sticky solid was obtained and the reaction mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was concentrated to remove the solvent, and purified by flash column chromatography with different ratios of n-hexane/ethyl acetate as the eluent. Monitored by TLC, pure unsymmetrical salens $\mathbf{1}^{\mathbf{a}}-\mathbf{h}$ were obtained.

In the self-made ball mill procedure, all materials were fed according to the above method. The reaction was milled for 1 hour in the first stage, and was milled for an addition hour after adding reagents in the second stage. Compounds 1a-h were obtained by purification according to the above method.

1a

Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate $2: 1$ as eluent. Compound 1a
(4-bromo-2-((E)-((2-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)cyclohexyl)imino)
methyl)phenol) was obtained as bright yellow oily liquid ($0.895 \mathrm{~g}, 95 \%$ in yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.20(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.90-$ $6.83(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.15-6.08(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{q}, J=6.2$ $\mathrm{Hz}, 4 \mathrm{H}), 3.31-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 165.05,163.54$, $163.02,160.31,151.42,134.75,133.66,132.94,120.14,118.87,109.97,108.14,103.12$, 97.97, 73.02, 70.94, 44.51, 33.26, 33.11, 24.40, 24.19, 12.77. IR (KBr)/ $/ \mathrm{cm}^{-1} v: 3416,2970$, 2930, 2856, 1614, 1522, 1450, 1377, 1344, 1292, 1240, 1180, 1130, 1078, 856, 785, 740,704. HRMS: calc for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$472.1599; found 472.1590.

Compound 1a was obtained as bright yellow oily liquid ($0.773 \mathrm{~g}, 82 \%$ in yield) by ball milling.

1b

Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate 9:5 as eluent. Compound 1b
(2-((E)-((2-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)cyclohexyl)imino)methyl)-4 -methylphenol) was obtained as bright yellow oily liquid ($0.766 \mathrm{~g}, 94 \%$ in yield): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 13.09(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.96-$ $6.91(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.06-6.02(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{q}, J=7.1$
$\mathrm{Hz}, 4 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $165.84,164.84,162.78,158.86,151.57,133.15,132.93,131.74,127.61,118.50,116.53$, $108.23,103.11,98.11,73.10,70.73,44.55,33.35,33.28,24.50,24.28,20.37,12.80$. IR $(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 3442,2972,2928,2856,1616,1522,1493,1375,1355,1278,1240,1132,1093$, 939, 820, 781. HRMS: calc for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 408.2651$; found 408.2651 .

Compound 1b was obtained as bright yellow oily liquid ($0.578 \mathrm{~g}, 71 \%$ in yield) by ball milling.

Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate 2 :1 as eluent. Compound 1c (2,4-dichloro-6-((E)-((2-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)cyclohexyl)imi no)methyl)phenol) was obtained as light yellow solid ($0.812 \mathrm{~g}, 88 \%$ in yield): Melting point: $64-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.05$ $-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.06(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{q}, J=14.0,6.9 \mathrm{~Hz}, 5 \mathrm{H}), 3.23$ $-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}$, 2H), $1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 165.10,163.65,163.09,157.77$, $152.13,133.63,132.42,129.45,123.04,122.26,119.08,103.66,97.98,86.30,72.08,70.60$,
$44.72,33.23,32.99,24.39,24.16,12.81$. IR (KBr$) / \mathrm{cm}^{-1} v: 3442,2970,2930,2856,2361$, 1736, 1616, 1522, 1477, 1375, 1346, 1277, 1240, 1128, 1093, 820, 698, 627. HRMS: calc for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 462.1715$; found 462.1715 .

Compound 1c was obtained as light yellow solid ($0.711 \mathrm{~g}, 77 \%$ in yield) by ball milling.

Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate 5:2 as eluent. Compound 1d (2,4-di-tert-butyl-6-((E)-((2-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)cyclohexyl) imino)methyl)phenol) was obtained as bright yellow oily liquid ($0.798 \mathrm{~g}, 79 \%$ in yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}$, $1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.08-6.03(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 2 \mathrm{H})$, $2.11-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 166.66,166.14,162.75,158.11,151.81,139.98,136.37,133.31,126.87,126.30$, $117.96,108.24,103.17,98.25,72.87,70.38,44.59,35.08,34.18,33.55,33.11,31.59,29.59$, 24.58, 24.37, 12.83. IR (KBr)/cm ${ }^{-1} v: 3408,2955,2930,2860,2361,1618,1522,1470,1441$, 1377, 1358, 1240, 1130, 1094, 827, 785, 706, 644. HRMS: calc for $\mathrm{C}_{32} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 506.3746; found 506.3742.

