Supporting Information

for

High-speed C–H chlorination of ethylene carbonate using a new photoflow setup

Takayoshi Kasakado, Takahide Fukuyama, Tomohiro Nakagawa, Shinji Taguchi and Ilhyong Ryu

GC analysis and NMR spectra of the crude reaction mixture for the chlorination of compound 1
Table of contents

General information ... S2
Reference ... S2
GC Chart ... S2
Copies of NMR spectra .. S3
General information

GC analysis was performed on a Shimadzu GC-2014 instrument equipped with an FID detector using a J&W Scientific (Hongkong, China) DB-1 column under the following conditions: initial oven temperature was held at 40 °C for 5 min, the first ramp was 5 °C/min to 250 °C, which was held for 10 min. Yields were determined by using the percentage peak area method with compensation for the relative sensitivities of each component. \(^1\)H NMR spectra were recorded with a JEOL JMN-ECS400 (400 MHz) and referenced to the solvent peak at 7.26 ppm. \(^13\)C NMR spectra were recorded with a JEOL JMN-ECS400 (100 MHz) and referenced to the solvent peak at 77.0 ppm. Product 2 is a known compound [1] and the dichlorinated product 2' is commercially available from Sigma–Aldrich Co. Inc. These compounds were identified by \(^1\)H NMR and \(^13\)C NMR analysis and comparison with the reported data.

Reference

![Figure S1: GC analysis data of the crude product mixture from the C–H chlorination reaction of ethylene carbonate (1).](image)
Figure S2: 1H NMR spectrum of the crude reaction mixture from the C–H chlorination of ethylene carbonate (1) [1].

Figure S3: 13C NMR spectrum of the crude reaction mixture from the C–H chlorination of ethylene carbonate (1) [1].