Supporting Information

for

One-pot nucleophilic substitution-double click reactions of biazides leading to functionalized bis(1,2,3-triazole) derivatives

Hans-Ulrich Reissig and Fei Yu

Beilstein J. Org. Chem. 2023, 19, 1399-1407. doi:10.3762/bjoc.19.101

Experimental procedures, spectroscopic and analytical characterization data of new compounds as well as copies of the NMR spectra

Tables of contents

1. General information S2
2. Synthesis and characterization of compounds S3
3. References S13
4. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S14

1. General information

Reactions were performed under argon in flame-dried flasks, if not stated otherwise. Liquid components were added by syringe. Tetrahydrofuran and dichloromethane were obtained from a solvent purification system MB-SPS-800 (M. Braun). Methanol was purchased in p. a. quality and stored under argon over molecular sieves ($4 \AA$ Å). Products were purified by flash chromatography on aluminum oxide. Unless otherwise stated, yields refer to analytically pure samples. ${ }^{1} \mathrm{H}$ NMR $\left[\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm})\right.$, $\mathrm{TMS}(\delta=0.00 \mathrm{ppm})$, or $\mathrm{CD}_{3} \mathrm{OD}(\delta=3.31 \mathrm{ppm})$ as internal standards] and ${ }^{13} \mathrm{C}$ NMR spectra $\left[\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})\right.$, or $\mathrm{CD}_{3} \mathrm{OD}(\delta=49.0 \mathrm{ppm})$ as internal standards] were recorded on Bruker AC 500, or Joel Eclipse 500 instruments in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ solution. Integrals are in accordance with assignments; coupling constants are given in Hz. IR spectra were measured with an FT-IR spectrometer Nicolet 5 SXC or with a Nexus FTIR equipped with a Nicolet Smart Dura Sample IR ATR. HRMS analyses were performed on an Agilent ESI-TOF $6210(4 \mu \mathrm{~L} / \mathrm{min}, 1$ bar, 4000 V) instrument. The elemental analyses were recorded with "Elemental-Analyzers" (Perkin-Elmer or Carlo Erba). Melting points were measured with a Reichert apparatus (Thermovar) and are uncorrected. Optical rotations ($[\alpha]_{\mathrm{D}}$) were determined with Perkin-Elmer 241 polarimeter at the temperatures given. Commercially available chemicals were used without further purification unless otherwise stated.

2. Synthesis and characterization of compounds

1-Benzyl-4-\{[2-(trimethylsilyl)ethoxy]methyl\}-1H-1,2,3-triazole (3): A mixture of benzyl azide (1) [1] ($67 \mathrm{mg}, 0.50 \mathrm{mmol}$), alkyne 2 [2] ($78 \mathrm{mg}, 1.00 \mathrm{mmol}$), Cul ($19 \mathrm{mg}, 0.10 \mathrm{mmol}$), and triethylamine ($1.45 \mathrm{~g}, 1.43 \mathrm{mmol}$) was under air atmosphere at room temperature for 16 h . Ethyl acetate (20 mL) was added, the reaction mixture was washed with aqueous ammonia solution $(25 \%, 2 \times 10 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation, the residue was purified by column chromatography (aluminum oxide, hexanes/ethyl acetate, $3: 1$) to provide 3 ($114 \mathrm{mg}, 79 \%$) as colorless liquid.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.07(\mathrm{~s}, 9 \mathrm{H}), 0.89\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.53\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 4.53(\mathrm{~s}, 2 \mathrm{H}), 5.44$ ($\mathrm{s}, 2 \mathrm{H}$), 7.17-7.20, 7.22-7.32 ($2 \mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{H}$), $7.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=-1.6$, 18.0, 53.8, 63.6, 67.7, 122.1, 127.8, 128.4, 128.8, 134.4, 145.9; $\mathrm{IR}(\mathrm{KBr}): u=3065,3035,2950$, 2860, 1495, $1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaOSi}$: 312.1508; found: 312.1485; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OSi}$ (289.5): C, 62.24; H, 8.01; N, 14.52; found: C, 61.96; H, 8.05; N, 14.55.