Compound 1d was obtained as bright yellow oily liquid ($0.667 \mathrm{~g}, 66 \%$ in yield) by ball milling.

Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate 5:2 as eluent. Compound 1e (2,4-di-tert-butyl-6-((E)-(((1R,2R)-2-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)cy clohexyl)imino)methyl)phenol) was obtained as bright yellow oily liquid ($0.819 \mathrm{~g}, 81 \%$ in yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.67(\mathrm{~s}, 2 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H})$, $6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.08-6.02(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.27-3.17(\mathrm{~m}$, $2 \mathrm{H}), 2.10-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 166.78,166.13,162.79,158.14,151.76,139.99,136.39,133.25,126.88,126.31,117.98$, $108.35,103.14,98.30,72.94,70.43,44.60,35.10,34.20,33.56,33.17,31.61,29.61,24.60,24.40$, 12.85. IR (KBr)/cm ${ }^{-1} v: 2958,2864,1622,1522,1469,1442,1360,1242,1130,1095,827,785$, $773,706,644,445$. HRMS: calc for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 506.3746$; found 506.3745 .

Compound 1e was obtained as bright yellow oily liquid ($0.687 \mathrm{~g}, 68 \%$ in yield) by ball milling.

$1 f$

Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate 15:1 as eluent. Compound 1f (2,4-di-tert-butyl-6-((E)-((2-(((E)-3,5-dichloro-2-hydroxybenzylidene)amino)cyclohexyl)imin o)methyl)phenol) was obtained as bright yellow oily liquid ($0.723 \mathrm{~g}, 72 \%$ in yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.48(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}$, $1 \mathrm{H}), 2.07-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.39$, $163.51,157.93,157.50,140.36,136.57,132.29,129.28,127.32,126.27,122.94,122.33$, $119.20,117.72,72.39,72.09,35.11,34.22,33.32,32.76,31.56,29.53,24.26 . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v:$ 3417, 2953, 2930, 2860, 2361, 1737, 1630, 1452, 1375, 1362, 1178, 1097, 1043, 866, 741. HRMS: calc for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$503.2232; found 503.2231 .

Compound 1f was obtained as bright yellow oily liquid ($0.573 \mathrm{~g}, 57 \%$ in yield) by ball milling.

1g
Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate 1:3 as eluent. Compound $\mathbf{1 g}$
(2,4-di-tert-butyl-6-((E)-((2-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)ethyl)imino)methyl)phenol) was obtained as light yellow solid ($0.731 \mathrm{~g}, 81 \%$ in yield): Melting point: $142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.60(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.38-$ $7.34(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.10(\mathrm{~m}, 2 H), 3.88-3.80(\mathrm{~m}$, 4H), $3.35(\mathrm{q}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 167.75,164.49,158.17,151.83,140.16,136.67,133.31,128.66,127.17,126.27$, $117.91,108.27,103.34,98.26,60.22,59.76,57.86,44.67,35.16,34.27,31.64,29.58,22.87$, 12.86. IR (KBr)/cm ${ }^{-1} v: 3449,2968,1616,1520,1350,1130,1076,1040,824,787,704$. HRMS: calc for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 452.3277$; found 452.3278 .

Compound 1 g was obtained as light yellow solid ($0.650 \mathrm{~g}, 72 \%$ in yield) by ball milling.

