Supporting Information

for

A novel spirocyclic scaffold accessed via tandem Claisen rearrangement/intramolecular oxa-Michael addition

Anastasia Vepreva, Alexander Yanovich, Dmitry Dar’in, Grigory Kantin, Alexander Bunev and Mikhail Krasavin

General experimental information, X-ray crystallographic data, synthetic procedures, analytical data and NMR spectra for the reported compounds
Table of contents

I. Materials and methods ... S2
II. General procedure (GP1, GP2, GP3) for the synthesis of 5a–i, 6a and 7a–l ... S3
III. NMR spectra ... S51
IV. X-ray crystallographic data ... S49
V. References .. S51
I. Materials and methods

All commercial reagents were used without purification. Dichloromethane (DCM) was freshly distilled over P₂O₅. NMR spectra were recorded using a Bruker Avance III spectrometer in CDCl₃ or DMSO-d₆ (¹H: 400.13 MHz, ¹³C: 100.61 MHz and 125.73 MHz). All chemical shifts are reported in parts per million (ppm). The residual solvent peak was used as internal standard: CDCl₃ (7.26 for ¹H and 77.16 ppm for ¹³C), DMSO-d₆ (2.50 for ¹H and 39.52 ppm for ¹³C). Standard abbreviations were used in the description of resonances. Coupling constants (J) are quoted to the nearest 0.1 Hz. Mass spectra were recorded with a HRMS-ESI-qTOF spectrometer (electrospray ionization mode, positive ion detection). Melting points were determined with a melting point apparatus Stuart SMP 10 in open capillary tubes. Single crystal X-ray data were obtained using an Agilent Technologies SuperNova Atlas and an Agilent Technologies Xcalibur Eos diffractometer at a temperature of 100 K. Analytical thin layer chromatography was carried out on UV-254 silica gel plates using appropriate eluents. Compounds were visualized with short wave length UV light. Column chromatography was performed using silica gel Merk grade 60 (0.040–0.063 mm) 230–400 mesh. Starting diazo compounds 1 were obtained according to a literature procedure. [1] Compounds 5 were obtained by modified previously reported procedure. [2]
II. General procedure (GP1) for the synthesis of 5a–n

To a solution of corresponding phenol (0.35 mmol) and catalyst (2.5 mM Rh₂(esp)₂ in DCM, 200 μL, 0.1 mol %) in dry DCM (1.8 mL) was slowly added a solution of the diazo compound (0.5 mmol) while cooling to 0 °C. The reaction mixture was stirred at 0 °C for 15–30 minutes (controlled by TLC). The reaction mixture was diluted with n-hexane (2 mL) and the resulting solution was subjected to column chromatography on silica gel (eluent n-hexane–DCM) to afford 5.

(E)-3-Benzylidene-4-(4-(tert-butyl)phenoxy)-1-phenylpyrrolidine-2,5-dione (5a)

Prepared according to the general procedure from corresponding diazo compound 1 and 4-tert-butylphenol (scale – 1 mmol). Yield: 225 mg (61%). Eluent – n-hexane–DCM (from 20 to 60% of DCM). White solid, m.p. 173.4-176.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 1.7 Hz, 1H), 7.70 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.48 – 7.38 (m, 4H), 7.38 – 7.32 (m, 4H), 7.15 – 7.10 (m, 2H), 5.87 (d, J = 1.7 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 168.3, 154.5, 146.1, 141.5, 132.8, 131.5, 131.2, 129.1, 128.9, 126.4, 126.3, 123.6, 117.3, 72.5, 34.3, 31.5. HRMS (ESI), m/z calcd for C₂₇H₂₇NO₃ [M+H]+ 412.1907 found 412.1909.

(E)-3-Benzylidene-4-(4-fluorophenoxy)-1-phenylpyrrolidine-2,5-dione (5b)

Prepared according to the general procedure from corresponding diazo compound 1 and 4-fluorophenol (scale – 1 mmol). Yield: 285 mg (85%). Eluent – n-hexane–DCM (from 90 to 100% of DCM). White solid, m.p. 154.0-155.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 1.7 Hz, 1H), 7.66 (d, J = 7.3 Hz, 2H), 7.51 (m, 3H), 7.47 – 7.34 (m, 5H), 7.19 – 7.13 (m, 2H), 7.06 – 6.99 (m, 2H), 5.83 (d, J = 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 168.1, 158.8 (d, J_C-F = 241.7 Hz), 152.9 (d, J_C-F = 2.5 Hz), 141.7, 132.7, 131.4, 131.4, 131.4, 129.2, 129.2, 128.9, 126.3, 123.2, 119.4 (d, J_C-F = 8.2 Hz), 116.1 (d, J_C-F = 23.3 Hz), 73.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.1. HRMS (ESI), m/z calcd for C₂₃H₁₉FNO₃ [M+H]+ 374.1187 found 374.1189.