3,3'-Dibenzyl-5,5'-bis-\{[2-(trimethylsilyl)ethoxy]methyl\}-3H,3'H-4,4'-bi(1,2,3-triazole) (4): A mixture of benzyl azide (1) ($196 \mathrm{mg}, 1.47 \mathrm{mmol}$), $\mathbf{2}(160 \mathrm{mg}, 1.02 \mathrm{mmol})$, Cul ($383 \mathrm{mg}, 2.01$ $\mathrm{mmol})$, and $\mathrm{N}(\mathrm{iPr})_{2} \mathrm{Et}(370 \mathrm{mg}, 2.86 \mathrm{mmol})$ in acetonitrile (2 mL) was stirred at $40^{\circ} \mathrm{C}$ for 19 h . Ethyl acetate (50 mL) was added, the reaction mixture was twice washed with aqueous ammonia solution ($25 \%, 2 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation, the residue was purified by column chromatography (aluminum oxide, hexanes/ethyl acetate, 3:1) to give 4 ($49 \mathrm{mg}, 17 \%$) as colorless liquid.

4
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.06(\mathrm{~s}, 18 \mathrm{H}), 0.70-0.79(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.91$, 4.08 ($2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 4.60,4.98(2 \mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 6.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.20-7.28(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-1.5,18.0,52.3,62.5,68.1,122.1,128.2$, 128.7, 128.8, 134.5, 147.0; IR (ATR): $u=3065,3035,2950,1495,1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{2}$: 577.3143; found: 577.3138; calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$
$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{NaO}_{2} \mathrm{Si}_{2}$: 599.2962; found: 599.2957; calcd for $m / z[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{KO}_{2} \mathrm{Si}_{2}$: 615.2701; found: 615.2693; Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{2}$ (576.9): C, 62.46; H, 7.69; N, 14.57; found: C, 61.85; H, 7.50; N, 13.98.

One-pot synthesis of 1-benzyl-4-\{[2-(trimethylsilyl)ethoxy]methyl\}-1H-1,2,3-triazole (3): A mixture of sodium azide ($41 \mathrm{mg}, 0.63 \mathrm{mmol}$), benzyl bromide (5) ($89 \mathrm{mg}, 0.52 \mathrm{mmol}$), alkyne 2 ($76 \mathrm{mg}, 0.57 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($13 \mathrm{mg}, 0.052 \mathrm{mmol}$), sodium ascorbate ($21 \mathrm{mg}, 0.11$ mmol), L-proline ($12 \mathrm{mg}, 0.10 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(12 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(9: 1,1 \mathrm{~mL}$) was stirred at $60^{\circ} \mathrm{C}$ for 16 h . Ethyl acetate (50 mL) was added, the reaction mixture was washed with aqueous ammonia solution ($25 \%, 2 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation, the residue was purified by column chromatography (aluminum oxide, hexanes/ethyl acetate, $3: 1$) to give $\mathbf{3}(124 \mathrm{mg}, 82 \%)$ as colorless liquid.
(1S,5R,8S)-2-Benzyl-8-\{[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]methyl\}-6,6-dimethyl-3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-one (7): A mixture of benzyl bromide (5) (18 mg, 0.11 mmol), alkyne 6 [3] ($35 \mathrm{mg}, 0.11 \mathrm{mmol}$), sodium azide ($8 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{mg}$, 0.008 mmol), sodium ascorbate ($4 \mathrm{mg}, 0.02 \mathrm{mmol}$), L-proline ($3 \mathrm{mg}, 0.026 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{mg}, 0.019 \mathrm{mmol}$) was stirred at $60^{\circ} \mathrm{C}$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(9: 1,1.0 \mathrm{~mL}$) for 18 h . Ethyl acetate (50 mL) was added, the reaction mixture was washed with aqueous ammonia solution ($25 \%, 2 \times$ 10 mL) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by column chromatography (aluminum oxide, hexanes/ethyl acetate, $3: 1$) to give 7 ($31 \mathrm{mg}, 61 \%$) as colorless liquid.
$[a]_{D^{22}}=57.2(c=0.7, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.16,1.37(2 \mathrm{~s}, 3 \mathrm{H}$ each $), 2.29(\mathrm{~s}$, 1 H), $3.17(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.77,3.83-3.90(2 \mathrm{~m}, 1 \mathrm{H}, 2 \mathrm{H}), 4.02-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.54,4.61\left(\mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.41(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=$
 $54.0,57.9,59.6,64.9,69.1,69.2,69.7,74.0,78.3,122.2,127.4,128.0,128.3,128.68,128.73$, 129.0, 134.4, 136.1, 145.2; IR (ATR): $u=3065,3030,2930,2870,1725,1495,1455$; HRMS (ESITOF): calcd for $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}$: 463.2345; found: 463.2362; calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4}$: 485.2165; found: 485.2185; calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{KO}_{4}: 501.1904$; found: 501.1926.

