

Supporting Information

for

New synthesis of a late-stage tetracyclic key intermediate of lumateperone

Mátyás Milen, Bálint Nyulasi, Tamás Nagy, Gyula Simig and Balázs Volk

Beilstein J. Org. Chem. 2022, 18, 653-659. doi:10.3762/bjoc.18.66

General information, synthetic procedures, and spectral data

Table of contents

1.	General information	S2
2.	Synthesis	S3
3.	References	S10
4.	NMR and IR spectra	S11

General information

All melting points were determined on a Büchi–Boëtius microapparatus and are uncorrected. IR spectra were obtained on a Bruker Alpha FT-IR spectrometer in KBr pellets. ¹H NMR and 13 C NMR spectra were recorded in DMSO- d_6 or CDCl₃ solution in 5 mm tubes at room temperature, on a Bruker Avance III HD 600 (600 and 150 MHz for ¹H and ¹³C NMR spectra, respectively) or a Bruker Avance III 400 (400 and 100 MHz for ¹H and ¹³C NMR spectra, respectively) spectrometer with the deuterium signal of the solvent as the lock and TMS as the internal standard. Chemical shifts (δ) and coupling constants (J) are given in ppm and in Hz, respectively. The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Mass spectra were recorded on a Bruker O-TOF MAXIS Impact mass spectrometer coupled to a Dionex Ultimate 3000 RS HPLC system with a diode array detector. High-resolution mass spectra (HRMS) were recorded on a Bruker O-TOF MAXIS Impact mass spectrometer coupled with a Waters I-Class UPLC system with a diode array detector. Reactions were monitored by thin-layer chromatography (TLC) carried out on silica gel plates (60 F₂₅₄) using UV light as visualizing agent. Purifications by flash column chromatography were carried out using Merck 107736 silica gel 60 H with a hexane/EtOAc or CH2Cl2/MeOH solvent system. All reagents were purchased from commercial sources and were used without further purification. Analytical samples of new compounds were obtained by recrystallization from the solvents or solvent mixtures given after the melting points in parentheses. Compounds (\pm) -9, 25, 26, 28, 29, 31, (\pm) -36, and 38 are known from the literature, but insufficiently or not at all $[(\pm)-36]$ characterized [1,2], therefore they are described below. New compounds 27, 30, 34, and (\pm) -35 are also characterized below in detail.

Synthesis

1-Methylquinoxalin-1-ium *p***-toluenesulfonate** (**25**). This compound was prepared by a published method [3]. A mixture of quinoxaline (**24**, 10.0 g, 76.8 mmol) and methyl *p*-toluenesulfonate (27.17 g, 22.0 mL, 145.9 mmol, 1.9 equiv) was kept at room temperature for 2 d. The resulting solid was suspended in DEE (30 mL), filtered, and washed with DEE (10 mL). Yield: 19.93 g (82%). Colorless crystals. Mp 156–158 °C (EtOH–Et₂O, lit. mp 150–152 °C [4]). ¹H NMR (CDCl₃, 400 MHz): δ 9.69–9.65 (m, 1H), 9.61–9.56 (m, 1H), 8.64–8.58 (m, 1H), 8.54–8.48 (m, 1H), 8.36–8.26 (m, 2H), 7.46–7.41 (m, 2H), 7.10–7.04 (m, 2H), 4.73 (s, 3H), 2.27 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 148.2, 145.9, 145.0, 141.9, 137.7, 135.8, 133.8, 131.2, 131.0, 128.2, 125.6, 119.8, 45.8, 20.9 ppm.

1-Methyl-1,2,3,4-tetrahydroquinoxaline (**26**). This compound was prepared by a published method [3]. NaBH₄ (1.80 g, 47.6 mmol) was dissolved in H₂O (51 mL) and cooled to 0 °C. 1-Methylquinoxalin-1-ium p-toluenesulfonate (**25**, 5.00 g, 15.8 mmol) was dissolved in H₂O (10 mL) and added dropwise to the NaBH₄ solution over a period of 0.5 h. The mixture was stirred for an additional 10 min at 0 °C, then extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The crude material was purified by Kugelrohr distillation at 145 °C (2 mbar), lit. bp 163–169 °C (20 Hg mm) [4]. Yield: 2.10 g (90%). Pale yellow oil. ¹H NMR (CDCl₃, 600 MHz): δ 6.68–6.65 (m, 1H), 6.65–6.60 (m, 2H), 6.48–6.45 (m, 1H), 3.48–3.46 (m, 2H), 3.27–3.25 (m, 2H), 2.68 (s, 3H) ppm. ¹³C NMR (CDCl₃, 150 MHz): δ 136.2, 134.2, 118.7, 118.2, 113.5, 111.7, 49.9, 41.3, 39.1 ppm.

1-Methyl-4-nitroso-1,2,3,4-tetrahydroquinoxaline (**27**). The solution of **26** (9.40 g, 63.42 mmol) in AcOH (70.5 mL) and H₂O (47 mL) was cooled to 0–5 °C and treated dropwise with a solution of NaNO₂ (4.60 g, 66.67 mmol, 1.05 equiv) in H₂O (47 mL) at the same temperature. After stirring for 1 h at 0–5 °C, the mixture was basified with 15% NH₃ solution

to pH \approx 8 and extracted with CH₂Cl₂ (3 × 50 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Yield: 11.20 g (99%). Yellow oil. IR (film, cm⁻¹): 1605, 1503, 1425, 1306, 1170, 1131, 746. ¹H NMR (CDCl₃, 600 MHz): δ 8.04–8.02 (m, 1H), 7.24–7.20 (m, 1H), 6.89–6.85 (m, 1H), 6.80–6.78 (m, 1H), 4.06 (t, J = 5.6 Hz, 2H), 3.22 (t, J = 5.6 Hz, 2H), 2.93 (s, 3H) ppm. ¹³C NMR (CDCl₃, 150 MHz): δ 137.2, 127.5, 126.2, 119.0, 115.7, 113.3, 48.2, 10.9, 39.1 ppm. HRMS calcd. for C₉H₁₂N₃O [M+H]⁺ 178.0975; found 178.0967.

1-Benzylquinoxalin-1-ium bromide (**28**). This compound was prepared by a published method [5]. The mixture of quinoxaline (**24**, 42.6 g, 327 mmol) and benzyl bromide (106.2 g, 73.8 mL, 621 mmol, 1.9 equiv) was left standing for 3 days. The resulting solid was filtered and washed extensively with DEE and dried. Yield: 87.1 g (88%). Yellow crystals. Mp 143–146 °C. IR (KBr, cm⁻¹): 3424, 1604, 1511, 1358, 1154, 772, 699. ¹H NMR (CDCl₃, 400 MHz): δ 10.73 (d, J = 2.9 Hz, 1H), 9.63 (d, J = 2.8 Hz, 1H), 8.76 (d, J = 8.8 Hz, 1H), 8.44 (dd, J₁ = 1.6 Hz, J₂ = 8.4 Hz, 1H), 8.20–8.16 (m, 1H), 8.13–8.08 (m, 1H), 7.61–7.58 (m, 2H), 7.33–7.31 (m, 3H), 6.91 (s, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 147.6, 146.1, 140.3, 136.3, 133.5, 132.1, 131.5, 130.1, 129.8, 129.6, 128.5, 119.7, 61.4 ppm.

1-Benzyl-1,2,3,4-tetrahydroquinoxaline (**29**). An analogous method for the *N*-methyl derivative was described by Beach and coworkers [3]. 1-Benzylquinoxalin-1-ium bromide (**28**, 30.0 g, 99.6 mmol) was dissolved in H₂O (300 mL). To a solution of NaBH₄ (11.40 g, 301.3 mmol, 3.0 equiv) in H₂O (150 mL) was added the aqueous solution of **28** over a period of 30 min at 0 °C. The mixture was stirred for further 30 min at 0 °C and then extracted with DCM (3×60 mL). The combined organic layers were washed with H₂O (2×25 mL), dried over MgSO₄, filtered, and the filtrate was concentrated under reduced pressure to afford the title compound **29**. Yield: 22.34 g (86%). Pale yellow crystals. Mp 52–53 °C (hexane, lit. mp 50.5–52.5 °C [6]). ¹H NMR (CDCl₃, 400 MHz): δ 7.33–7.29 (m, 4H), 7.26–7.22 (m, 1H), 6.63–6.57 (m, 1H), 6.56–6.52 (m, 3H), 4.44 (s, 2H), 3.73 (br s, 1H), 3.44–3.40 (m, 4H) ppm. ¹³C NMR

(CDCl₃, 100 MHz): δ 138.7, 135.4, 133.8, 128.5, 127.0, 126.8, 119.2, 117.6, 114.1, 111.8, 55.2, 48.4, 41.0 ppm [7].

1-Benzyl-4-(trifluoroacetyl)-1,2,3,4-tetrahydroquinoxaline (30). To a stirred solution of amine 29 (8.60 g, 38.34 mmol) and TEA (8.0 mL, 5.81 g, 57.42 mmol, 1.5 equiv) in THF (43 mL) was carefully added TFAA (8.10 mL, 12.06 g, 57.42 mmol, 1.5 equiv) at 0 °C. The reaction mixture was stirred for 30 min at the same temperature and for further 60 min at 25 °C. The mixture was then evaporated under reduced pressure. The residue was dissolved in DCM (50 mL), washed with H₂O (2 × 20 mL), dried over Na₂SO₄, filtered, and evaporated to give the title compound 30. Yield: 11.95 g (97%). Colorless crystals. Mp 91–92 °C (ⁱPrOH). IR (KBr, cm⁻¹): 3440, 2873, 1688, 1604, 1511, 1350, 1204, 1189, 1146, 751. ¹H NMR (DMSO*d*₆, 600 MHz): 7.51–7.47 (m, 1H), 7.35–7.31 (m, 2H), 7.28–7.21 (m, 3H), 7.02–6.98 (m, 1H), 6.73–6.68 (m, 1H), 6.62–6.58 (m, 1H), 4.58 (s, 2H), 3.98 (s, 2H), 3.60–3.53 (m, 2H) ppm. ¹³C NMR (DMSO- d_6 , 150 MHz): δ 153.6 (q, J = 35.1 Hz), 139.2, 138.0, 128.8, 127.6, 127.1, 126.8, 124.6, 121.9, 116.6 (q, J = 289.2 Hz), 115.1, 112.2, 53.5, 49.4, 43.2 ppm. At room temperature, the compound consists of a ca. 9:1 mixture of two rotamers. Only the signals of the major species are given here. HRMS calcd. for $C_{17}H_{16}F_3N_2O$ [M+H]⁺ 321.1215; found 321.1212. 1-(Trifluoroacetyl)-1,2,3,4-tetrahydroquinoxaline (31). Method A: To a stirred solution of 30 (2.00 g, 6.24 mmol) in EtOAc (80 mL) were added a saturated HCl solution in EtOAc (1.0 mL) and palladium on carbon (10% Pd, 0.20 g). The reaction mixture was stirred under hydrogen atmosphere (3-5 bar) in an autoclave for 1 d. The catalyst was filtered off and the filtrate was evaporated to dryness. The waxy solid was treated with hexane (5 mL), the crystals were filtered, washed with MTBE (2 × 3 mL) and dried to give title compound 30. Yield: 1.40 g (97%). Colorless crystals. Mp 162–164 °C (MeCN). IR (KBr, cm⁻¹): 3389, 1674, 1605, 1515, 1283, 1188, 1142, 756. 1 H NMR (DMSO- d_{6} , 600 MHz): 7.49–7.46 (m, 1H), 7.04–6.94 (m, 1H), 6.66–6.63 (m, 1H), 6.53–6.49 (m, 1H), 6.35 (br s, 1H), 3.80 (br s, 2H), 3.42 (br s, 2H) ppm. ¹³C NMR (DMSO- d_6 , 150 MHz): δ 153.6 (q, J = 34.8 Hz), 139.2, 127.2, 124.4, 120.8, 116.6 (q, J = 288.9 Hz), 114.7, 114.3, 43.0, 41.6 ppm. At room temperature, the compound consists of a ca. 9:1 mixture of two rotamers. Only the signals of the major species are given here. HRMS calcd. for $C_{10}H_{10}F_3N_2O$ [M+H]⁺ 231.0745; found 231.0742. *Method B:* According to a published method [8], trifluoroacetic anhydride (1.30 mL, 1.94 g, 9.2 mmol) was added dropwise to a solution of 1,2,3,4-tetrahydroquinoxaline (37, 1.34 g, 10.0 mmol) and $E_{13}N$ (1.53 mL, 1.11 g, 11.0 mmol) in CH_2Cl_2 (10 mL) at 0 °C. After 30 min, the reaction temperature was allowed to warm to 23 °C and the mixture was stirred overnight and evaporated. The residue was separated by flash column chromatography (SiO₂, hexane—hexane—EtOAc 50:50) to afford three compounds: 0.34 g (25%) of the starting material, 0.90 g (39%) of title compound 31 and 0.58 g (25%) of 1,4-bis-(trifluoroacetyl)-1,2,3,4-tetrahydroquinoxaline (38). For analytical data of compound 38, see below.