(E)-3-Benzylidene-4-phenoxy-1-(4-(trifluoromethyl)phenyl)pyrrolidine-2,5-dione (5c)

Prepared according to the general procedure from corresponding diazo compound 1 and phenol (scale – 1.5 mmol). Yield: 263 mg (46%). Eluent – n-hexane–DCM (from 30 to 50% of DCM). White solid, m.p. 163.4-164.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 1.6 Hz, 1H), 7.78 (d, J = 8.3 Hz, 2H), 7.62 (dd, J = 22.6, 7.9 Hz, 4H), 7.47 (t, J = 7.4 Hz, 1H), 7.38 (dd, J = 16.2, 8.3 Hz, 4H), 7.22 (d, J = 7.9 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 5.93 (d, J = 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 167.7, 156.9, 142.4, 134.6, 132.6, 131.5, 131.5, 130.6 (q, J_C-F = 33.0 Hz), 129.7, 129.2, 126.5, 126.2 (q, J_C-F = 3.7 Hz), 125.0, 123.7 (q, J_C-F = 273.7 Hz), 122.9, 117.4, 72.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI), m/z calcd for HRMS (ESI), m/z calcd for C₂₃H₁₇F₃NO₃ [M+H]+ 424.1155 found 424.1151.

(E)-3-(4-Fluorobenzylidene)-4-phenoxy-1-phenylpyrrolidine-2,5-dione (5d)

Prepared according to the general procedure from corresponding diazo compound 1 and phenol (scale – 1.5 mmol). Yield: 407 mg (81%). Eluent – n-hexane–DCM (from 50 to 100% of DCM). White solid, m.p. 173.4-174.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 1.6 Hz, 1H), 7.65 (dd, J = 8.7, 5.4 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.47 – 7.43 (m, 1H), 7.42 – 7.31 (m, 4H), 7.21 (d, J =
8.0 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 8.7 Hz, 2H), 5.89 (d, J = 1.6 Hz, 1H). \(^{13}\)C NMR \((101 \text{ MHz, CDCl}_3\) \(\delta\) 171.4, 168.0, 164.3 (d, \(J_{\text{C-F}} = 254.7 \text{ Hz}\)), 156.9, 140.1, 133.7 (d, \(J_{\text{C-F}} = 8.9 \text{ Hz}\)), 131.5, 129.7, 129.2, 129.1 (d, \(J_{\text{C-F}} = 3.4 \text{ Hz}\)), 128.8, 126.3, 123.4, 122.9 (d, \(J_{\text{C-F}} = 2.4 \text{ Hz}\)), 117.5, 116.4 (d, \(J_{\text{C-F}} = 21.9 \text{ Hz}\)), 72.2. \(^{19}\)F NMR \((376 \text{ MHz, CDCl}_3\) \(\delta\) -106.8. HRMS (ESI), \(m/z\) calcd for C\(_{23}\)H\(_{17}\)FNO\(_3\) [M+H]\(^+\) 374.1187 found 374.1185.

\((E)-3\)-Benzyldiene-1-(4-fluorophenyl)-4-phenoxypyrrolidine-2,5-dione \((5e)\)

Prepared according to the general procedure from corresponding diazo compound \(1\) and phenol (scale – 1.5 mmol). Yield: 397 mg (79%). Eluent – n-hexane–DCM (from 80 to 100% of DCM). White solid, m.p. 162.1-162.7 °C. \(^1\)H NMR \((400 \text{ MHz, CDCl}_3\) \(\delta\) 8.02 (d, J = 1.6 Hz, 1H), 7.64 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.3 Hz, 1H), 7.42 – 7.32 (m, 6H), 7.25 – 7.17 (m, 4H), 7.13 (t, J = 7.3 Hz, 1H), 5.90 (d, J = 1.6 Hz, 1H). \(^{13}\)C NMR \((101 \text{ MHz, CDCl}_3\) \(\delta\) 171.5, 168.1, 162.3 (d, \(J_{\text{C-F}} = 249.0 \text{ Hz}\)), 156.9, 141.9, 132.7, 131.4, 129.6, 129.1, 128.2 (d, \(J_{\text{C-F}} = 8.8 \text{ Hz}\)), 127.4 (d, \(J_{\text{C-F}} = 3.2 \text{ Hz}\)), 123.3, 123.2, 117.5, 116.2 (d, \(J_{\text{C-F}} = 23.0 \text{ Hz}\)), 72.3. \(^{19}\)F NMR \((376 \text{ MHz, CDCl}_3\) \(\delta\) -111.9. HRMS (ESI), \(m/z\) calcd for C\(_{23}\)H\(_{17}\)FNO\(_3\) [M+Na]\(^+\) 374.1193 found 374.1193.

\((E)-3\)-Benzyldiene-4-phenoxy-1-phenylpyrrolidine-2,5-dione \((5f)\)

Prepared according to the general procedure from corresponding diazo compound \(1\) and phenol (scale – 1 mmol). Yield: 213 mg (67%). Eluent – n-hexane–DCM (from 30 to 100% of DCM). White solid, m.p. 169.2-171.0 °C. \(^1\)H NMR \((400 \text{ MHz, CDCl}_3\) \(\delta\) 8.03 (d, J = 1.7 Hz, 1H), 7.65 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.45 (d, J = 7.3 Hz, 2H), 7.42 – 7.32 (m, 6H), 7.22 (d, J = 7.9 Hz, 2H), 7.12 (t, J = 7.3 Hz, 1H), 5.91 (d, J = 1.7 Hz, 1H). \(^{13}\)C NMR \((126 \text{ MHz, CDCl}_3\) \(\delta\) 171.6, 168.2, 156.9, 141.6, 132.7, 131.5, 131.4, 129.6, 129.2, 129.1, 128.8, 126.3, 123.4, 123.3, 117.6, 72.3. HRMS (ESI), \(m/z\) calcd for C\(_{23}\)H\(_{18}\)NO\(_3\) [M+H]\(^+\) 356.1281 found 356.1282.