1,3-Bis(\{4-[((2-trimethylsilyl)ethoxy)methyl]-1H-1,2,3-triazol-1-yl\}methyl)benzene (9) and 1-[3-(azidomethyl)benzyl]-4-\{[2-(trimethylsilyl)ethoxy]methyl\}-1H-1,2,3-triazole (10): A mixture of 1,3-bis(bromomethyl)benzene (8) ($132 \mathrm{mg}, 0.50 \mathrm{mmol}$), alkyne $2(189 \mathrm{mg}, 1.21$
$\mathrm{mmol})$, sodium azide ($79 \mathrm{mg}, 1.22 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(25 \mathrm{mg}, 0.10 \mathrm{mmol})$, sodium ascorbate ($40 \mathrm{mg}, 0.20 \mathrm{mmol}$), L-proline ($23 \mathrm{mg}, 0.20 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($21 \mathrm{mg}, 0.20 \mathrm{mmol}$) in DMF/ $\mathrm{H}_{2} \mathrm{O}$ (9:1, 0.5 mL) was stirred at $60^{\circ} \mathrm{C}$ for 18 h . Ethyl acetate (50 mL) was added, the reaction mixture was washed with aqueous ammonia solution ($25 \%, 2 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation, the residue was purified by column chromatography (aluminum oxide, hexanes/ethyl acetate, 3:1) to give 9 (209 mg, 84\%) and 10 ($10 \mathrm{mg}, 6 \%$) as colorless liquids.

9
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.12(\mathrm{~s}, 18 \mathrm{H}), 0.84\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right), 3.49\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right), 4.46(\mathrm{~s}, 4 \mathrm{H}), 5.38$ ($\mathrm{s}, 4 \mathrm{H}$), 7.10 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.11(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}, 5-\mathrm{H})$; NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-1.7,17.9,53.8,63.4,67.7,122.1,127.3,127.9,129.5,135.5,145.6 ; \mathrm{IR}$ (ATR): $u=3135,2950,2860,1450,1435 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{2}$: 501.2830 ; found: 501.2827; calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{NaO}_{2} \mathrm{Si}_{2}: 523.2649$; found: 523.2648; calcd for $m / z[M+K]^{+} \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{KO}_{2} \mathrm{Si}_{2}$: 539.2388; found: 539.2384.