1h

Following the general procedure, flash column chromatography was performed using hexanes/ethyl acetate 5:1 as eluent. Compound 1h
(2,4-di-tert-butyl-6-((E)-((2-(((E)-3,5-dichloro-2-hydroxybenzylidene)amino)ethyl)imino)met hyl)phenol) was obtained as bright yellow oily liquid ($0.681 \mathrm{~g}, 76 \%$ in yield): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.23(\mathrm{~s}, 1 \mathrm{H}), 13.41(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}$, 9H), 1.28 ($\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 168.15,165.28,158.08,156.93,140.49$, $136.87,132.49,129.36,127.54,126.33,122.97,122.81,119.53,117.81,59.31,59.20,35.20$, 34.31, 31.64, 29.57. IR (KBr)/cm ${ }^{-1} v: 3419,2962,2869,1631,1466,1441,1361,1271,1213$, 1174, 1041, 839, 731. HRMS: calc for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 449.1762$; found 449.1760 . Compound 1h was obtained as bright yellow oily liquid ($0.547 \mathrm{~g}, 61 \%$ in yield) by ball milling.

General procedure for the synthesis of metal-salen complexes $\mathbf{2 a} \mathbf{a} \mathbf{g}$

A. A round-bottomed flask was charged with ligand $\mathbf{1 a}, \mathbf{b}$ or $\mathbf{d}(1 \mathrm{mmol})$ in EtOH $(7 \mathrm{~mL})$ and $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ in methanol $(12 \mathrm{~mL})$ were added dropwise via a constant pressure dropping funnel to the ligand solution over 1 minute. After refluxing for 4 h , a light yellow or dark green solid was produced. The reaction mixture was then filtered and washed with cold methanol $(2 \times 20 \mathrm{~mL})$ to afford complexes $\mathbf{2 a}-\mathbf{d}$.
B. Ligand $\mathbf{1 d}, \mathbf{g}$ or $\mathbf{e}(1 \mathrm{mmol})$ and $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~g}, 1.2 \mathrm{mmol})$ were placed in a 50 mL round-bottomed flask [4]. After purging the system with nitrogen, methanol (10 mL) was added as a solvent. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min , and a brick-red precipitate formed. The reaction mixture was then filtered and washed with cold methanol ($2 \times 20 \mathrm{~mL}$) to afford complexes $\mathbf{2 e - g}$.

2a

Following the general procedure $\mathbf{A}, \mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.22 \mathrm{~g}, 1 \mathrm{mmol})$ in 12 mL methanol.

Compound 2a was obtained as light yellow solid ($0.468 \mathrm{~g}, 81 \%$ in yield): Melting point:
$294-295{ }^{\circ} \mathrm{C}$. IR (KBr) $/ \mathrm{cm}^{-1} v: 3422,2932,1637,1528,1460,1383,1354,1313,1173,822$,

711, 638. HRMS: calc for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{Zn}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$534.0734; found 534.0739.

Following the general procedure $\mathbf{A}, \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ in 12 mL methanol.
Compound 2b was obtained as dark green solid ($0.514 \mathrm{~g}, 89 \%$ in yield): Melting point:
$240-241^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 3423,2934,2361,1601,1516,1460,1381,1348,1315,1246$,

1173, 1138, 827, 714, 646. HRMS: calc for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrCuN}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 533.0739$; found 533.0737.

Following the general procedure $\mathbf{A}, \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ in 12 mL methanol.

Compound 2c was obtained as dark green solid $(0.426 \mathrm{~g}, 83 \%$ in yield $)$: Melting point:
$220-221^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 3421,2931,2860,1602,1514,1471,1348,1319,1248,1136$, 825. HRMS: calc for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{CuN}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 469.1790$; found 469.1790 .

Following the general procedure $\mathbf{A}, \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ in 12 mL methanol.

Compound 2d was obtained as dark green solid $(0.575 \mathrm{~g}, 94 \%$ in yield): Melting point:
$214-215^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 2956,1628,1603,1514,1350,1319,1248,1167,1138,825$,
777. HRMS: calc for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{CuN}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 567.2886$; found 567.2885.

Following the general procedure B. Compound $\mathbf{2 e}$ was obtained as brick red solid (0.538 g , 96% in yield): Melting point: $236-238^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 2952,2865,1595,1509,1356$, 1318, 1252, 1172, 1138, 825, 785. HRMS: calc for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{CoN}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 563.2922$; found 563.2927.

Following the general procedure B. Compound $\mathbf{2 f}$ was obtained as brick red solid (0.595 g , 98% in yield): Melting point: $234^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 2946,2865,1598,1510,1353,1319$, 1253, 1170, 1138, 824, 780. HRMS: calc for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{CoN}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 563.2922$; found 563.2927.