\((E)-1\)-Benzy-3-benzyldiene-4-phenoxypyrrolidine-2,5-dione \((5g)\)

Prepared according to the general procedure from corresponding diazo compound \(1\) and phenol (scale – 1.5 mmol). Yield: 331 mg (60%). Eluent – n-hexane–DCM (from 30 to 100% of DCM). White solid, m.p. 157.0-158.9 °C. \(^1\)H NMR \((400 \text{ MHz, CDCl}_3\) \(\delta\) 7.89 (d, J = 1.7 Hz, 1H), 7.58 (d, J = 7.3 Hz, 2H), 7.42 (m, 3H), 7.33 (m, 6H), 7.26 (s, 1H), 7.09 (m, 3H), 5.76 (d, J = 1.7 Hz, 1H), 4.86 (d, J = 14.0 Hz, 1H), 4.80 (d, J = 14.0 Hz, 1H). \(^{13}\)C NMR \((101 \text{ MHz, CDCl}_3\) \(\delta\) 172.3, 168.7, 156.9, 140.6, 135.3, 132.7, 131.3, 131.1, 129.5, 129.0, 128.9, 128.7, 128.1, 123.6, 123.1, 117.3, 72.2, 42.7. HRMS (ESI), \(m/z\) calcd for C\(_{24}\)H\(_{20}\)NO\(_3\) [M+Na]\(^+\) 370.1438 found 370.1437.

\((E)-3\)-Benzyldiene-4-(3,5-dimethylenoxy)-1-phenylpyrrolidine-2,5-dione \((5h)\)

Prepared according to the general procedure from corresponding diazo compound \(1\) and 3,5-dimethylenphenol (scale – 1 mmol). Yield: 184 mg (53%). Eluent – n-hexane–DCM (from 20 to 70% of DCM). White solid, m.p. 149.1-149.7 °C. \(^1\)H NMR \((400 \text{ MHz, CDCl}_3\) \(\delta\) 8.01 (d, J = 1.7 Hz, 1H), 7.66 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.48 – 7.43 (m, 2H), 7.43 – 3.7 (m, 4H), 6.83 (s, 2H), 6.76 (s, 1H), 5.88 (d, J = 1.7 Hz, 1H), 2.31 (s, 6H). \(^{13}\)C NMR \((101 \text{ MHz, CDCl}_3\) \(\delta\) 171.7, 168.2, 157.1, 141.4, 139.3, 132.8, 131.6, 131.5, 131.2, 129.1, 129.1, 128.8, 126.3, 125.0, 123.6, 115.2, 72.2, 21.5. HRMS (ESI), \(m/z\) calcd for C\(_{25}\)H\(_{22}\)NO\(_3\) [M+H]\(^+\) 384.1594 found 384.1595.
(E)-3-(4-Methylbenzylidene)-4-phenoxy-1-phenylpyrrrolidine-2,5-dione (5i)

Prepared according to the general procedure from corresponding diazo compound 1 and phenol (scale – 1.5 mmol). Yield: 261 mg (52%). Eluent – n-hexane–DCM (from 30 to 100% of DCM). White solid, m.p. 158.2-159.9 °C. 1H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 1.3 Hz, 1H), 7.59 – 7.48 (m, 4H), 7.44 (d, J = 7.3 Hz, 1H), 7.37 (dd, J = 15.8, 7.3 Hz, 4H), 7.24 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H), 5.89 (d, J = 1.3 Hz, 1H), 2.40 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 171.6, 168.4, 156.9, 142.2, 141.6, 131.6, 131.6, 130.0, 129.9, 129.6, 129.1, 128.7, 126.3, 123.2, 122.1, 117.6, 72.4, 21.6. HRMS (ESI), m/z calcd for C24H20NO5 [M+H]+ 370.1438 found 370.1437.

(E)-Methyl 4-((2,5-dioxo-4-phenylpyrrrolidin-3-ylidene)methyl)benzoate (5j)

Prepared according to the general procedure from corresponding diazo compound 1 and phenol (scale – 1.5 mmol). Yield: 354 mg (64%). Eluent – n-hexane–DCM (from 30 to 70% of DCM). White solid, m.p. 161.2-162.3 °C. 1H NMR (400 MHz, CDCl3) δ 8.02 (m, 3H), 7.69 (d, J = 8.3 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.46 (d, J = 7.2 Hz, 1H), 7.42 – 7.33 (m, 4H), 7.20 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H), 5.92 (d, J = 1.8 Hz, 1H), 3.95 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 171.2, 167.7, 166.2, 156.9, 139.9, 136.8, 131.9, 131.3, 131.1, 130.1, 129.7, 129.2, 128.9, 126.3, 125.8, 123.4, 117.2, 72.0, 52.4. HRMS (ESI), m/z calcd for C25H20NO5 [M+H]+ 414.1336 found 414.1332.