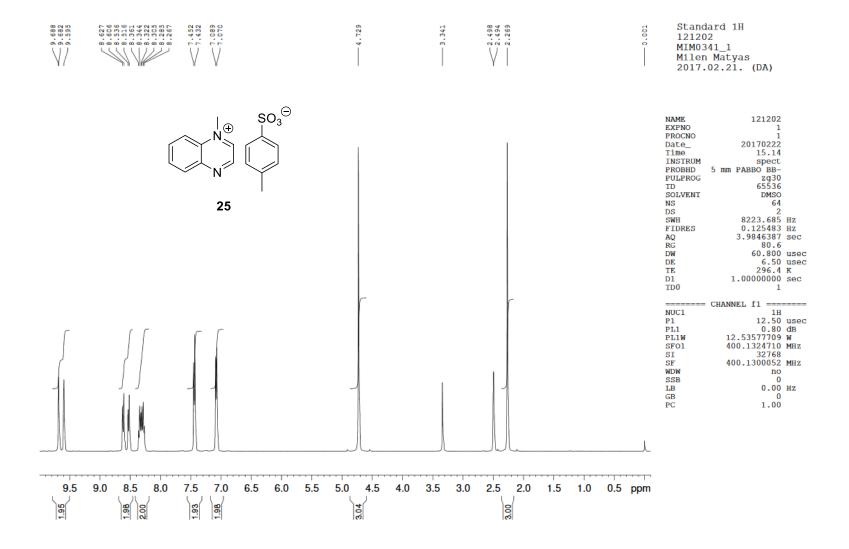
Ethyl 3-(trifluoroacetyl)-2,3,9,10-tetrahydro-1H-pyrido[3',4':4,5]pyrrolo[1,2,3-

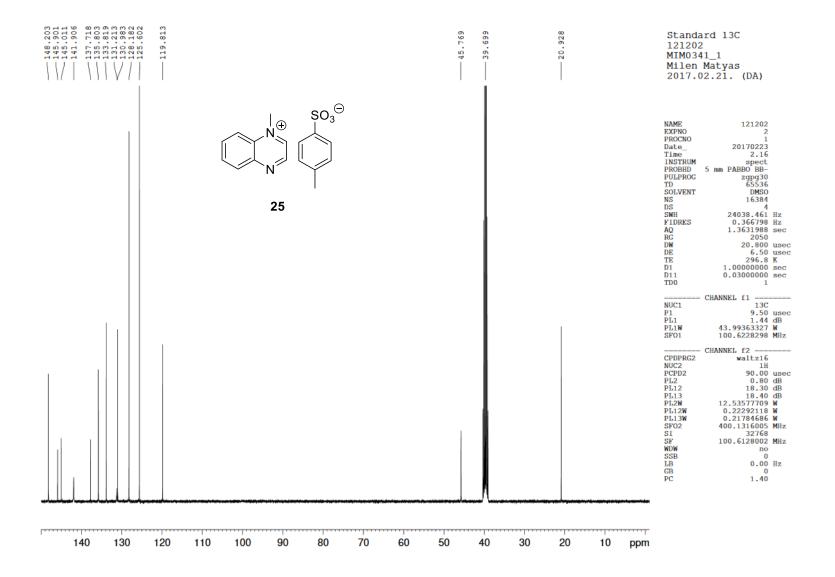
de]quinoxaline-8(7H)-carboxylate (34). The solution of 31 (5.10 g, 22.16 mmol) in AcOH (100 mL) and H₂O (50 mL) was cooled to 5–10 °C and treated dropwise with a solution of sodium nitrite (1.80 g, 26.09 mmol, 1.18 equiv) in H₂O (30 mL) at the same temperature. After stirring for 1 h at 0–5 °C, the product was filtered, washed with H₂O (2 × 5 mL) and dried. Yield: 4.80 g (84%). This nitroso intermediate (32) was directly used in the next reaction according to the procedure described in the literature for a similar reaction [1]. To a stirred solution of 32 (4.80 g, 18.52 mmol) in AcOH (80 mL) at 10–12 °C was added freshly activated zinc powder [9] (6.40 g, 97.89 mmol, 5.5 equiv) portionwise. The reaction mixture was stirred at 10–20 °C for 2 h. Ethyl 4-oxopiperidine-1-carboxylate (5, 2.80 mL, 3.18 g, 18.52 mmol) was added and the mixture was filtered after 5 min of stirring. The insoluble material was washed with acetic acid (4 × 16 mL). To the combined filtrates, a saturated HCl solution in DEE (0.80 mL) was added and heated to 100 °C for 1 h. The dark reaction mixture was cooled and

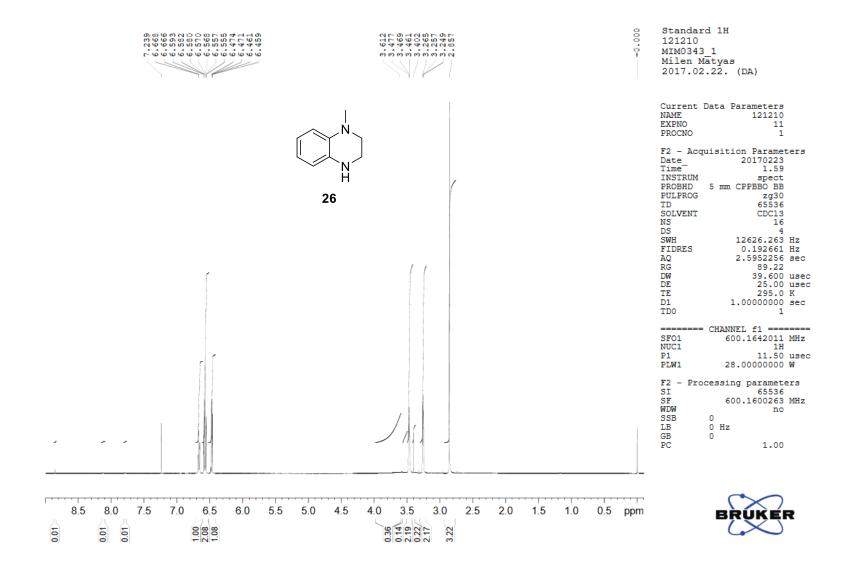
evaporated under reduced pressure. Flash column chromatography (SiO₂, CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 92:8) afforded the desired product. Yield: 2.89 g (41%). Colorless crystals. Mp 126–128 °C (MeCN). IR (KBr, cm⁻¹): 2970, 1699, 1578, 1386, 1199, 1056. ¹H NMR (CDCl₃, 400 MHz): 7.83 (br s, 1H), 7.34–7.26 (m, 1H), 7.12–7.08 (m, 1H), 4.71 (s, 2H), 4.23–4.18 (m, 6H), 3.89 (s, 2H), 2.82 (s, 2H) 1.31 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 156.0, 154.8 (q, J = 35.0 Hz), 132.4, 127.3, 124.4, 122.7, 119.6, 116.3 (q, J = 288.3 Hz), 115.8, 114.0, 107.7, 61.6, 44.6, 41.9, 41.3, 40.9, 21.6, 14.7 ppm. At room temperature, the compound consists of a ca. 2:1 mixture of two rotamers. Only the signals of the major species are given here. HRMS calcd. for C₁₈H₁₉F₃N₃O₃ [M+H]⁺ 382.1379; found 382.1372.

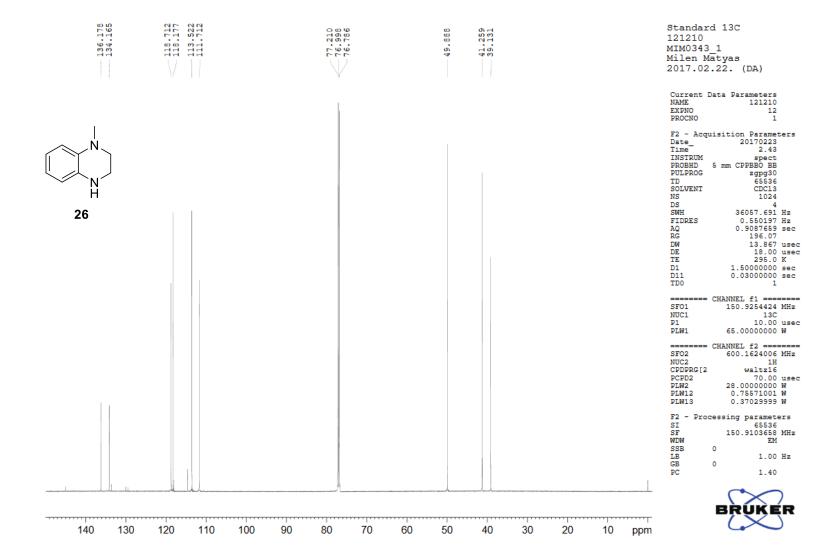
cis-Ethyl 3-(trifluoroacetyl)-2,3,6b,9,10,10a-hexahydro-1H-

pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxaline-8(7H)-carboxylate [(±)-35]. A stirred solution of 34 (1.00 g, 2.62 mmol) in AcOH (58 mL) was cooled to 17 °C. The solution was treated portionwise with NaBH₃CN (492 mg, 7.83 mmol, 3.0 equiv) and stirred at room temperature for 24 h. The reaction mixture was diluted with H₂O (87 mL) and basified with 25% NH₄OH (ca. 70 mL) up to pH 8. The precipitated product was filtered, washed with H₂O (2 × 5 mL) and dried. Yield: 960 mg (95%). Colorless crystals. Mp 149–152 °C (i Pr₂O, decomp.). IR (KBr, cm⁻¹): 1685, 1202, 1186, 1142, 1121. 1 H NMR (DMSO- i d₆, 600 MHz): 7.86–7.84 (m, 1H), 7.01–7.00 (m, 1H), 6.66–6.63 (m, 1H), 4.08–4.06 (m, 1H), 4.04–4.01 (m, 2H), 4.00–3.97 (m, 1H), 3.87–3.77 (m, 1H), 3.67–3.64 (m, 1H), 3.54–3.46 (m, 2H), 3.28–3.24 (m, 1H), 3.22–3.17 (m, 2H), 3.07–3.04 (m, 1H), 1.86–1.79 (m, 2H), 1.17 (t, i J = 6.7 Hz, 3H) ppm. 13 C NMR (DMSO- i d₆, 150 MHz): 154.9, 154.0 (q, i J = 34.8 Hz), 142.0, 130.5, 121.9, 121.6, 120.5, 118.0, 116.4 (q, i J = 288.5 Hz), 62.8, 60.8, 44.9, 43.9, 42.7, 40.1, 39.3, 23.6/23.5, 14.8 ppm. At room temperature, the compound consists of a ca. 1:1 mixture of two rotamers. HRMS calcd. for i C i C₁2,3-1.7 (m.) 11.7 (m.) 12.7 (m.) 13.7 (m.) 14.1.7 (m.) 14.1.7 (m.) 14.8 ppm. At room temperature, the compound consists of a ca. 1:1 mixture of two rotamers.

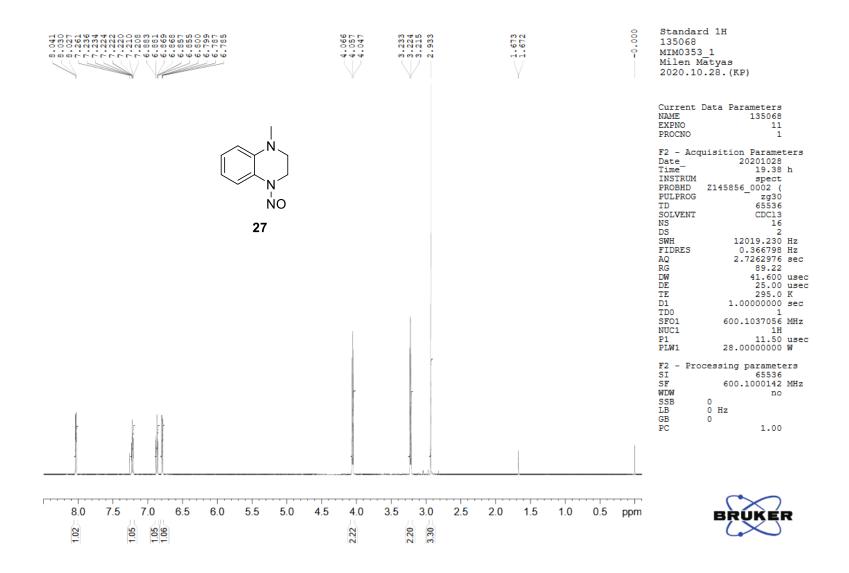

cis-Ethyl 2,3,6b,9,10,10a-hexahydro-1*H*-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxaline-**8(7H)-carboxylate** [(\pm)-**36**] [1,2]. To a solution of (\pm)-**35** (500 mg, 1.30 mmol) in MeOH (20 mL) and H₂O (0.8 mL) was added K₂CO₃ (0.36 g, 2.61 mmol, 2.0 equiv). The reaction mixture was stirred at reflux temperature for 2 h and evaporated. The residue was dissolved in the mixture of EtOAc (20 mL) and H₂O (20 mL). After separation, the aqueous phase was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and evaporated under reduced pressure to provide the product. Yield: 334 mg (89%). Off-white crystals. Mp 122–125 °C (hexane). IR (KBr, cm⁻¹): 3342, 1678, 1483, 1440, 1122, 730. ¹H NMR (CDCl₃, 600 MHz): 6.61–6.59 (m, 1H), 6.58– 6.56 (m, 1H), 6.41–6.39 (m, 1H), 4.20–4.11 (m, 2H), 4.16/4.05–3.98 (m, 1H), 3.94–3.88/3.88– 3.83 (m, 1H), 3.72–3.67 (m, 1H), 3.60 (br s, 1H), 3.51–3.47 (m, 1H), 3.36–3.34 (m, 1H), 3.33– 3.31 (m, 1H), 3.22–3.15 (m, 1H), 3.14–3.07 (m, 1H), 2.92–2.86/2.86–2.78 (m, 1H), 2.72–2.67 (m, 1H), 1.95-1.90 (m, 1H), 1.89-1.82 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H) ppm. 13 C NMR (CDCl₃, 150 MHz): δ 155.5, 138.0, 132.5, 129.7 (br), 120.3, 113.6 (br), 111.9, 65.3, 61.2, 45.6, 44.2, 42.3, 41.0/40.8, 39.7, 24.7/24.4, 14.7 ppm. At room temperature, the compound consists of a ca. 1:1 mixture of two rotamers.

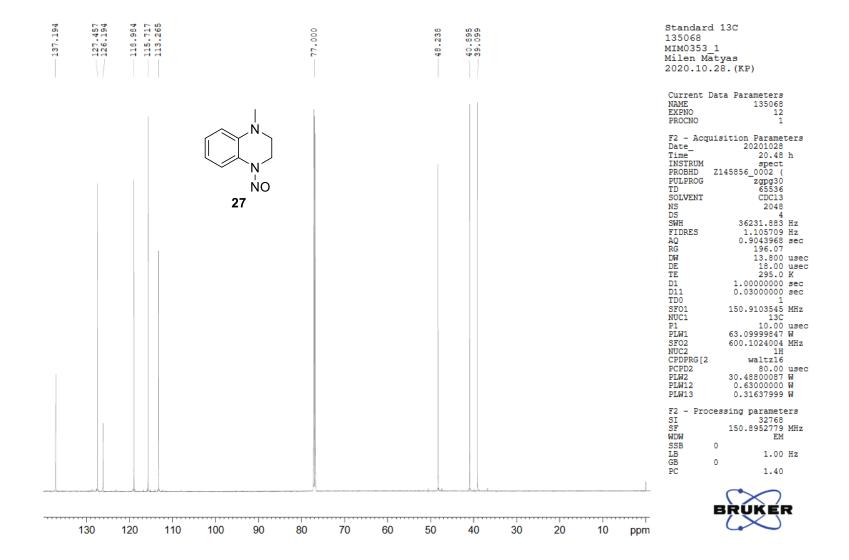

1,4-Bis(trifluoroacetyl)-1,2,3,4-tetrahydroquinoxaline (38). This compound was obtained as a byproduct in the synthesis of compound 31 (see above). Colorless crystals. Mp 121–122.5 °C (EtOH, lit. mp 118–118.5 °C [10]). IR (KBr, cm⁻¹): 1689, 1505, 1206, 1185, 1140, 529. 1 H NMR (CDCl₃, 600 MHz): 8.00–7.60 (m, 1H), 7.60–7.30 (m, 3H), 4.18–4.02 (m, 4H) ppm. 13 C NMR (CDCl₃, 150 MHz): δ 156.0, 133.6/128.6, 128.6/127.2, 124.7, 116.0 (q, J = 288.4 Hz), 45.7 ppm. At room temperature, the compound consists of a ca. 1:1 mixture of two rotamers. *cis*-Ethyl 3-methyl-2,3,6b,9,10,10a-hexahydro-1*H*-pyrido[3',4':4,5]pyrrolo[1,2,3-*de*]quinoxaline-8(7*H*)-carboxylate [(±)-9]. To a solution of (±)-36 (320 mg, 1.11 mmol) in MeCN (26 mL) was added formaldehyde (0.83 mL of a 37% aqueous solution, 11.12 mmol,

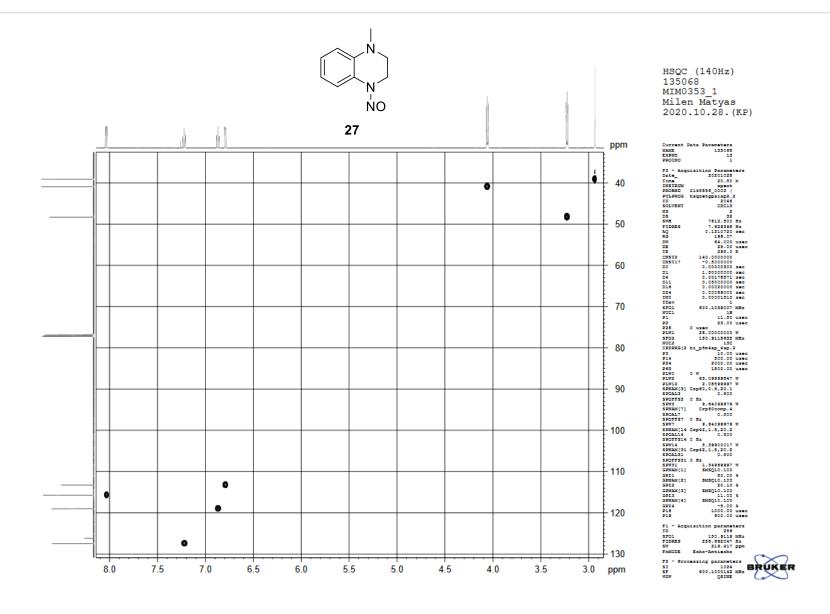

10 equiv). After 20 min, to the dark orange reaction mixture were added NaBH₃CN (176 mg, 2.80 mmol, 2.5 equiv) and AcOH (160 μ L, 168 mg, 2.80 mmol, 2.5 equiv) and the mixture was stirred at room temperature for 2 h. The solvents were evaporated, and the residue was taken up in DCM (20 mL) and extracted with saturated NaHCO₃ (2 × 15 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to give the product. Yield: 232 mg (69%). Colorless oil. ¹H NMR (CDCl₃, 600 MHz): 6.68–6.65 (m, 1H), 6.56–6.54 (m, 1H), 6.42–6.41 (m, 1H), 4.17–4.13 (m, 2H), 4.04–3.98 (m, 1H), 3.93–3.81 (m, 1H), 3.62–3.58 (m, 1H), 3.35–3.32 (m, 2H), 3.30–3.26 (m, 1H), 3.19–3.11 (m, 2H), 2.87 (s, 3H), 2.86–2.84 (m, 1H), 2.82–2.78 (m, 1H), 1.92–1.82 (m, 2H) 1.28 (t, 3H, J = 7.2 Hz) ppm. ¹³C NMR (CDCl₃, 150 MHz): δ 155.5, 138.0, 135.0, 128.6 (br), 120.4, 112.9 (br), 109.1, 64.9, 61.2, 50.5, 45.6, 44.2, 41.3/41.0, 39.7, 37.5, 24.6/24.3, 14.7 ppm. At room temperature, the compound consists of a ca. 1:1 mixture of two rotamers.