Following the general procedure B. Compound $\mathbf{2 g}$ was obtained as brick red solid (0.526 g ,
95% in yield): Melting point: $212-214{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 2959,2903,2866,1594,1510$, 1352, 1240, 1170, 1135, 1092, 945, 818, 773, 703. HRMS: calc for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{CoN}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 509.2452; found 509.2454.

General procedure for HKR of epichlorohydrin catalyzed by salen complexes

Catalyst $\mathbf{2 e}, \mathbf{f}$ or $\mathbf{g}(0.5 \mathrm{mmol})$ was placed in a 100 mL round-bottomed flask and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8$ mL) was added as solvent. Then, glacial acetic acid ($290 \mu \mathrm{~L}, 5 \mathrm{mmol}$) was added and the mixture stirred for 30 min at room temperature. The color of the solution changed from orange-red to dark brown. The solution was concentrated to dryness under vacuum, and the crude $\mathrm{Co}(\mathrm{IIII})(\mathrm{OAc})$-salen complex was obtained as a brown solid, which can be used without further purification [5]. Racemic epichlorohydrin (15.45 g, 167 mmol) and deionized water $(1.65 \mathrm{~mL})$ were added and the mixture stirred at $0^{\circ} \mathrm{C}$ (ice-water bath) for 18 h . After completion of the reaction, atmospheric distillation was carried out. The fraction at $86{ }^{\circ} \mathrm{C}$ is an azeotrope of epichlorohydrin and water. The fraction at $116^{\circ} \mathrm{C}$ was collected as the target substance and dried with anhydrous MgSO_{4}.

The target product catalyzed by $\mathbf{2 f}$ was found to have an ee of 98% by chiral HPLC analysis $\left(\right.$ Chiralcel OD, 5% IPA in hexanes, $220 \mathrm{~nm}, 1 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}($ major $)=5.7 \mathrm{~min} ; t_{\mathrm{R}}($ minor $)=7.4$ $\min) .[\alpha]_{\mathrm{D}}^{23}+22.30(c 1, \mathrm{MeOH})$.

General procedure for the synthesis of α-aryloxy alcohols $\mathbf{3 a - e}$

The catalyst $\mathbf{2 f}$ ($0.0607 \mathrm{~g}, 0.1 \mathrm{mmol}$) was activated to $\mathrm{Co}(\mathrm{III})(\mathrm{OAc})$-salen by the above procedure in a 50 mL flask. Epichlorohydrin $(4.11 \mathrm{~g}, 44.4 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(1.1 \mathrm{~mL})$ were
added to the activated $\operatorname{Co}(\mathrm{III})(\mathrm{OAc})-$ salen and the mixture was stirred until the solids have dissolved. Immerse the packed round-bottomed flask in a water bath at $4{ }^{\circ} \mathrm{C}$ for 20 min . Phenols with different substituents (1 equiv) were added to the system to start the reaction. The reaction mixture was stirred in an ice-water bath at $4{ }^{\circ} \mathrm{C}$ for 4 h and concentrated to remove the solvent. The crude product was loaded and purified by flash column chromatography with different ratios of n-hexane/ethyl acetate as eluent. Monitored by TLC, pure products 3a-d were isolated.

3a

Following the general procedure with phenol as raw material, flash column chromatography was performed using hexanes/ethyl acetate $4: 1$ as eluent. Compound 3a
((R)-1-chloro-3-phenoxypropan-2-ol) was obtained. Recovered $2.23 \mathrm{~g}(60 \%)$ as yellowish oily liquid in 98% ee, determined by chiral HPLC analysis (Chiralcel OD, 7.5% IPA in hexanes, $210 \mathrm{~nm}, 1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=8.2 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ minor $\left.)=12.8 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.19$ $(\mathrm{m}, 1 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta: 158.28,129.68,121.51,114.66,69.96,68.58,46.02 . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v: 3417,3063,3041$, 2933, 2879, 1599, 1495, 1457, 1292, 1244, 1173, 1079, 1045, 813, 755, 692, 510. $[\alpha]^{23}$ d-0.40 ($589 \mathrm{~nm}, \mathrm{c}=1, \mathrm{MeOH}$).

