

Supporting Information

for

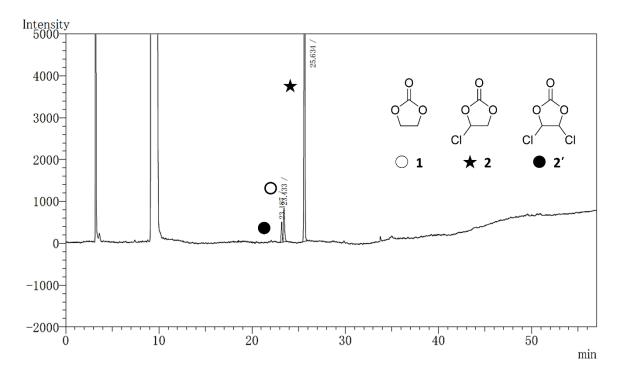
High-speed C–H chlorination of ethylene carbonate using a new photoflow setup

Takayoshi Kasakado, Takahide Fukuyama, Tomohiro Nakagawa, Shinji Taguchi and Ilhyong Ryu

Beilstein J. Org. Chem. 2022, 18, 152-158. doi:10.3762/bjoc.18.16

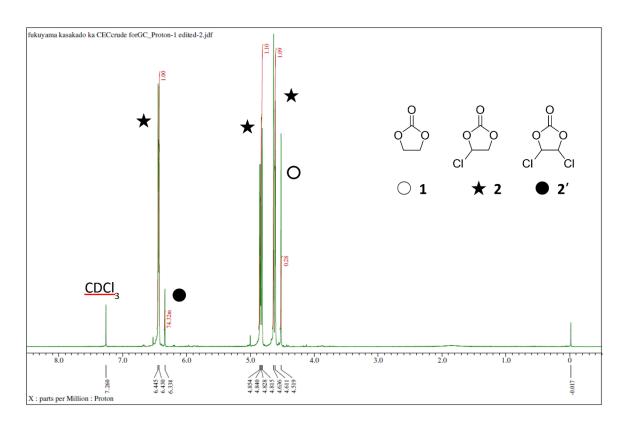
GC analysis and NMR spectra of the crude reaction mixture for the chlorination of compound 1

Table of contents

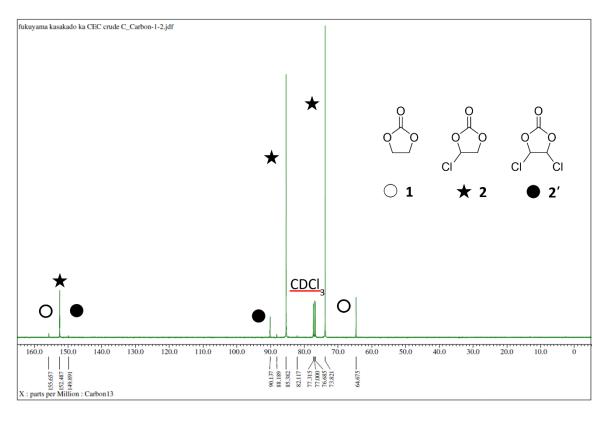

General information	
Reference	S2
GC Chart	S2
Copies of NMR spectra	S3

General information

GC analysis was performed on a Shimadzu GC-2014 instrument equipped with an FID detector using a J&W Scientific (Hongkong, China) DB-1 column under the following conditions: initial oven temperature was held at 40 °C for 5 min, the first ramp was 5 °C/min to 250 °C, which was held for 10 min. Yields were determined by using the percentage peak area method with compensation for the relative sensitivities of each component. ¹H NMR spectra were recorded with a JEOL JMN-ECS400 (400 MHz) and referenced to the solvent peak at 7.26 ppm. ¹³C NMR spectra were recorded with a JEOL JMN-ECS400 (100 MHz) and referenced to the solvent peak at 77.0 ppm. Product 2 is a known compound [1] and the dichlorinated product 2' is commercially available from Sigma–Aldrich Co. Inc. These compounds were identified by ¹H NMR and ¹³C NMR analysis and comparison with the reported data.


Reference

1. Wang, W-.M.; Wang, W-.T.; Wang, M-.Y.; Gu, A-.L.; Hu, T-.D.; Zhang, Y-.X.; Wu, Z-.L. *Inorg. Chem.* **2021**, 60, 9122–9131



retention time (min)	area	height	concentration (area%)
23.187	3545	484	3.501
23.433	6022	805	5.948
25.634	91693	15698	90.552

Figure S1: GC analysis data of the crude product mixture from the C–H chlorination reaction of ethylene carbonate (1).

Figure S2: ¹H NMR spectrum of the crude reaction mixture from the C–H chlorination of ethylene carbonate (1) [1].

Figure S3: ¹³C NMR spectrum of the crude reaction mixture from the C–H chlorination of ethylene carbonate (1) [1].