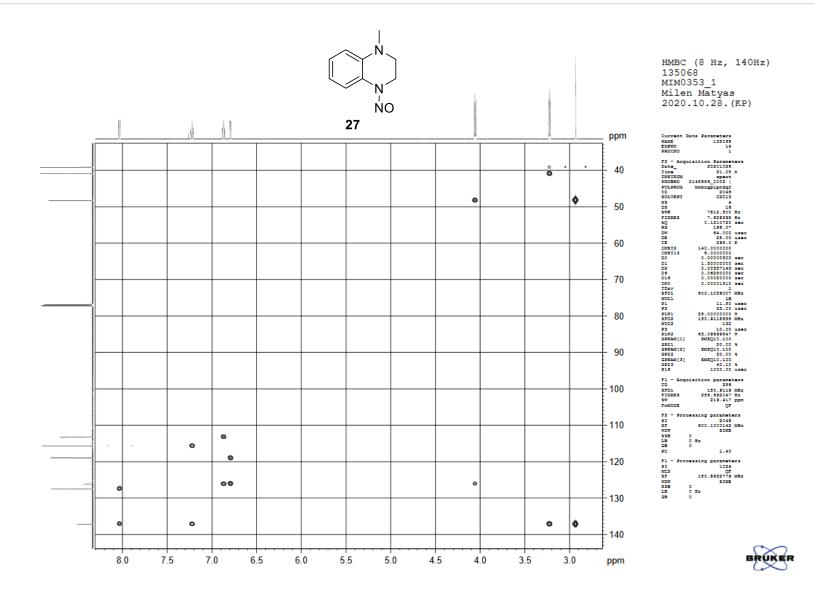

References

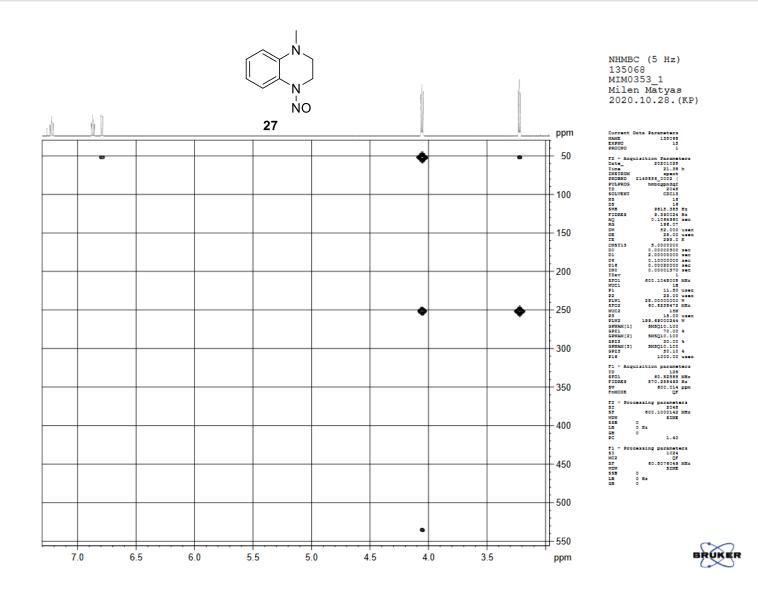
- 1. Robichaud, A. J.; Lee, T.; Deng, W.; Mitchell, I. S.; Yang, M. G.; Haydar, S.; Chen, W.; MC Clung, Ch. D.; Calvello, E. J. B.; Zawrotny, D. M. Preparation of substituted heterocycle fused gamma-carbolines. WO Patent 2000077002, December 21, 2000.
- 2. Li, P.; Zhang, Q.; Robichaud, A. J.; Lee, T.; Tomesch, J.; Yao, W.; Beard, J. D.; Snyder, G.
- L.; Zhu, H.; Peng, Y.; Hendrick, J. P.; Vanover, K. E.; Davis, R. E.; Mates, S.; Wennogle, L.
- P. J. Med. Chem. 2014, 57, 2670–2682. doi: 10.1021/jm401958n
- 3. Smith, R. F.; Rebel, W. J.; Beach, T. N. *J. Org. Chem.* **1959**, *24*, 205–207. doi: 10.1021/jo01084a014
- 4. Process for preparation of 1-(4-fluorophenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)butan-1-one.
- IPCOM000258304D; Chem. Abstr. 2019, 171, 163843.
- 5. Leblanc, N.; Sproules, S.; Powell, A. K. *New J. Chem.* **2017**, *41*, 2949–2954. doi: 10.1039/C7NJ00531H
- 6. Cavagnol, J. C.; Wiselogle, F. Y. *J. Am. Chem. Soc.* **1947**, *69*, 795–799. doi: 10.1021/ja01196a015
- 7. Ogata, O.; Nara, H.; Matsumara, K.; Kayaki, Y. *Org. Lett.* **2019**, *10*, 9954–9959. doi: 10.1021/acs.orglett.9b03878
- 8. Murphy, B. P.; Zhang, G.; Zhao, J. Stable violet-blue to blue imidazolium compounds. WO Patent 2018052725, March 22, 2018.
- 9. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. *Vogel's Textbook of Practical Organic Chemistry*, 5th ed.; Longman, Harlow, UK, 1989; pp 467.
- De Selms, R. C.; Greaves, R. J.; Schleigh, W. R. J. Heterocycl. Chem. 1974, 11, 595–597.
 doi: 10.1002/jhet.5570110425

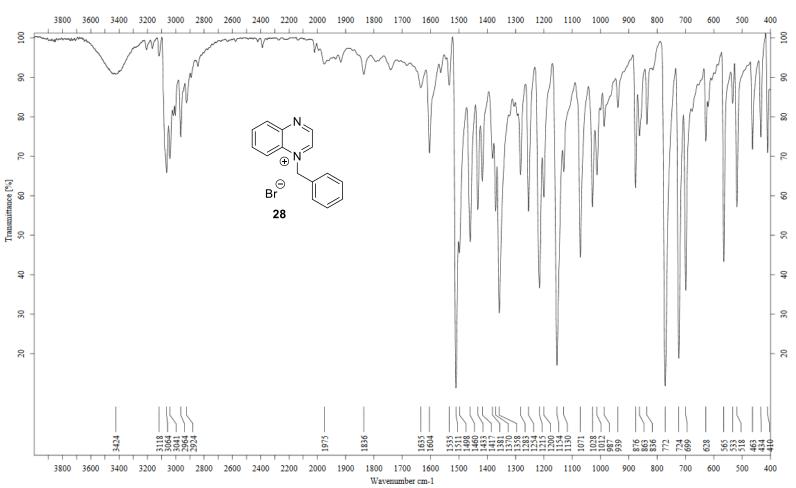


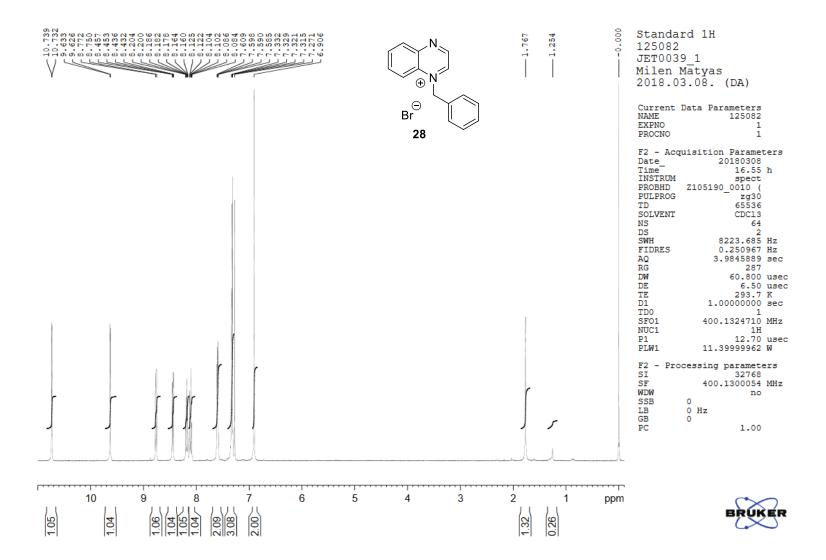


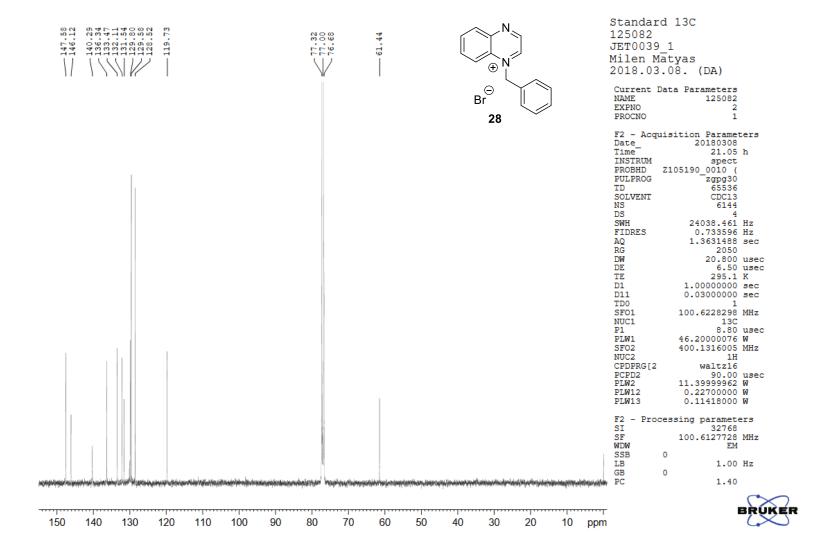


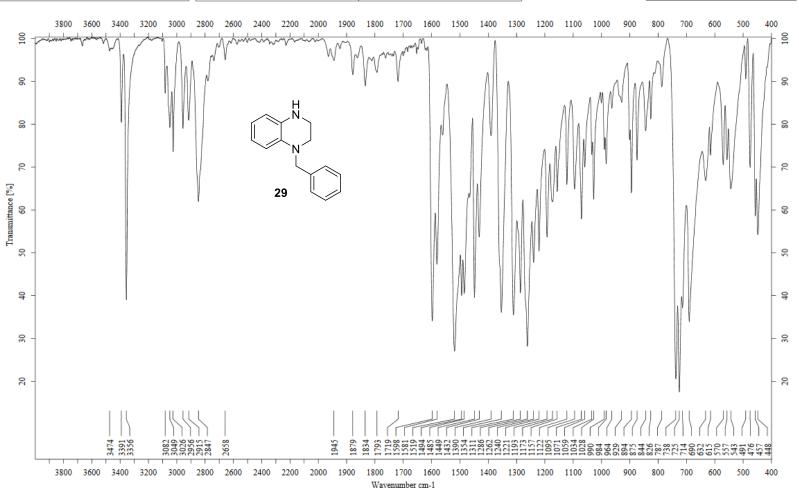

135068	8 Milen Matyas KP		BRUKER Alpha
MIM0353_1	Film	2020.10.28.	Resolution: 2 cm-1 Number of Scans: 16
Transmittance [%] 00 00 00 00 00 00 00 00 00	2800 2600 2400 2200 2000 1900 N N NC 27		0 1000 900 800 700 600 500 901 901 901 901 900 900 900 900 900 9
50	2625	1764 1764 1764 1764 1764 1764 1764 1764 1766 17	1038 1038 1038 1038 1038 104 107 107 108 108 108 108 108 108 108 108 108 108