3b

Following the general procedure with m-cresol as raw material, flash column chromatography was performed using hexanes/ethyl acetate (4/1) as eluent. Compound 3b
((R)-1-chloro-3-(m-tolyloxy)propan-2-ol) was obtained. Recovered $2.68 \mathrm{~g}(67 \%)$ as yellowish oily liquid in 93% ee, determined by chiral HPLC analysis (Chiralcel OD, 5\% IPA in hexanes, $210 \mathrm{~nm}, 1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=10.7 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ minor $\left.)=15.6 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=11.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-$ $4.17(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 158.36,139.84,129.46,122.41,115.55,111.58,70.05,68.55,46.09$, 21.62. IR (KBr)/cm ${ }^{-1} v: 3383,3038,2924,2874,1587,1489,1456,1289,1260,1048,929$, $854,776,690 .[\alpha]^{23}{ }_{\mathrm{D}}-1.50(589 \mathrm{~nm}, \mathrm{c}=1, \mathrm{MeOH})$.

Following the general procedure with 4-tert-butylphenol as raw material, flash column chromatography was performed using hexanes/ethyl acetate (8/1) as eluent. Compound $\mathbf{3 c}$ ((R)-1-(4-(tert-butyl)phenoxy)-3-chloropropan-2-ol) was obtained. Recovered $3.63 \mathrm{~g}(75 \%)$ as yellowish oily liquid in 99% ee, determined by chiral HPLC analysis (Chiralcel OD, 10\% IPA in hexanes, $220 \mathrm{~nm}, 1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=6.8 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ minor $\left.)=10.4 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 1 \mathrm{H})$,
$4.12-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{br}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 156.11,144.41,126.55,114.22,70.10,68.65,46.15,34.29,31.67 . \mathrm{IR}(\mathrm{KBr}) / \mathrm{cm}^{-1} v:$ $3418,2962,2870,1609,1514,1462,1364,1294,1247,1185,1114,1043,829,553 .[\alpha]^{23}$ D $+1.30(589 \mathrm{~nm}, \mathrm{c}=1, \mathrm{MeOH})$.

3d

Following the general procedure with p-hydroxybenzaldehyde as raw material, flash column chromatography was performed using hexanes/ethyl acetate (3/2) as eluent. Compound 3d ((R)-4-(3-chloro-2-hydroxypropoxy)benzaldehyde) was obtained. Recovered $2.40 \mathrm{~g}(56 \%)$ as yellowish oily liquid in 96\% ee, determined by chiral HPLC analysis (Chiralcel OD, 7.5\% IPA in hexanes, $254 \mathrm{~nm}, 1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.6 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ minor $\left.)=18.1 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, DMSO-d6) $\delta: 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.56$ $(\mathrm{d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta: 191.29,163.48,131.80,129.73,115.02,69.55,67.14$. IR $(\mathrm{KBr}) / \mathrm{cm}^{-1} v$: 3425, 2956, 2837, 2748, 1682, 1601, 1510, 1429, 1311, 1259, 1162, 1035, 836, 749, 652, 619, 515. $[\alpha]^{23}{ }_{\mathrm{D}}+5.35(589 \mathrm{~nm}, \mathrm{c}=1, \mathrm{MeOH})$.

References

1. Campbell, E. J.; Nguyen, S. T. Tetrahedron Lett. 2001, 42, 1221-1225.
2. Belokon, Y. N.; Maleev, V. I.; North, M.; Larionov, V. A.; TSavel'yeva, Y. F.; Nijland, A.; Nelyubina, Y. V. ACS Catalysis 2013, 3, 1951-1955.
3. Renehan, M. F.; Schanz, H.-J.; McGarrigle, E. M.; Dalton, C. T.; Daly, A. M.; Gilheany, D. G. J. Mol. Catal. A Chem. 2005, 231, 205-220.
4. Zheng, X.; Jones, C. W. Weck, M. J. Am. Chem. Soc. 2007, 129, 1105-1112.
5. Kim, S. K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2004, 43, 3952-3954.

1	1	1	1	1	1	1	1	1	1	1	T	1	,	1	1		1	T	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

T	1	1	1		1	1	1	1	1		1	1	1		T	1	1	1	T	
200	190	180	170	160	150	140	130	120	110	$\underset{f 1}{100}$	90	80	70	60	50	40	30	20	10	0

IR spectra