(E)-3-Benzylidene-4-phenoxy-1-(p-tolyl)pyrrrolidine-2,5-dione (5k)

Prepared according to the general procedure from corresponding diazo compound 1 and phenol (scale – 1.5 mmol). Yield: 322 mg (65%). Eluent – n-hexane–DCM (from 70 to 100% of DCM). White solid, m.p. 164.7-165.3 °C. 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 1.5 Hz, 1H), 7.65 (d, J = 7.4 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.42 – 7.28 (m, 7H), 7.27 – 7.20 (m, 3H), 7.12 (t, J = 7.3 Hz, 1H), 5.90 (d, J = 1.5 Hz, 1H), 2.42 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 171.6, 168.3, 157.0, 141.3, 138.9, 132.8, 131.4, 131.2, 129.8, 129.6, 129.1, 128.9, 126.1, 123.5, 123.2, 117.6, 72.4, 21.3. HRMS (ESI), m/z calcd for C24H20NO5 [M+H]+ 370.1438 found 370.1437.

(E)-3-(2-Methoxybenzylidene)-4-phenoxy-1-phenylpyrrrolidine-2,5-dione (5l)

Prepared according to the general procedure from corresponding diazo compound 1 and phenol (scale – 1.5 mmol). Yield: 295 mg (57%). Eluent – n-hexane–DCM (from 70 to 100% of DCM). White solid, m.p. 141.4-142.8 °C. 1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 1.9 Hz, 1H), 7.61 – 7.47 (m, 3H), 7.48 – 7.38 (m, 3H), 7.37 – 7.28 (m, 3H), 7.12 – 7.02 (m, 3H), 6.97 – 6.82 (m, 2H), 5.87 (d, J = 1.9 Hz, 1H), 3.67 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 172.2, 168.1, 158.2, 157.9, 136.7, 132.6, 131.7, 131.5, 129.4, 129.1, 129.1, 128.6, 126.5, 126.4, 122.8, 120.7, 117.2, 111.0, 73.7, 55.2. HRMS (ESI), m/z calcd for C24H20NO4 [M+H]+ 386.1387 found 386.1386.

(E)-3-Benzylidene-4-(4-methoxyphenoxy)-1-phenylpyrrrolidine-2,5-dione (5m)

Prepared according to the general procedure from corresponding diazo compound 1 and 4-methoxyphenol (scale – 1 mmol). Yield: 259 mg (75%). Eluent – n-hexane–DCM (from 50 to 100% of DCM). White solid, m.p. 72.8-74.9 °C. 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 1.7 Hz, S5
(E)-3-Benzylidene-4-(2-methoxyphenoxy)-1-phenylpyrrolidine-2,5-dione (5n)

Prepared according to the general procedure from corresponding diazo compound 1 and 2-methoxyphenol (scale – 1.5 mmol). Yield: 301 mg (58%). Eluent – n-hexane–ethylacetate (from 15 to 30% of ethylacetate). White solid, m.p. 161.4–161.7 °C. 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 1.7 Hz, 1H), 7.78 (d, J = 7.2 Hz, 2H), 7.51 (m, 2H), 7.46 – 7.36 (m, 7H), 7.14 – 7.07 (m, 1H), 6.98 – 6.91 (m, 2H), 5.98 (d, J = 1.7 Hz, 1H), 3.75 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 171.2, 168.4, 150.6, 145.8, 141.8, 133.0, 131.6, 131.5, 131.0, 129.1, 128.9, 128.6, 126.3, 124.3, 123.6, 120.9, 119.3, 112.1, 72.9, 55.6. HRMS (ESI), m/z calcd for C24H19NO4 [M+H]+ 386.1387 found 386.1391.

General procedure (GP2) for the synthesis of 6a

To a solution of corresponding phenol (0.35 mmol) and catalyst (2.5 mM Rh3(esp)2 in DCM, 200 μL, 0.1 mol %) in dry DCM (1.8 mL) was slowly added a solution of the diazo compound (0.5 mmol) while cooling to 0 °C. The reaction mixture was stirred at 0 °C for 15-30 minutes (controlled by TLC). Then DCM was evaporated and reaction mixture was dissolved in toluene (2 mL) and stirred at 140 °C for 24 h. The reaction mixture was diluted with n-hexane (2 mL) and the resulting solution was subjected to column chromatography on silica gel (eluent n-hexane–acetone) to afford 6.

3-((5-(tert-Butyl)-2-hydroxyphenyl)(phenyl)methyl)-1-phenyl-1H-pyrrole-2,5-dione (6a)

Prepared according to the general procedure from corresponding diazo compound 1 and 4-tert-butylphenol (scale – 1 mmol). Yield: 135 mg (47%) Amorphous solid. 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.42 (m, 2H), 7.41 – 7.29 (m, 7H), 7.33 (s, 1H), 7.19 (dd, J = 8.3, 2.4 Hz, 1H), 7.05 (d, J = 2.3 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.34 (d, J = 1.6 Hz, 1H), 5.72 (s, 1H), 5.08 (s, 1H), 1.25 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 169.7, 169.4, 151.7, 150.7, 143.8, 138.7, 131.5, 129.0, 128.8, 128.7, 128.6, 127.6, 127.3, 126.5, 125.8, 125.6, 125.4, 115.7, 42.2, 34.1, 31.4. HRMS (ESI), m/z calcd for C23H26NO3 [M+H]+ 412.1907 found 412.1911.