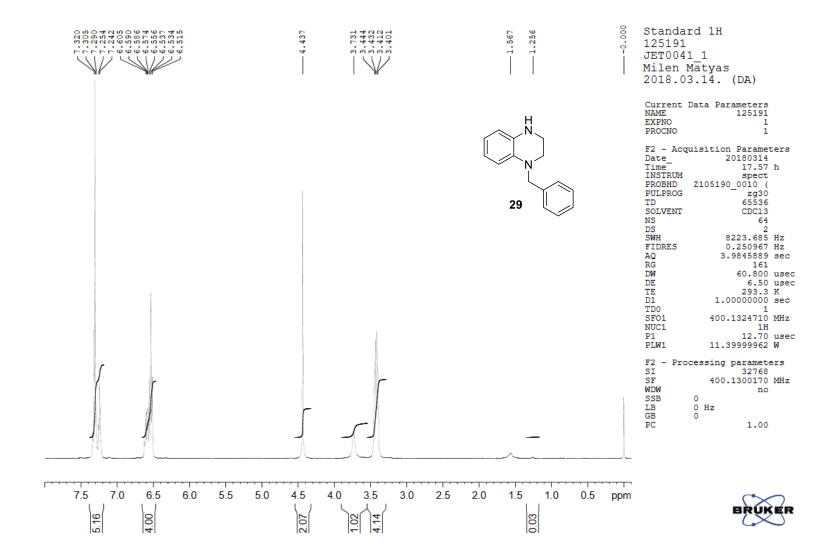

Wavenumber cm-1

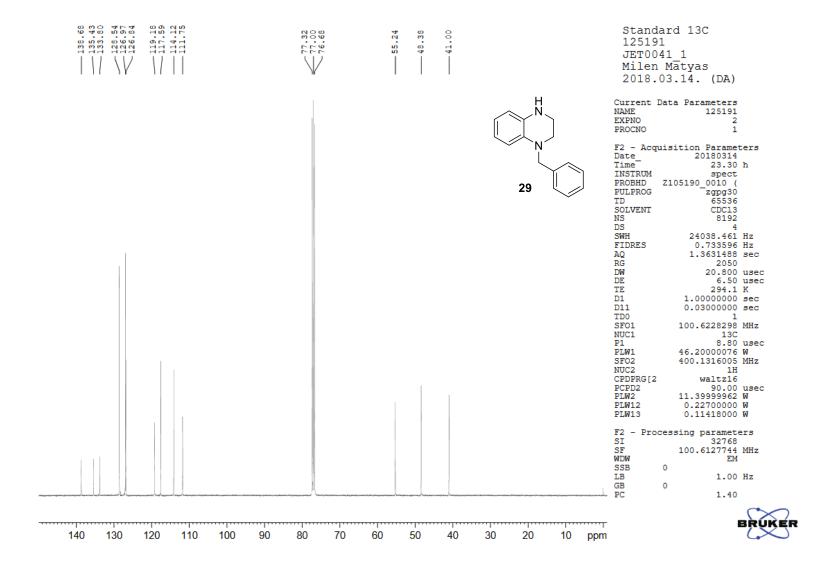


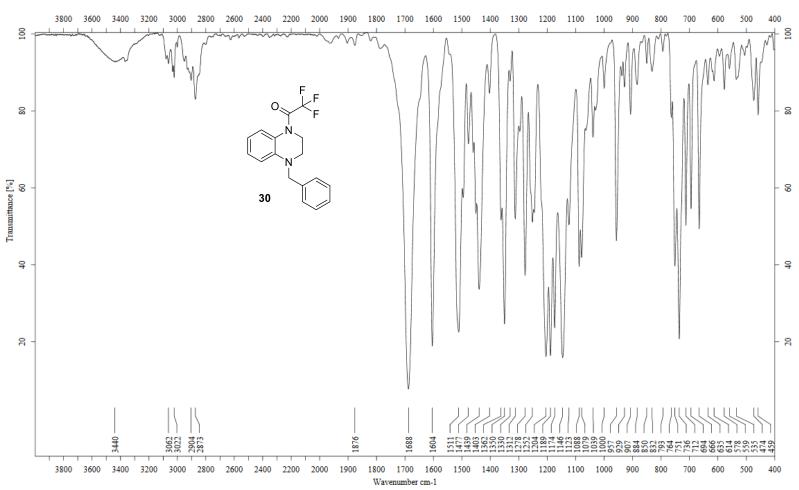


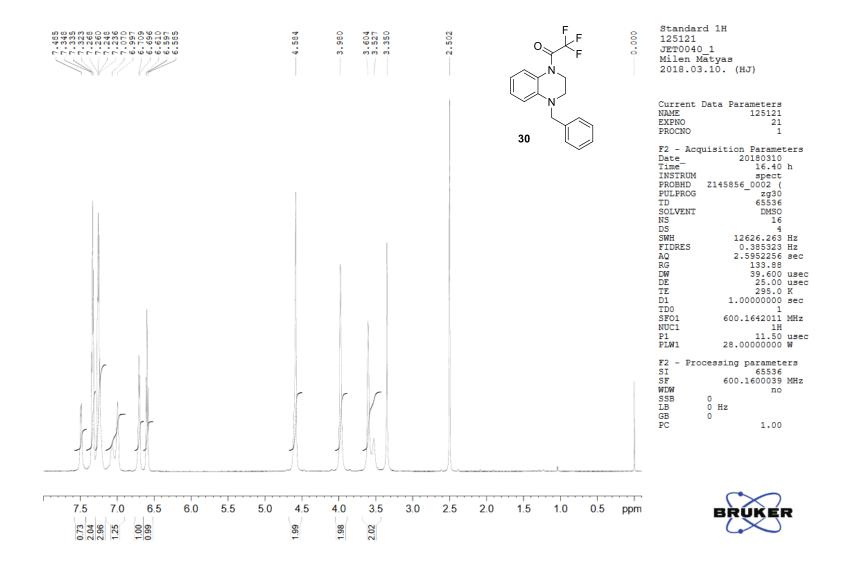


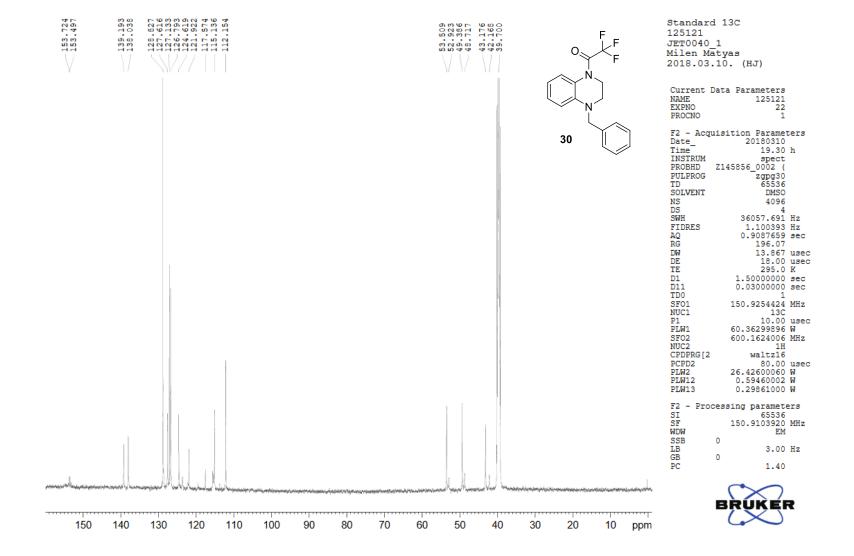

125082	Milen Matyas KP	BRUKER Alpha	
120002	,		Resolution: 2 cm-1
JET0039_1	KBr	2018.03.08.	Number of Scans: 16

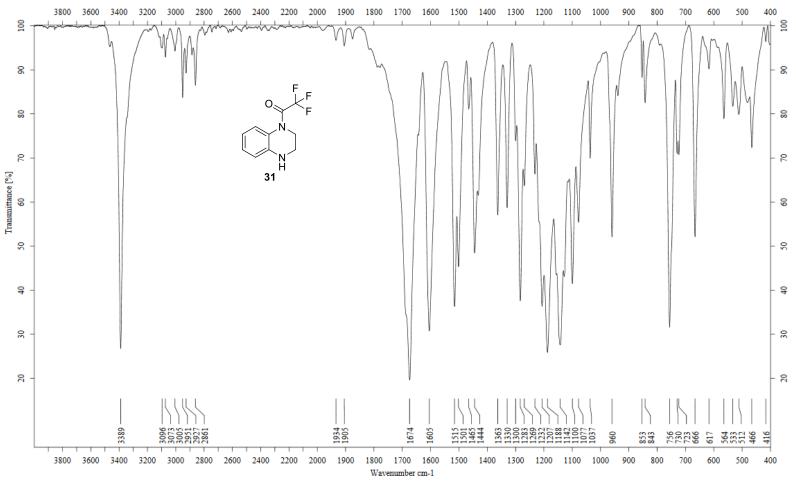


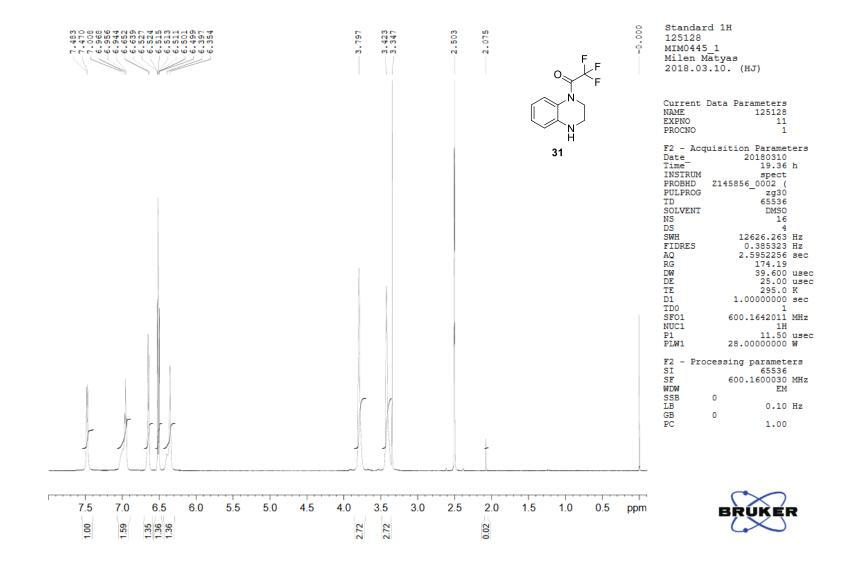


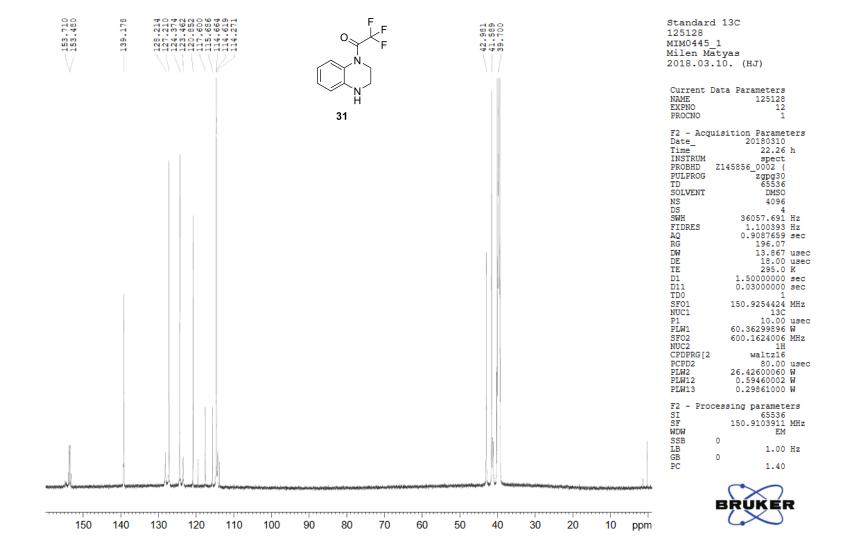

125191	Milen Matyas	KP	BRUKER Alpha
JET0041_1	KBr	2018.03.14.	Resolution: 2 cm-1 Number of Scans: 16

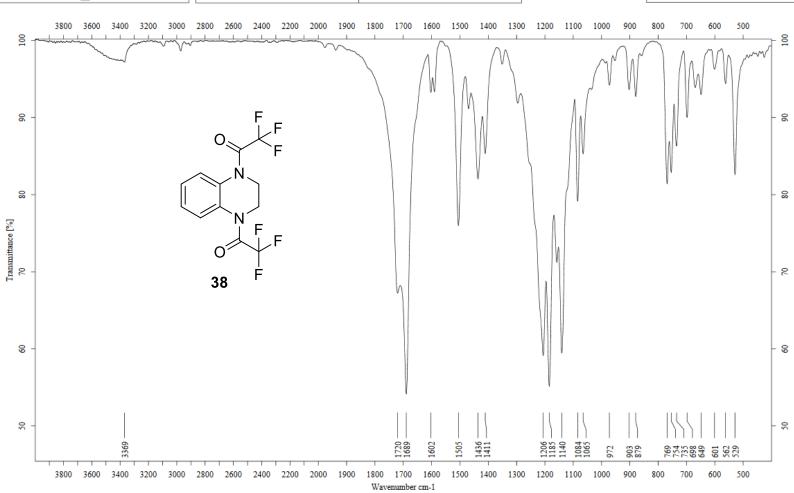