10
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.03(\mathrm{~s}, 9 \mathrm{H}), 0.93\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.57\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.57$ ($\mathrm{s}, 2 \mathrm{H}$), $5.52(\mathrm{~s}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=-1.5,18.2,53.8,54.3,63.8,68.0,122.2,127.6,127.9$, 128.4, 129.6, 135.3, 136.5, 146.1; IR (ATR): $u=3135,2950,2855,2095,1450 \mathrm{~cm}^{-1}$; HRMS (ESITOF): calcd for $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{OSi}$: 345.1859; found: 345.1862; calcd for $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{NaOSi}$: 367.1679; found: 367.1679; calcd for $m / z[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{KOSi}$: 383.1418; found: 383.1419; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{OSi}$ (344.5): C, 55.78 ; H, 7.02; N, 24.40; found: C, 56.30; H, 7.12; N, 22.06.

1,2-Bis(\{4-[((2-trimethylsilyl)ethoxy)methyl]-1H-1,2,3-triazol-1-yl\}methyl)benzene (12) and 1-[2-(azidomethyl)benzyl]-4-\{[2-(trimethylsilyl)ethoxy]methyl\}-1H-1,2,3-triazole (13): A mixture of 1,2 -bis(bromomethyl)benzene (11) ($134 \mathrm{mg}, 0.51 \mathrm{mmol}$), alkyne $\mathbf{2}$ ($187 \mathrm{mg}, 1.20$
$\mathrm{mmol})$, sodium azide ($78 \mathrm{mg}, 1.20 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(25 \mathrm{mg}, 0.10 \mathrm{mmol})$, sodium ascorbate ($40 \mathrm{mg}, 0.20 \mathrm{mmol}$), L-proline ($24 \mathrm{mg}, 0.21 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(23 \mathrm{mg}, 0.22 \mathrm{mmol}\right.$) in DMF/ $\mathrm{H}_{2} \mathrm{O}$ (9:1, 1.5 mL) was stirred at $60^{\circ} \mathrm{C}$ for 19 h . Ethyl acetate (50 mL) was added, the mixture was washed with ammonia solution ($25 \%, 2 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation, the residue was purification by column chromatography (aluminum oxide, hexanes/ethyl acetate, 3:1) to give $\mathbf{1 2}(213 \mathrm{mg}, 83 \%)$ as colorless solid (m.p. $71-72^{\circ} \mathrm{C}$) and $\mathbf{1 3}$ ($12 \mathrm{mg}, 7 \%$) as colorless liquid.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.10(\mathrm{~s}, 18 \mathrm{H}), 0.86\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right), 3.50\left(\mathrm{~m}_{c}, 4 \mathrm{H}\right), 4.47(\mathrm{~s}, 4 \mathrm{H}), 5.52$ ($\mathrm{s}, 4 \mathrm{H}$), 7.09-7.14, 7.21-7.27 ($2 \mathrm{~m}, 2 \mathrm{H}$ each), $7.40(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=-$ 1.6, 17.9, 50.8, 63.4, 67.8, 122.4, 129.4, 130.0, 133.1, 145.7; IR (KBr): $u=3135,3040,2950$, 2865, $1460 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{2}: 501.2830$; found: 501.2800; calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{NaO}_{2} \mathrm{Si}_{2} \mathrm{~N}$: 523.2649; found: 523.2620; calcd for m / z [$\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{KO}_{2} \mathrm{Si}_{2}$: 539.2388; found: 539.2357; Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{2}$ (500.8): C, 57.56; H, 8.05; N, 16.78; found: C, 57.26; H, 8.09; N, 16.69.

13
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.02(\mathrm{~s}, 9 \mathrm{H}), 0.94\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.58\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.58$ ($\mathrm{s}, 2 \mathrm{H}$), $5.60(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, $125 \mathrm{MHz}): \delta=-1.5,18.1,51.1,52.5,63.8,68.0,122.2,129.3,129.4,130.0,130.3,133.2,133.8$, 146.0; IR (ATR): $u=3135,3070,2950,2860,2095,1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for m / z [$\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{6}$ OSi: 345.1859; found: 345.1857; calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{NaOSi}$: 367.1679; found: 367.1677; calcd for $m / z[M+K]^{+} \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6}$ KOSi: 383.1418; found: 383.1414; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{OSi}$ (344.5): C, 55.78; H, 7.02; N, 24.40; found: C, 56.35 ; H, 7.15; N, 23.12.