General procedure (GP3) for the synthesis of 7a–l

Compound 5 (0.5 mmol) was dissolved in toluene (2 mL) and stirred at 140 °C (150 °C for 5g) for 8–24 h (controlled by TLC). Upon cooling to room temperature, to the solution was added DABCO (0.15 mmol, 30 mol %), and the reaction mixture was stirred for 30–45 min (controlled by TLC). Cyclized product as a mixture of diastereomers syn-7 and anti-7 was isolated by flash column chromatography on silica gel (n-hexane–acetone, from 0 to 50% of acetone). Pure major diastereomer was obtained by crystallization from n-hexane–acetone. In some cases pure minor diastereomer was isolated by column chromatography on silica gel (eluent n-hexane–MTBE).

(2R/S,3R/S)-5-(Tert-butyl)-1',3-diphenyl-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (syn-7a) and (2S/R,3R/S)-5-(tert-butyl)-1',3-diphenyl-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (anti-7a)
(anti-7a): prepared according to the general procedure from compound 5a (0.46 mmol). After column chromatography (eluent – n-hexane-MTBE, from 10% to 50% of MTBE) two fractions were obtained: pure major diastereomer syn-7a – 140 mg (74%) and pure minor diastereomer anti-7a – 15 mg (8%).

Compound syn-7a. Yield: 140 mg (74%). White solid, m.p. 229.6-230.8 °C. 1H NMR (400 MHz, CDCl3) δ 7.53 (t, J = 7.5 Hz, 2H), 7.48 – 7.37 (m, 6H), 7.34 (dd, J = 8.5, 1.2 Hz, 1H), 7.22 (d, J = 6.8 Hz, 2H), 7.18 (s, 1H), 6.92 (d, J = 8.5 Hz, 1H), 5.29 (s, 1H), 2.87 (d, J = 18.5 Hz, 1H), 2.72 (d, J = 18.5 Hz, 1H), 1.32 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 175.2, 172.3, 156.1, 145.5, 137.3, 131.4, 129.4, 129.2, 128.9, 128.9, 128.5, 127.6, 126.3, 126.2, 122.5, 109.2, 89.6, 54.2, 38.6, 34.5, 31.7. HRMS (ESI), m/z calcd for C27H26NO3 [M+H]+ 412.1907 found 412.1912.

Compound anti-7a. Yield: 15 mg (8%) Amorphous solid. 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.28 (m, 8H), 7.27 (m, 1H), 7.12 (m, 1H), 6.93 (d, J = 8.5 Hz, 1H), 6.56 – 6.52 (m, 2H), 5.08 (s, 1H), 3.63 (d, J = 18.0 Hz, 1H), 3.37 (d, J = 18.0 Hz, 1H), 1.31 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 172.9, 171.4, 157.8, 145.2, 135.3, 130.8, 129.3, 129.1, 128.9, 128.7, 128.6, 126.9, 126.2, 126.1, 121.9, 108.9, 90.8, 60.2, 42.8, 34.5, 31.7. HRMS (ESI), m/z calcd for C27H26NO3 [M+H]+ 412.1907 found 412.1915.

(2R/S,3R/S)-5-Fluoro-1',3-diphenyl-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione(syn-7b)

Prepared according to the general procedure from compound 5b (0.91 mmol). Total yield: 216 mg (64%), dr = 77:23. Individual major diastereomer syn-7b was obtained by recrystallization from n-hexane/acetone. White solid, m.p. 175.8 – 176.6 °C. 1H NMR (400 MHz, CDCl3) δ 7.52 (m, 2H), 7.44 (m, 4H), 7.36 (d, J = 7.5 Hz, 2H), 7.16 (d, J = 6.4 Hz, 2H), 6.98 (td, J = 8.7, 2.4 Hz, 1H), 6.90 (m, 1H), 6.84 (dd, J = 7.7, 1.9 Hz, 1H), 5.20 (s, 1H), 2.88 (d, J = 18.6 Hz, 1H), 2.71 (d, J = 18.6 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 174.8, 172.0, 158.5 (d, Jc-F = 239.6 Hz), 154.2 (d, Jc-F = 1.4 Hz), 136.8, 131.3, 130.0 (d, Jc-F = 8.7 Hz), 129.6, 129.3, 128.9, 128.8, 128.8, 126.2, 115.7 (d, Jc-F = 24.5 Hz), 112.7 (d, Jc-F = 25.4 Hz), 110.4 (d, Jc-F = 8.5 Hz), 90.1, 53.8 (d, Jc-F = 1.7 Hz), 38.4. 19F NMR (470 MHz, CDCl3) δ -121.6. HRMS (ESI), m/z calcd for C24H21FNO4 [M+MeOH+H]+ 406.1449 found 406.1456.

(2R/S,3R/S)-3-Phenyl-1'-(4-(trifluoromethyl)phenyl)-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (syn-7c) and (2S,3R)-3-phenyl-1'-(4-(trifluoromethyl)phenyl)-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (anti-7c): prepared according to the general procedure from compound 5c (0.35 mmol). After column chromatography (eluent – n-hexane-MTBE, from 10% to 50% of MTBE) two fractions were obtained: pure major diastereomer syn-7c – 66 mg (45%) and pure minor diastereomer anti-7c – 23 mg (16%).