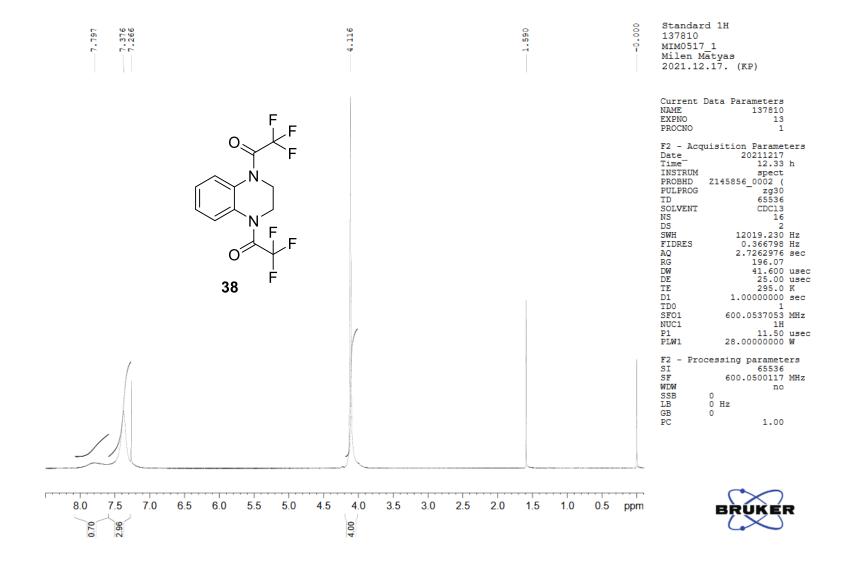


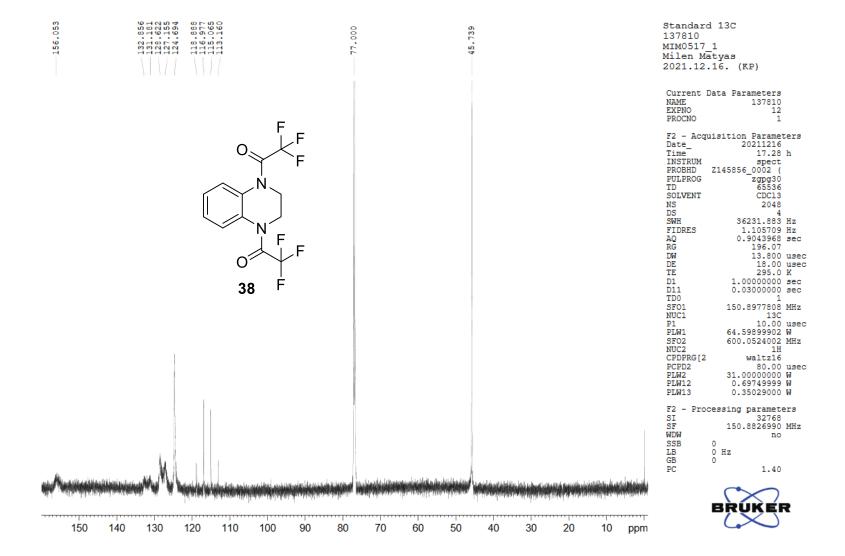

125121	Milen Matyas KP		BRUKER Alpha	
123121			Resolution: 2 cm-1	
JET0040_1	KBr	2018.03.09.	Number of Scans: 16	

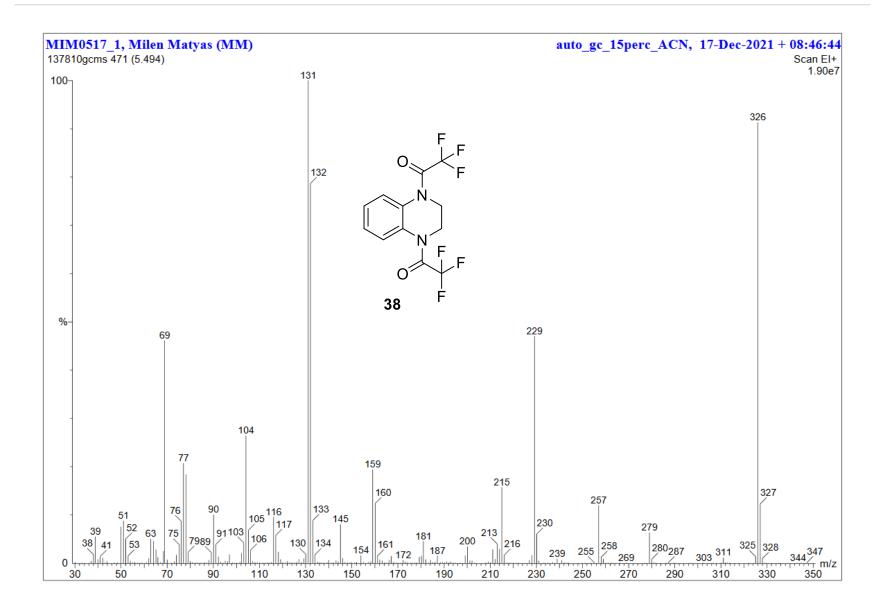




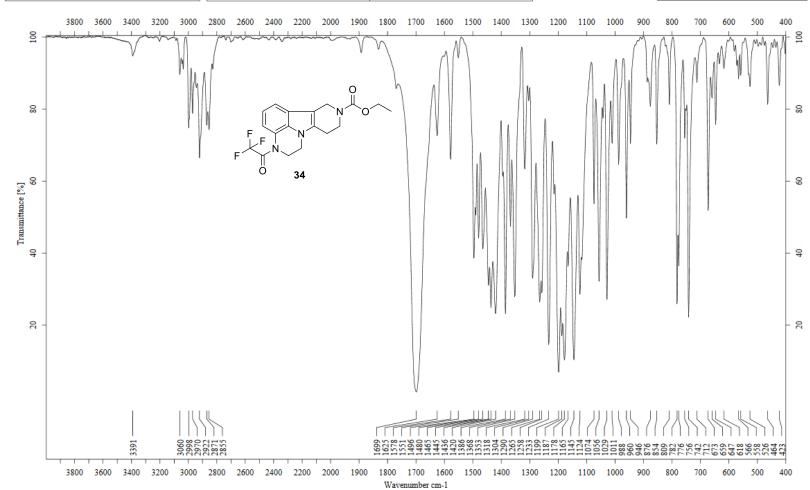

25128 Milen Matyas KP								Alph							
MIM0445_1	KBr	2018	.03.10.										of Scar		í
3800 3600 3400 3200 300	2800 2600 2400 2200 2000 19	900 1800	1700	1600 15	500 14	400 1300	1200	1100	1000	900	800	700	600	500	400
\$ \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	M				ΛΛ					ıΛ	Λ	<u></u>	\	M §