Representative procedure (RP) for the synthesis of divalent compounds by click-reactions in the presence of TBTA, synthesis of bis(1,2,3-triazole) 12: A mixture of 1,2-
bis(bromomethyl)benzene (11) ($67 \mathrm{mg}, 0.25 \mathrm{mmol}$), alkyne $2(86 \mathrm{mg}, 0.55 \mathrm{mmol})$, sodium azide ($40 \mathrm{mg}, 0.62 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(13 \mathrm{mg}, 0.05 \mathrm{mmol}$), sodium ascorbate ($20 \mathrm{mg}, 0.10$ $\mathrm{mmol})$, tris[(1-benzyl-1H-1,2,3-triazol-4-yl]methyl)amine (TBTA) [4] (27 mg, 0.05 mmol), L proline ($12 \mathrm{mg}, 0.10 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(11 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 1,0.5 \mathrm{~mL})$ was stirred at $40^{\circ} \mathrm{C}$ for 23 h . Ethyl acetate (50 mL) was added, the reaction mixture was washed with aqueous ammonia solution ($25 \%, 2 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation, the residue was purified by column chromatography (aluminum oxide, hexanes/ethyl acetate, $3: 1$) to give 12 ($117 \mathrm{mg}, 94 \%$) as colorless solid.

1,3-Bis(1,2,3-triazole) 14: Following the RP, a mixture of 1,3-bis(bromomethyl)benzene (8) (8 $\mathrm{mg}, 0.030 \mathrm{mmol}$), alkyne 6 ($24 \mathrm{mg}, 0.073 \mathrm{mmol}$), sodium azide ($5 \mathrm{mg}, 0.077 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{mg}, 0.008 \mathrm{mmol})$, sodium ascorbate ($2 \mathrm{mg}, 0.010 \mathrm{mmol}$), TBTA ($3 \mathrm{mg}, 0.006$ mmol), L-proline ($2 \mathrm{mg}, 0.017 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mg}, 0.010 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 1,0.3$ mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 18 h . Standard work-up and purification by column chromatography (aluminum oxide hexanes/ethyl acetate, 3:1) gave 14 ($22 \mathrm{mg}, 87 \%$) as colorless liquid.

$[a]_{\mathrm{D}}{ }^{22}=54.4(c=0.7, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.17,1.38(2 \mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 2 \mathrm{H})$, 3.17 (s, 2 H), 3.71-3.78 (m, 2 H), 3.83-3.91 (m, 4 H), 4.06 (t, J = 7.0 Hz, 2 H), $4.11(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.44-4.50 (m, 4 H), 4.55, 4.63 (AB system, $\mathrm{J}_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 4 \mathrm{H}$), 5.36, 5.40 (AB system, $\left.J_{A B}=15.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.11(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.20,7.22-7.30(2 \mathrm{~m}, 4 \mathrm{H}, 9 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=23.8,26.7,53.5,58.0,59.6,64.8,69.1,69.4,69.8,74.1,78.3$, $122.4,127.4,127.5,128.2,128.3,128.8,129.9,135.7,136.1,145.4,208.2$ IR (ATR): $u=2925$, 2870, 1725, 1495, $1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{8}$: 847.4143; found: 847.3999; calcd for $m / z[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{NaO}_{8}$: 869.3963; found: 869.3920; calcd for $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+} \mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{KO}\right.$: 885.3702 ; found: 885.3816 .