Compound syn-7c. Yield: 66 mg (45%). White solid, m.p. 150.2-150.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.45 – 7.39 (m, 3H), 7.31 (m, 1H), 7.20 – 7.11 (m, 3H), 7.06 – 6.95 (m, 2H), 5.24 (s, 1H), 2.90 (d, J = 18.7 Hz, 1H), 2.74 (d, J = 18.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.6, 171.7, 158.1, 137.3, 134.5, 130.8 (q, Jc-F = 32.9 Hz), 129.5, 129.4, 128.9, 128.6, 128.3, 126.5, 126.3 (q, Jc-F = 3.7 Hz), 125.8 (q, Jc-F = 172.7 Hz) 125.6, 122.5, 110.1, 89.4, 53.8, 38.5. 19F NMR (376 MHz, CDCl3) δ -62.7. HRMS (ESI), m/z calcd for C28H19F3NO4 [M+MeOH+H]+ 456.1417 found 456.1423.

Compound anti-7c. Yield: 23 mg (16%) Amorphous solid. 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.4 Hz, 2H), 7.43 – 7.29 (m, 6H), 7.12 (d, J = 7.3 Hz, 1H), 7.07 – 7.01 (m, 2H), 6.70 (d, J = 8.4 Hz, 2H), 5.11 (s, 1H), 3.68 (d, J = 18.0 Hz, 1H), 3.41 (d, J = 18.0 Hz, 1H). 13C NMR (101 MHz,
CDCl$_3$ δ 172.5, 170.7, 159.9, 134.9, 133.8, 130.7 (q, J$_{C-F}$ = 33.1 Hz), 129.6, 129.3, 129.2, 128.8, 127.2, 126.4, 126.06 (q, J$_{C-F}$ = 3.7 Hz), 125.0, 125.6 (q, J$_{C-F}$ = 132.3 Hz), 122.2, 109.9, 90.7, 59.9, 42.6. 13F NMR (376 MHz, CDCl$_3$) δ -62.8. HRMS (ESI), m/z calcd for C$_{25}$H$_{21}$F$_3$NO$_4$ [M+MeOH+H]$^+$ 456.1417 found 456.1392.

(2R,3R,S)-1′-(4-Fluorophenyl)-3-phenyl-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (syn-7d)

Prepared according to the general procedure from compound 5d (0.56 mmol). Total yield: 112 mg (54%), dr = 75:25. Individual major diastereomer syn-7d was obtained by recrystallization from n-hexane/acetone. White solid, m.p. 213.5-214.3 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.45 – 7.34 (m, 5H), 7.31 (m, 1H), 7.24 – 7.11 (m, 5H), 7.07 – 6.94 (m, 2H), 5.23 (s, 1H), 2.87 (d, J = 18.6 Hz, 1H), 2.72 (d, J = 18.6 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 174.9, 172.1, 162.3 (d, J$_{C-F}$ = 249.1 Hz), 158.2, 137.3, 129.5, 129.3, 128.9, 128.6, 128.6, 128.1 (d, J$_{C-F}$ = 8.8 Hz), 127.3 (d, J$_{C-F}$ = 3.2 Hz), 125.6, 122.4, 116.3 (d, J$_{C-F}$ = 23.0 Hz), 110.1, 89.4, 53.7, 38.4. 19F NMR (376 MHz, CDCl$_3$) δ -111.6. HRMS (ESI), m/z calcd for C$_{24}$H$_{22}$FNO$_4$ [M+MeOH+H]$^+$ 406.1449 found 406.1453.

(2R,3R,S)-3-(4-Fluorophenyl)-1′-phenyl-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (syn-7e)

Prepared according to the general procedure from compound 5e (0.28 mmol). Total yield: 62 mg (60%), dr = 82:18. Individual major diastereomer syn-7e was obtained by recrystallization from n-hexane/acetone. Amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.52 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.31 (m, 1H), 7.19 – 7.09 (m, 5H), 7.05 – 6.96 (m, 2H), 5.22 (s, 1H), 2.89 (d, J = 18.5 Hz, 1H), 2.70 (d, J = 18.5 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 174.9, 172.0, 162.6 (d, J$_{C-F}$ = 248.4 Hz), 158.2, 133.3 (d, J$_{C-F}$ = 3.3 Hz), 131.3, 130.6 (d, J$_{C-F}$ = 8.2 Hz), 129.5, 129.2, 128.9, 128.4, 126.2, 125.5, 122.4, 116.4 (d, J$_{C-F}$ = 21.6 Hz), 110.2, 89.3, 52.9, 38.4. 19F NMR (376 MHz, CDCl$_3$) δ -112.8. HRMS (ESI), m/z calcd for C$_{24}$H$_{22}$FNO$_4$ [M+MeOH+H]$^+$ 406.1449 found 406.1453.