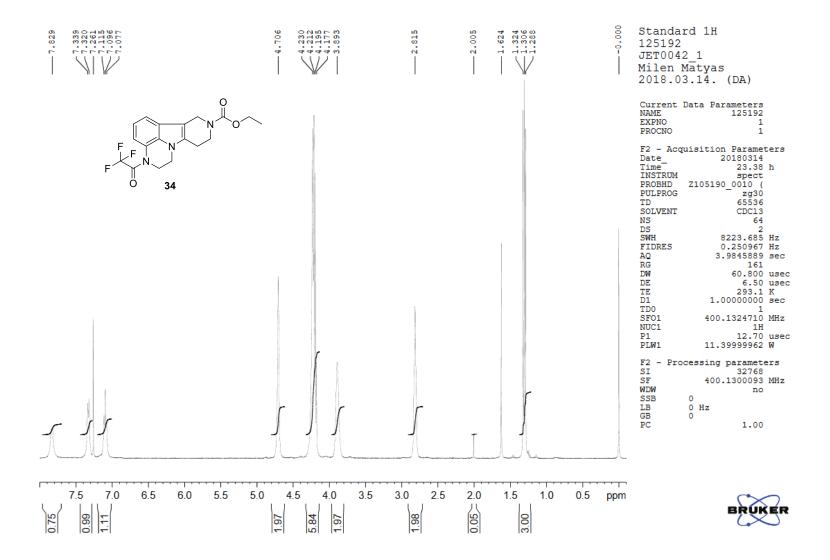


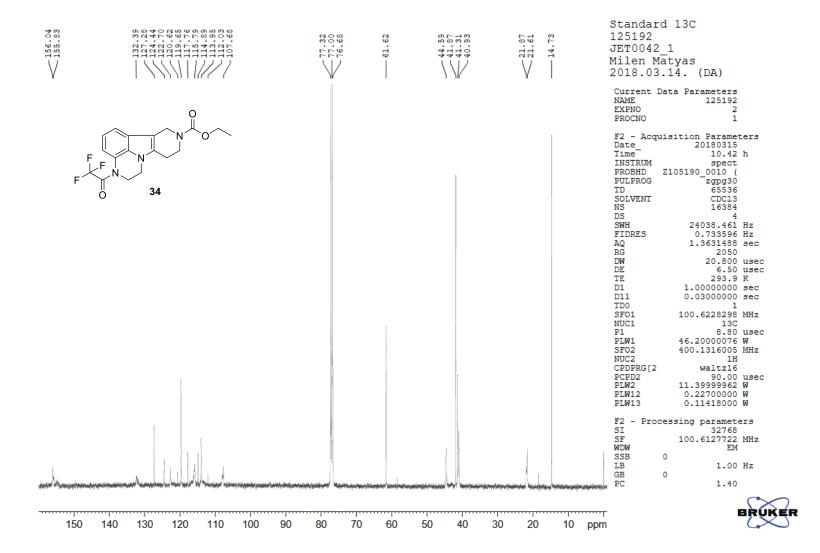


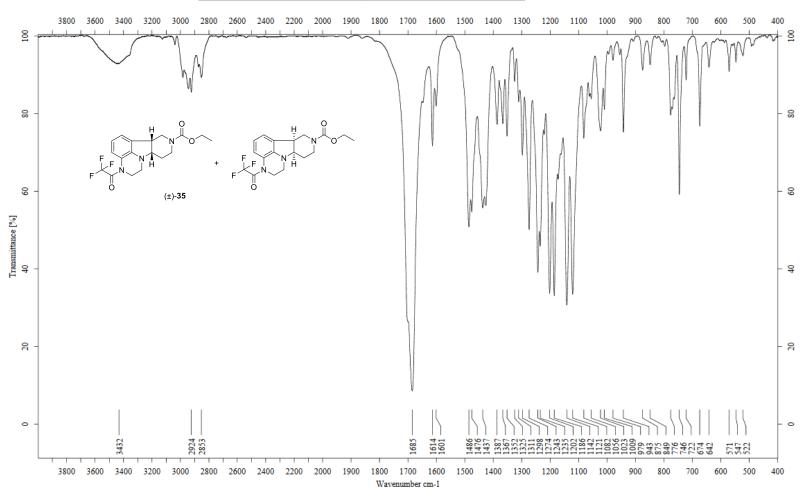


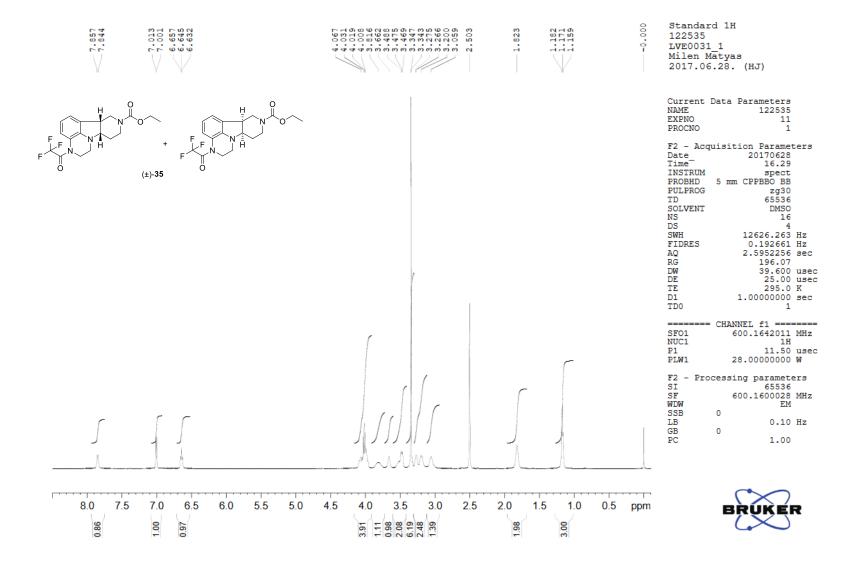
137810	Milen Matyas	KP	BRUKER Alpha
MIM0517_1	KBr 2021.	2021.12.17.	Resolution: 2 cm-1 Number of Scans: 16

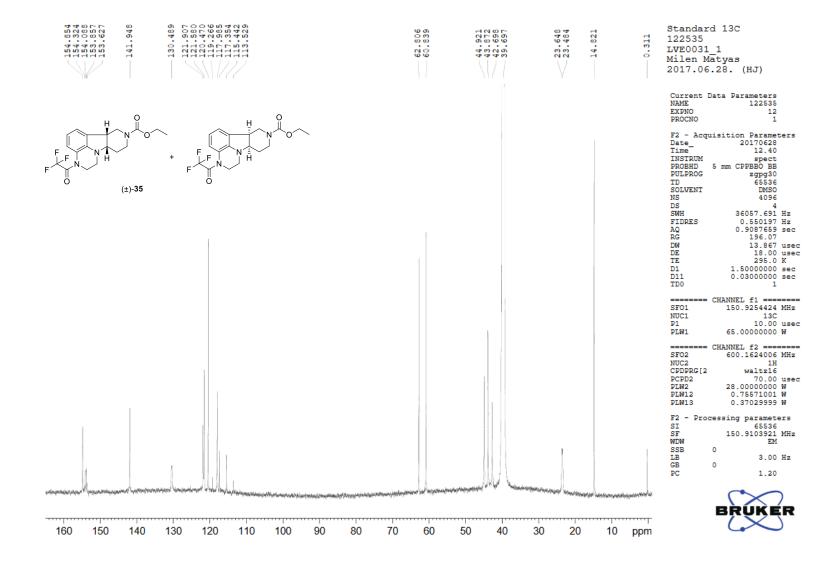




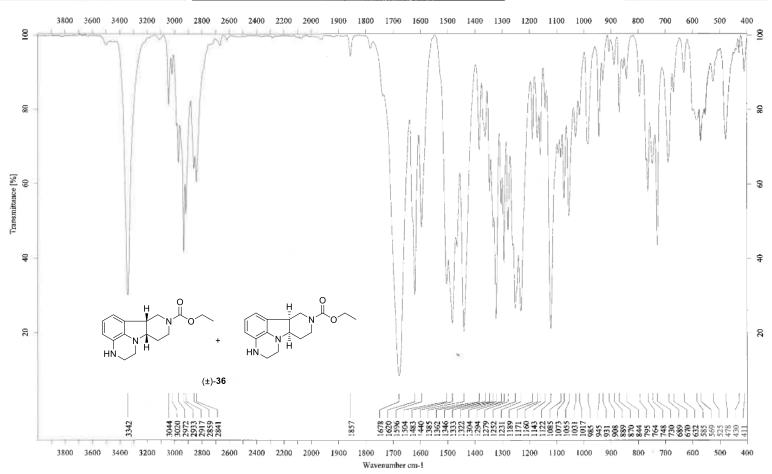


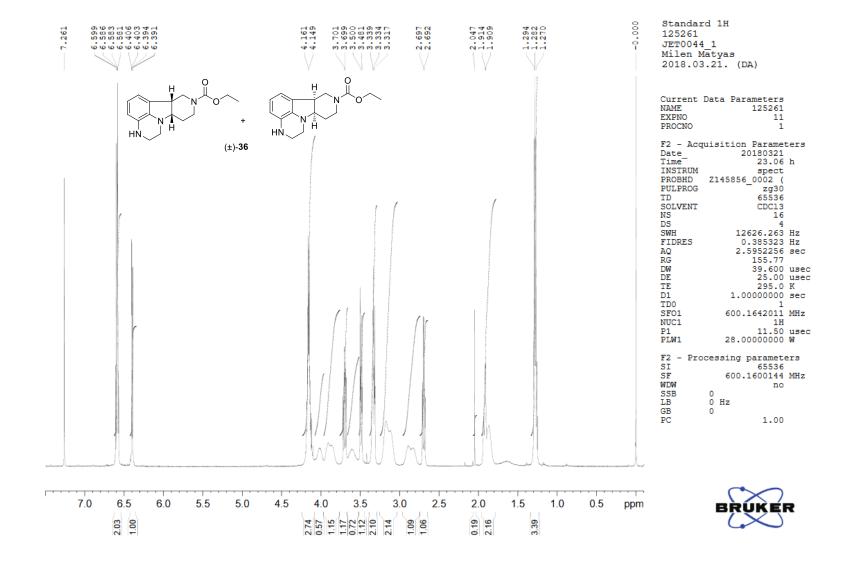

125192	Milen Matyas	KP	BRUKER Alpha
123172			Resolution: 2 cm-1
JET0042_1	KBr 2018.03.14.	2018.03.14.	Number of Scans: 16