1,3-Bis(1,2,3-triazole) 14 and azidomethyl(1,2,3)-triazole 15: A mixture of 1,3bis(bromomethyl)benzene (8) ($26 \mathrm{mg}, 0.099 \mathrm{mmol}$), alkyne $6(80 \mathrm{mg}, 0.24 \mathrm{mmol})$, sodium azide ($16 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg}, 0.020 \mathrm{mmol})$, sodium ascorbate ($8 \mathrm{mg}, 0.040$
mmol), L-proline ($5 \mathrm{mg}, 0.043 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{mg}, 0.038 \mathrm{mmol})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}(9: 1,0.5$ mL) was stirred at $60^{\circ} \mathrm{C} 17 \mathrm{~h}$. Ethyl acetate (50 mL) was added, the mixture was washed with aqueous ammonia solution ($25 \%, 2 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation, the residue was purified by column chromatography (aluminum oxide, hexanes/ethyl acetate, 3:1) to give $\mathbf{1 4}$ ($34 \mathrm{mg}, \mathbf{4 0 \%}$) and $\mathbf{1 5}$ ($19 \mathrm{mg}, 37 \%$) as colorless liquids. Data of 14 , see above.

$[a]_{D_{0}}^{22}=19.3(c=0.9, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.17,1.38(2 \mathrm{~s}, 3 \mathrm{H}$ each $), 2.29\left(\mathrm{~s}_{\mathrm{br}}\right.$, 1 H), 3.18 (sbr, 1 H), 3.72-3.78, 3.84-3.91 ($2 \mathrm{~m}, 1 \mathrm{H}, 2 \mathrm{H}$), 4.05 (dt, J = $2.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.55,4.63(2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$ each $), 5.41$, $5.45\left(\mathrm{AB}\right.$ system, $\left.\mathrm{J}_{\mathrm{AB}}=15.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.15-7.21,7.22-7.38(2 \mathrm{~m}, 3 \mathrm{H}, 6 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1$ H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=23.8,26.7,53.8,54.3,58.0,59.6,64.9,69.1,69.4,69.9,74.1$, $78.3,122.2,127.5,127.6,127.9,128.4,128.8,129.7,135.3,136.2,136.5,145.4,208.2$ IR (ATR): $u=3065,3030,2925,2870,2095,1725,1495,1455 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF): calcd for m / z $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{NaO}_{4}: 540.2335$; found: 540.2294.
1,4-Bis(1,2,3-triazole) 17 and azidomethyl(1,2,3-triazole) 18: Following the RP, a mixture of 1,4-bis(bromomethyl)benzene (16) ($26 \mathrm{mg}, 0.099 \mathrm{mmol}$), alkyne $6(80 \mathrm{mg}, 0.24 \mathrm{mmol}$), sodium azide ($17 \mathrm{mg}, 0.26 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg}, 0.02 \mathrm{mmol})$, sodium ascorbate ($8 \mathrm{mg}, 0.04$ mmol), TBTA ($11 \mathrm{mg}, 0.021 \mathrm{mmol}$), L-proline ($5 \mathrm{mg}, 0.043 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{mg}, 0.038$ mmol) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\left(4: 1,0.5 \mathrm{~mL}\right.$) was stirred at $40{ }^{\circ} \mathrm{C}$ for 14 h . Standard work-up and purification by column chromatography (aluminum oxide, hexanes/ethyl acetate, 3:1) gave 17 ($70 \mathrm{mg}, 82 \%$) and 18 ($3 \mathrm{mg}, 6 \%$) as colorless liquids.

17
$[a]_{D^{22}}=52.8(c=0.8, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.15,1.36(2 \mathrm{~s}, 6 \mathrm{H}$ each $), 2.28(\mathrm{t}$,
$J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 3.70-3.76,3.83-3.90(2 \mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{H}), 4.01-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-4.49(\mathrm{~m}, 4 \mathrm{H}), 4.52,4.60(2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 5.36-5.40(\mathrm{~m}, 4 \mathrm{H})$, 7.14-7.19, 7.20-7.30 (2 m, $6 \mathrm{H}, 10 \mathrm{H}$); ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=23.7,26.6,53.4,57.9$, $59.6,64.8,69.0,69.3,69.8,74.0,78.3,122.2,127.4,128.2,128.6,128.7,135.7,136.1,145.3$, 208.1; IR (ATR): $u=3065,3030,2925,2870,1725,1495,1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+} \mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{NaO}_{8}\right.$: 869.3963; found: 869.3962; calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{KO}_{8}$: 885.3702; found: 885.3697.

