

Supporting Information

for

Cathodic generation of reactive (phenylthio)difluoromethyl species and its reactions: mechanistic aspects and synthetic applications

Sadanobu Iwase, Shinsuke Inagi and Toshio Fuchigami

Beilstein J. Org. Chem. 2022, 18, 872-880. doi:10.3762/bjoc.18.88

Experimental section: general information, materials, and general procedure for cathodic reduction of compound 1

Experimental

General information

 1 H, 13 C, and 19 F NMR spectra were recorded on a JEOL JNM EX-270 (1 H: 270 MHz, 13 C: 67.8 MHz, 19 F: 254.05 MHz) spectrometer in CDCI₃. The chemical shifts for 1 H NMR and 13 C NMR are given in δ (ppm) downfield from internal TMS and CDCI₃, respectively. 19 F NMR chemical shifts are given in δ (ppm) upfield from external trifluoroacetic acid. Oxidation potentials (E_p^{ox}) were measured in 0.1 M Bu₄NCIO₄/MeCN at a scan rate of 100 mV/s by cyclic voltammetry using an ALS Instruments model 600 A. A platinum electrode (ϕ = 1 mm) and a platinum wire (ϕ = 1 mm × 30 mm) were used as working and counter electrodes, respectively. A saturated sodium chloride calomel electrode (SSCE) was used as a reference electrode. Preparative electrolysis experiments were carried out with a Hokuto Denko HABF 501 potentiostat/galvanostat. Mass spectra and high resolution mass spectra were obtained with a Shimadzu GCMS-QP-2000A or JEOL JMS-700 mass spectrometer. Deuterium incorporation to products 2 and 4 were determined by MS analyses. 19 F NMR yields were estimated with α , α , α -trifluorotoluene as an internal standard.

Materials

Dry MeCN was obtained by distillation in the presence of CaH₂ under nitrogen gas. THF and ether were dried over Na/benzophenone under reflux and distilled under nitrogen gas. The starting material, bromodifluoromethyl phenyl sulfide (1) was prepared by the modification of the known procedures [1] as follows.

Thiophenol (0.1 mol) was added dropwise to a stirred solution of 100 mL of dry THF containing NaH (0.11 mol) under a nitrogen atmosphere at room temperature. After 30 min, the solution was cooled to −10 °C, and cooled CBr₂F₂ (0.11 mol) was added dropwise to the solution of PhSNa in THF using a syringe. After 2 h, the solution was warmed to room temperature and stirred for 1 h. The solution was mixed with water, the product was extracted with ether for three times, and then the combined extracts were washed with brine followed by drying with anhydrous Na₂SO₄. The solvent was removed by evaporation, the remaining oil was distilled at 54 °C under reduced pressure (3 mmHg) to give bromodifluoromethyl sulfide (1) in 85% yield.

¹H NMR, δ = 7.38-7.68 (m, 5H, C₆H₅); ¹⁹F NMR δ = 54.43 (s, 2F, SCF₂Br); ¹³C NMR δ = 119.25, 127.17, 129.43, 131.03, 136.37; MS, 240 (M⁺+2), 238 (M⁺), 159 (M⁺-Br), 109 (M⁺-CF₂Br), 77 (Ph⁺).

General procedure for the cathodic reduction of 1

Constant current and constant potential electrochemical reduction of 1 (2.5 mmol) was carried out with a platinum cathode and anode (2 cm × 2 cm) in a divided glass cell with a glass frit separator containing 25 mL of 0.8 M Bu₄NCIO₄/MeCN in the presence or absence of trapping olefins (10 mmol) such as α-methylstyrene and 1,1-diphenylethylene as a catholyte until 1 was completely consumed (monitored by TLC and GC–MS). After electrolysis, the NMR yield of products 2–5 were estimated from ¹⁹F NMR spectra using CF₃C₆H₅ as an internal standard. After the estimation, the crude mixture was passed through a short column with silica gel to remove the supporting electrolyte, and the eluent was subjected to PTLC (eluent: hexane/AcOEt 9:1), and products 2–4 and 6 were isolated. 1,1-Difluoro-2-methyl-2-phenylcycopropane (5) [2]

was detected by MS and HRMS spectra. MS: m/z 168 (M⁺), 149 (M⁺–F), 77 (Ph⁺); HRMS: m/z calcd for $C_{10}H_{10}F_2$: 168.0751, found 168.0743.