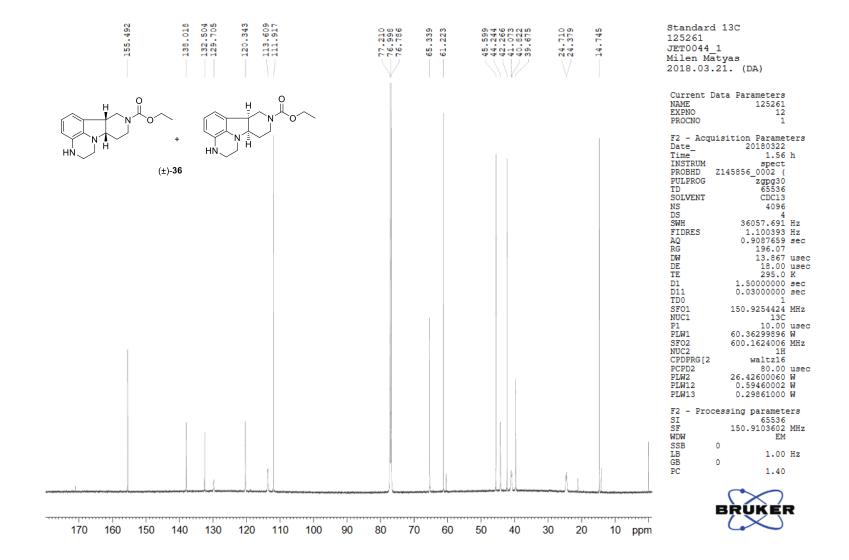


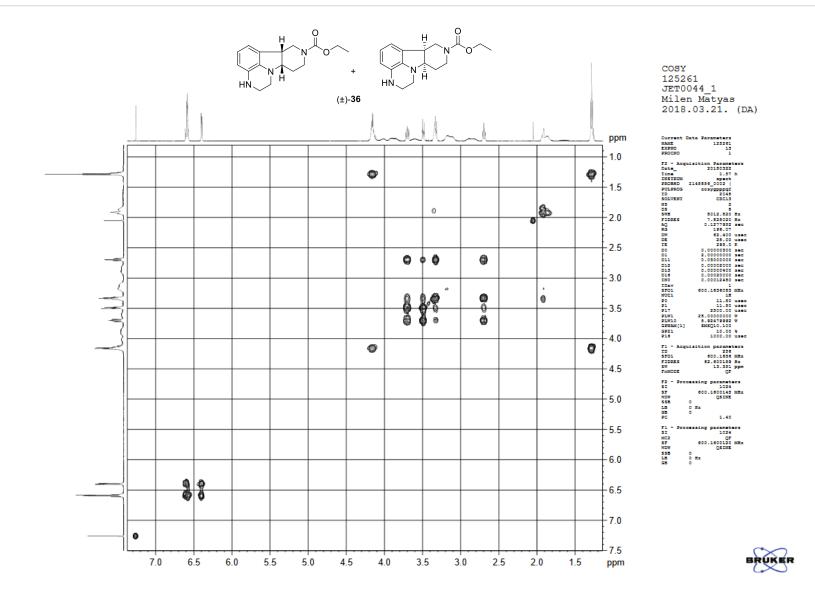


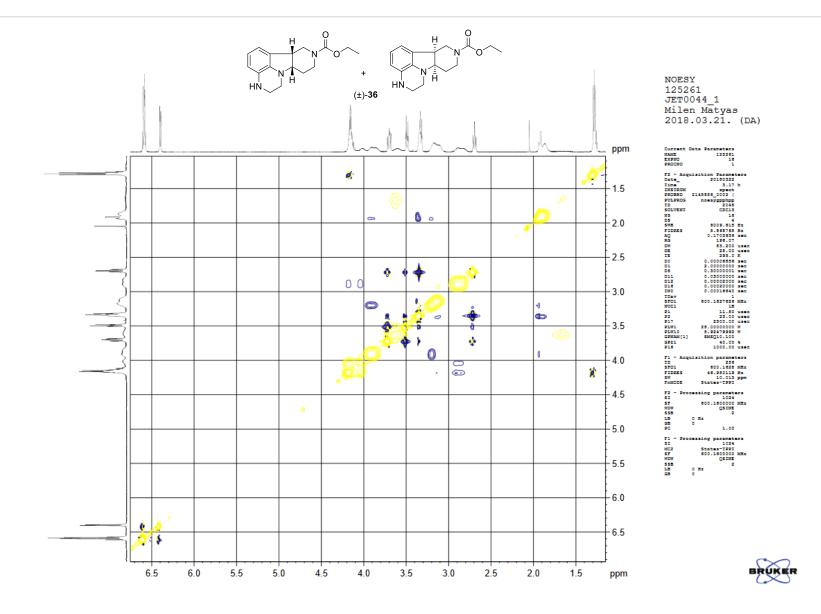
122535	Milen Matyas	MM	BRUKER Alpha
			Resolution: 2 cm-1
LVE0031_1	KBr	27/06/2017	Number of Scans: 16

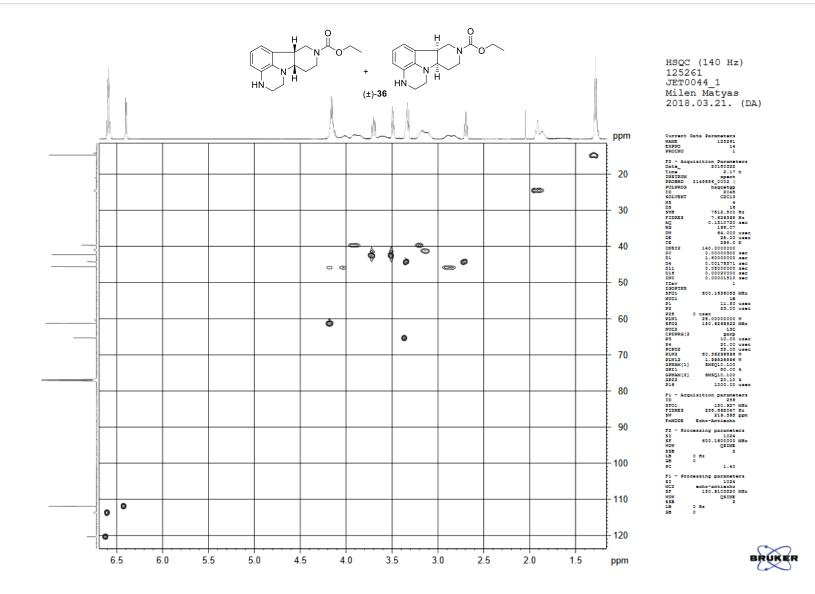


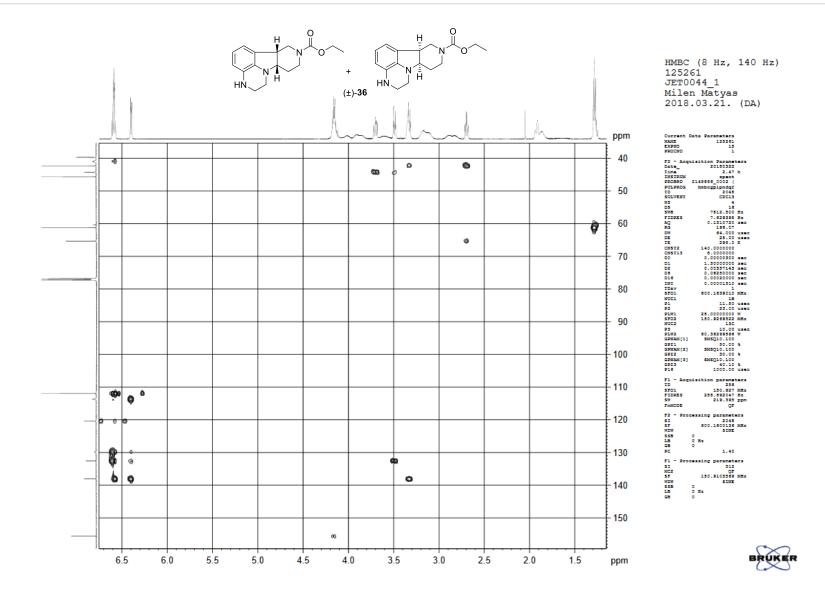


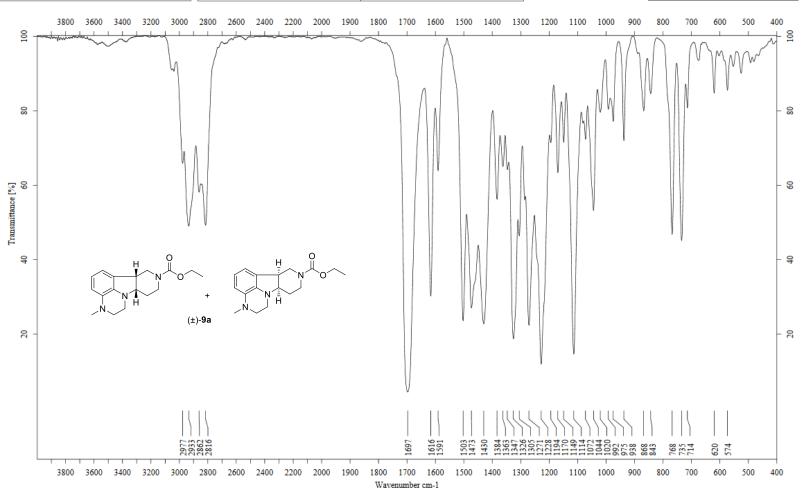


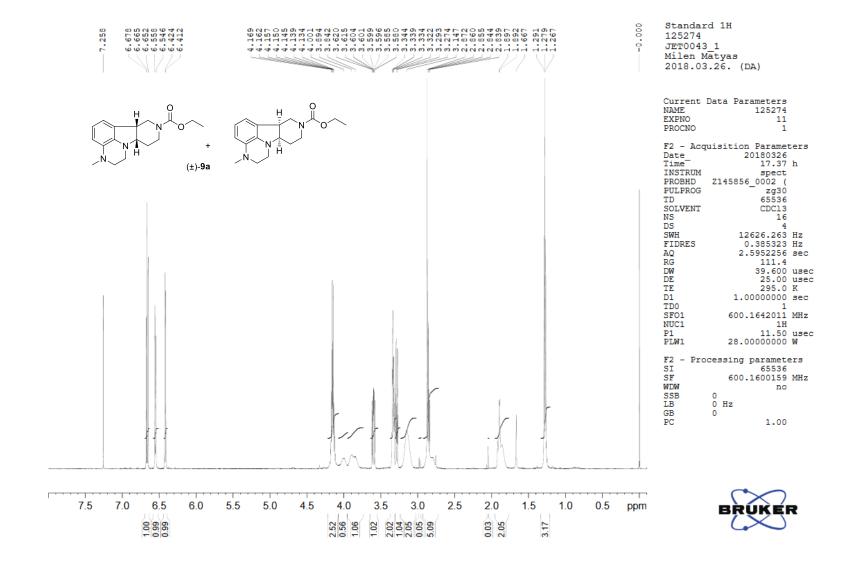

125261	Milen Matyas	КР
JET0044_1	KBr	2018.03.21.

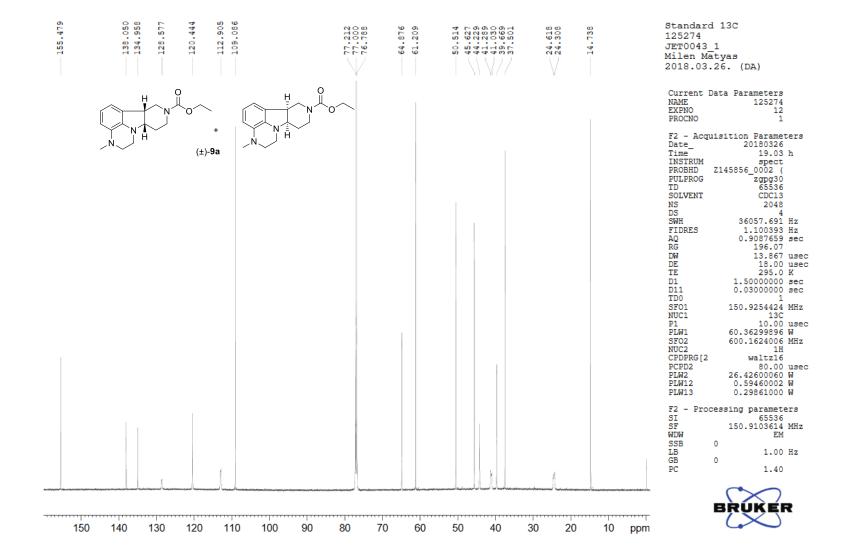

BRUKER Alpha
Resolution: 2 cm-1
Number of Scans: 16











125274	Milen Matyas	КР		BRUKER Alpha
JET0043_1	Film	2018.03.23.		Resolution: 2 cm-1 Number of Scans: 16
_			J	