18
$[a]_{D^{22}}=66.0(c=0.15, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.17,1.38(\mathrm{~s}, 3 \mathrm{H}$ each $), 2.30(\mathrm{t}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.79,3.85-3.92,4.04-4.08(3 \mathrm{~m}, 1 \mathrm{H}, 2 \mathrm{H}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.45-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.55,4.63(2 \mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}$ each $), 5.40-5.45$ ($\mathrm{m}, 2 \mathrm{H}$), 7.14-7.19 (m, 10 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=23.8,26.7,53.7,54.3,58.0,64.9$, 69.2, 69.4, $74.2,78.4,122.2,127.5,128.4,128.5,128.81,128.85,134.6,136.1,136.2,145.6$, the $\mathrm{C}=0$ signal could not be detected; IR (ATR): $u=3060,3030,2925,2870,2095,1725,1495$, $1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{NaO}_{4}$: 540.2335 ; found: 540.2331; calcd for $m / z[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{KO}_{4}$: 556.2075; found: 556.2072.
1,3-Bis(1,2,3-triazole) 20: Following the RP, a mixture of 1,3-bis(bromomethyl)benzene (8) (26 $\mathrm{mg}, 0.099 \mathrm{mmol}$), compound 19 [3] ($80 \mathrm{mg}, 0.24 \mathrm{mmol}$), sodium azide ($16 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg}, 0.02 \mathrm{mmol})$, sodium ascorbate ($8 \mathrm{mg}, 0.04 \mathrm{mmol}$), TBTA ($11 \mathrm{mg}, 0.022$ mmol), L-proline ($5 \mathrm{mg}, 0.043 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{mg}, 0.038 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 1,0.5$ mL) was stirred at $40^{\circ} \mathrm{C}$ for 14 h . Standard work-up and purification by column chromatography (aluminum oxide, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 25: 1$) provided $\mathbf{2 0}$ ($42 \mathrm{mg}, 50 \%$) as colorless liquid.

$[a]_{\mathrm{D}}{ }^{22}=24.5(c=1.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.29,1.52(\mathrm{~s}, 6 \mathrm{H}$ each $), 1.59\left(\mathrm{~s}_{\mathrm{br}}\right.$, $2 \mathrm{H}), 2.73$ (Sbr, 2 H), 3.67-3.73, 3.81-3.87, 3.98-4.07 (3 m, $2 \mathrm{H}, 2 \mathrm{H}, 4 \mathrm{H}$), 4.13 (d, J = $11.5 \mathrm{~Hz}, 2$ $\mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47,4.61(2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 4.69$ $(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.28,5.34(\mathrm{AB}$ system, $J=15.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.66\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}\right), 6.69(\mathrm{~s}, 1 \mathrm{H}), 7.05\left(\mathrm{~m}_{\mathrm{c}}\right.$, $2 \mathrm{H}), 7.09-7.17,7.20-7.28(2 \mathrm{~m}, 4 \mathrm{H}, 9 \mathrm{H}), 7.34\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $26.5,29.5,42.3,53.5,57.3,57.5,64.3,64.5,66.6,66.8,70.8,73.4,122.5,126.3,127.0,128.0$, $128.2,128.5,129.7,135.9,138.0,145.9 ; \operatorname{IR}(A T R): v=3395,2920,2850,1495,1465,1455 \mathrm{~cm}^{-}$ 1; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{NaO}_{8}$: 873.4275; found: 873.4311; calcd for $m / z[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{KO}_{8}$: 889.4041; found: 889.4054.