The known compounds, **2** [3] and **3** [4] were identified by comparison of the spectral data with those reported in the literature.

1,1-Difluoro-1-phenylthio-3-phenylbutane (4).

¹H NMR, δ = 7.19–7.58 (m, 10H, C₆ H_5), 3.21 (m, 1H, CHPh), 2.43 (m, 2H, CF₂C H_2), 1.35 (d, J = 7.3 Hz, 3H, C H_3); ¹⁹F NMR δ = 7.2 (dd, J = 204, 16 Hz, 1F, SCFF CH₂), 4.8 (ddd, J = 206, 15, 12 Hz, 1F, CFFCH₂); MS: m/z 278 (M⁺), 159 (PhSCF₂⁺), 153 (M⁺–PhCHCH₃), 109 (PhS⁺), 105 (M⁺–PhSCF₂ CH₂), 77 (Ph⁺); HRMS: m/z calcd for C₁₆H₁₆F₂S: 278.0941, found 278.0940.

1,1-Difluoro-1-phenylthio-3,3-diphenylpropane (6)

¹H NMR, δ = 7.18–7.54 (m, 15H, C₆*H*₅), 4.41 (t, *J* = 6.9 Hz,1H, Ph₂C*H* CH₂), 2.96 (dt, *J* = 15.0 Hz, 2H, CF₂C*H*₂CH); ¹⁹F NMR δ = 5.96 (t, *J* = 14.7, 2F, SC*F*₂ CH₂); MS: m/z 340 (M⁺), 230 (M⁺–PhSH), 152 (M⁺–PhSH-PhH), 109 (PhS⁺), 77 (Ph⁺); HRMS: m/z calcd for C₂₁H₁₈F₂S: 340.1097, found 340.1094.

Deuterated products $\bf 7$ and $\bf 8$ were identified by ^{19}F NMR and MS spectra as follows. α -Deuterio- α , α -difluoromethyl phenyl sulfide ($\bf 2D$)

¹⁹F NMR $\delta = -15.83$ (t, J = 8.7 Hz, 1F, SCF₂D); MS: m/z 161 (M⁺), 111 (M⁺-CF₂), 109 (PhS⁺), 77(Ph⁺).

3-Deuterio-1.1-difluoro-1-phenylthio -3-phenylbutane (4D)

¹⁹F NMR δ = 7.1 (m, 1F, SCF*F* CH₂), 4.8 (dt, J = 203, 14 Hz, 1F, SC*F*F CH₂); MS: m/z 279 (M⁺), 259 (M⁺–HF), 109 (PhS⁺), 106 (M⁺–PhSCF₂CH₂), 77 (Ph⁺).

References

- Toulgoat, F.; Langlois, B. R.; Médebielle, M.; Sanchez, J.-Y. *J. Org. Chem.* 2007, 72, 9046-9052. doi: 10.1021/jo701318n
- Dolbier W. R., Jr.; Wojtowicz, H.; Burkholder, C. R. J. Org. Chem., 1990, 55, 5420–5422. doi: 10.1021/jo00306a027
- 3. Burton, D. J.; Wiemers, D. M. *J. Fluorine Chem.*, **1981**, *18*, 573–582. doi: 10.1016/S0022-1139(00)82673-1
- 4. Rico, I.; Wakselman, C. *Tetrahedron Lett.* **1981**, *22*, 323–326. doi: 10.1016/0040-4039(81)80087-1