(2R/S,3R,S)-1′-3-Diphenyl-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (syn-7f):

Prepared according to the general procedure from compound 5f (0.59 mmol). Total yield: 85 mg (41%), dr = 81:19. Individual major diastereomer syn-7f was obtained by recrystallization from n-hexane/acetone. White solid, m.p. 196.4-196.8 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.52 (t, J = 7.5 Hz, 2H), 7.48 – 7.35 (m, 6H), 7.30 (m, 1H), 7.20 – 7.16 (m, 2H), 7.14 (d, J = 7.4 Hz, 1H), 7.05 – 6.95 (m, 2H), 5.25 (s, 1H), 2.88 (d, J = 18.6 Hz, 1H), 2.72 (d, J = 18.6 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 175.0, 172.2, 158.3, 137.3, 131.4, 129.4, 129.3, 128.9, 128.9, 128.5, 128.3, 126.3, 125.6, 122.3, 110.1, 89.4, 53.8, 38.5. HRMS (ESI), m/z calcd for C$_{25}$H$_{18}$NO$_3$ [M+H]$^+$ 356.1281 found 356.1289.

(2R/S,3R,S)-1′-BenzyI-3-phenyl-3H-spiro[benzofuran-2,3'-pyrrolidine]-2',5'-dione (syn-7g):

Prepared according to the general procedure from compound 5g (0.56 mmol). Total yield: 106 mg (52%), dr = 73:27. Individual major diastereomer syn-7g was obtained by HPLC (eluent = n-hexane/MTBE). Amorphous solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.38 (m, 5H), 7.32 – 7.29 (m, 3H), 7.25 (d, J = 7.8 Hz, 1H), 7.09 (d, J = 7.4 Hz, 1H), 7.02 – 6.91 (m, 4H), 5.07 (s, 1H), 4.77 (d, J = 14.0 Hz, 1H), 4.71 (d, J = 14.0 Hz, 1H), 2.71 (d, J = 18.6 Hz, 1H), 2.54 (d, J = 18.6 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 175.9, 172.8, 158.4, 137.1, 135.2, 135.2, 129.2, 129.2, 128.8, 128.8, 128.7, 128.3, 128.2, 128.1, 125.5, 122.1, 110.0, 89.2, 53.8, 42.7, 38.3. HRMS (ESI), m/z calcd for C$_{26}$H$_{20}$NO$_3$ [M+H]$^+$ 370.1438 found 370.1432.
Prepared according to the general procedure from compound 5h (0.43 mmol). Total yield: 85 mg (52%), dr = 92:8. Individual major diastereomer syn-7h was obtained by recrystallization from n-hexane/acetone. White solid, m.p. 224.1-224.6 °C. 1H NMR (400 MHz, CDCl3) δ 7.51 (t, J = 7.5 Hz, 2H), 7.46 – 7.31 (m, 6H), 7.09 (s, 2H), 6.63 (d, J = 12.6 Hz, 2H), 4.92 (s, 1H), 2.88 (d, J = 18.7 Hz, 1H), 2.65 (d, J = 18.7 Hz, 1H), 2.35 (s, 3H), 1.92 (s, 3H). 13C NMR (10 MHz, CDCl3) δ 175.1, 172.4, 158.4, 139.5, 138.1, 135.1, 131.4, 129.3, 129.1, 128.8, 128.6, 128.2, 126.3, 124.9, 124.6, 107.9, 89.1, 52.7, 38.6, 21.5, 18.5. HRMS (ESI), m/z calcd for C25H22NO3 [M+H]+ 384.1594 found 384.1598.

Prepared according to the general procedure from compound 5i (0.51 mmol). Total yield: 86 mg (46%), dr = 79:21. Individual major diastereomer syn-7i was obtained by recrystallization from n-hexane/acetone. White solid, m.p. 194.1-194.8 °C. 1H NMR (400 MHz, CDCl3) δ 7.46 – 7.36 (m, 3H), 7.32 (m, 3H), 7.25 (m, 2H), 7.20 – 7.10 (m, 3H), 7.06 – 6.93 (m, 2H), 5.25 (s, 1H), 2.86 (d, J = 18.6 Hz, 1H), 2.71 (d, J = 18.6 Hz, 1H), 2.42 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 175.1, 172.3, 158.3, 139.0, 137.3, 129.8, 129.4, 129.2, 128.9, 128.7, 128.5, 128.3, 126.0, 125.6, 122.2, 110.0, 89.4, 53.8, 38.4, 21.2. HRMS (ESI), m/z calcd for C24H20NO4 [M+H]+ 370.1438 found 370.1436.

Prepared according to the general procedure from compound 5j (0.68 mmol). Total yield: 83 mg (30%), dr = 67:33. Individual major diastereomer syn-7j was obtained by recrystallization from n-hexane/acetone. White solid, m.p. 191.1-191.8 °C. 1H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 8.3 Hz, 2H), 7.52 (m, 2H), 7.48 – 7.42 (m, 1H), 7.40 – 7.34 (m, 2H), 7.32 (d, J = 7.5 Hz, 1H), 7.26 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 7.5 Hz, 1H), 7.02 (m, 2H), 5.28 (s, 1H), 3.96 (s, 3H), 2.90 (d, J = 18.6 Hz, 1H), 2.64 (d, J = 18.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.6, 171.8, 166.3, 158.2, 142.5, 131.2, 130.6, 130.4, 129.6, 129.2, 128.9, 128.9, 127.9, 126.2, 125.5, 122.5, 110.2, 89.1, 53.4, 52.3, 38.4. HRMS (ESI), m/z calcd for C24H20NO3 [M+H]+ 414.1336 found 414.1333.

Prepared according to the general procedure from compound 5k (0.65 mmol). Total yield: 101 mg (43%), dr = 82:18. Individual major diastereomer syn-7k was obtained by recrystallization from n-hexane/acetone. White solid, m.p. 225.9-226.3 °C. 1H NMR (400 MHz, CDCl3) δ 7.52 (t, J = 7.7 Hz, 2H), 7.44 (t, J = 7.3 Hz, 1H), 7.37 (d, J = 7.7 Hz, 2H), 7.29 (s, 1H), 7.22 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.4 Hz, 1H), 7.10 – 6.94 (m, 4H), 5.22 (s, 1H), 2.86 (d, J = 18.6 Hz, 1H), 2.75 (d, J = 18.6 Hz, 1H), 2.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 175.2, 172.3, 158.3, 138.4, 134.1, 131.4, 130.1, 129.2, 129.2, 129.2, 128.9, 128.8, 128.4, 126.3, 125.6, 122.3, 110.0, 89.4, 53.7, 38.5, 21.1. HRMS (ESI), m/z calcd for C24H20NO3 [M+H]+ 370.1438 found 370.1435.

Prepared according to the general procedure from compound 5l (0.45 mmol). Total yield: 82 mg (47%), dr = 80:20. Individual major diastereomer syn-7l was obtained by recrystallization from n-hexane/acetone. Amorphous solid, 1H NMR (400 MHz, CDCl3) δ 7.57 – 7.50 (m, 2H), 7.48 – 7.42
(m, 3H), 7.35 (m, 2H), 7.20 (d, $J = 7.5$ Hz, 1H), 7.05 (dd, $J = 7.5$, 1.0 Hz, 2H), 7.03 – 6.94 (m, 3H), 5.55 (s, 1H), 3.78 (s, 3H), 2.84 (d, $J = 18.6$ Hz, 1H), 2.60 (d, $J = 18.6$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 175.7, 172.8, 158.9, 157.0, 131.7, 129.5, 129.1, 129.1, 128.9, 128.6, 126.5, 126.2, 126.1, 126.0, 121.7, 121.3, 110.4, 109.8, 88.5, 55.5, 47.9, 38.6. HRMS (ESI), m/z calcld for C$_{24}$H$_{20}$NO$_4$ [M+H]$^+$ 386.1387 found 386.1393.
III. NMR spectra

Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5a
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5b
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of 5b
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5c
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of 5c

![Chemical Structure]

S15
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5d
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of 5d
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5e
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of 5e
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5f
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5g
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5h
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5i
Copies of ^1H (400.13 MHz, CDCl$_3$) and ^{13}C (100.61 MHz, CDCl$_3$) spectra of 5j
Copies of ^1H (400.13 MHz, CDCl$_3$) and ^{13}C (100.61 MHz, CDCl$_3$) spectra of 5k
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5l
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5m
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 5n
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of 6a
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7a.
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of anti-7a
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7b
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of *syn-7b*
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7c
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of syn-7b
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of *anti*-7c
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of anti-7c
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7d
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of *syn-7d*
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7e
Copy of 19F (376.50 MHz, CDCl$_3$) spectrum of syn-7e
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7f
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7g
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7h
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7i
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7j
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-7k
Copies of 1H (400.13 MHz, CDCl$_3$) and 13C (100.61 MHz, CDCl$_3$) spectra of syn-71
IV. X-ray crystallographic data for compound syn-7a

X-ray Single Crystal analysis was performed on RigakuXtaLAB. The crystal was grown by slow evaporation of solution in n-hexane-acetone mixture (1:1). The crystal was kept at 100.15 K during data collection. Using Olex2 [3], the structure was solved with the SHELXS [4] structure solution program using Direct Methods and refined with the SHELXL [5] refinement package using Least Squares minimization. CCDC 2166113 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/.

Figure S1. ORTEP representation of compound syn-7a (thermal ellipsoids are shown at 50% probability)

<p>	Table S1. Crystal data and structure refinement for syn-7a
CCDC	2166113
Empirical formula	C_{27}H_{25}NO_{3}
Formula weight	411.48
Temperature/K	100.15
Crystal system	monoclinic
Space group	P2_{1}/c
a/A	9.8232(2)
b/A	6.11690(10)
c/A	35.3601(7)
α/°	90
β/°	97.266(2)
γ/°	90
Volume/Å³	2107.64(7)
Z	4
(\rho_{calc})/cm³	1.297
(\mu)/mm⁻¹	0.670
F(000)	872.0
<table>
<thead>
<tr>
<th>Crystal size/mm³</th>
<th>0.08 × 0.04 × 0.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>CuKα (λ = 1.54184)</td>
</tr>
<tr>
<td>2Θ range for data collection/°</td>
<td>9.076 to 152.92</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-11 ≤ h ≤ 12, -7 ≤ k ≤ 4, -44 ≤ l ≤ 43</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>17376</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4379 [Rint = 0.0259, Rsigma = 0.0178]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>4379/0/283</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.048</td>
</tr>
<tr>
<td>Final R indexes [I>2σ (I)]</td>
<td>R₁ = 0.0418, wR₂ = 0.1024</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R₁ = 0.0448, wR₂ = 0.1047</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.37/-0.26</td>
</tr>
</tbody>
</table>
V. References