1,4-Bis(1,2,3-triazole) 21: Following the RP, a mixture of 1,4-bis(bromomethyl)benzene (16) $(42 \mathrm{mg}, 0.16 \mathrm{mmol}), 19(130 \mathrm{mg}, 0.39 \mathrm{mmol})$, sodium azide ($27 \mathrm{mg}, 0.41 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(8 \mathrm{mg}, 0.032 \mathrm{mmol})$, sodium ascorbate ($13 \mathrm{mg}, 0.066 \mathrm{mg}$), TBTA ($17 \mathrm{mg}, 0.032 \mathrm{mmol}$), L-proline ($7 \mathrm{mg}, 0.061 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(7 \mathrm{mg}, 0.066 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 1,0.5 \mathrm{~mL})$ was stirred at $40^{\circ} \mathrm{C}$ for 21 h . Standard work-up and purification column chromatography (aluminum oxide, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 25: 1$) afforded 21 ($109 \mathrm{mg}, 80 \%$) as colorless solid (m.p. $108-110^{\circ} \mathrm{C}$).

21
$[a]_{\mathrm{D}}{ }^{22}=74.5(c=1.0 \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.26,1.46(\mathrm{~s}, 6 \mathrm{H}$ each $), 1.53(\mathrm{~s}, 2$ H), $2.64(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.80,3.92-4.02(2 \mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.23(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51,4.57(2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$ each $), 4.62$ (s, $2 \mathrm{H}), 5.36(\mathrm{~s}, 4 \mathrm{H}), 7.10-7.16,7.18-7.22,7.25-7.29(3 \mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{H}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta=26.5,29.5,42.5,53.5,57.2,57.8,64.2,64.6,66.2,67.2,71.4,73.3,122.6,127.1$, 128.2, 128.5, 128.7, 135.2, 137.8, 145.7; IR (ATR): $v=3365,3065,3030,2920,2855,1495$, $1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{46} \mathrm{H}_{59} \mathrm{~N}_{8} \mathrm{O}_{8}$: 851.4416; found: 851.4475; calcd for $m / z[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{NaO}_{8}$: 873.4275; found: 873.4301.
(3S,4S,5R,6S)-5-Amino-3-(hydroxymethyl)-2,2-dimethyl-6-(propoxymethyl)tetrahydro-2H-
pyran-4-ol (22): A stirred suspension of palladium on carbon ($10 \%, 100 \mathrm{mg}$) in dry methanol (5 mL) was saturated with hydrogen for 30 min . Compound 19 ($97 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added and the mixture was stirred under an atmosphere of hydrogen at room temperature for 17 h .

After filtration, the solution was concentrated under vacuum to give 22 ($59 \mathrm{mg}, 81 \%$) as colorless liquid.

22
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11,1.28(2 \mathrm{~s}, 3 \mathrm{H}$ each $), 1.55\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$, $1.75(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.56-$ $3.60(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.14\left(\mathrm{~s}_{\mathrm{br}}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta=10.5,22.7,24.4,26.5,48.4,56.9,62.9,68.2,70.2,73.4,74.9,75.0 ;$ HRMS (ESI-TOF): calcd for $m / z[M+H]^{+} \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NO}_{4}$: 248.1862; found: 248.1858.
(1R,5S,8S,9S)-2-Benzyl-8-\{[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]methyl\}-6,6-dimethyl-
3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-ol (23): To a solution of 7 ($40 \mathrm{mg}, 0.09 \mathrm{mmol}$) in 3 mL of ethanol was added $\mathrm{NaBH}_{4}(7 \mathrm{mg}, 0.18)$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at room temperature. After removal of ethanol, water was added to the residue and the mixture was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated. Purification by column chromatography (aluminum oxide, hexanes/ethyl acetate, 5:1) gave $\mathbf{2 3}$ ($40 \mathrm{mg}, 99 \%$) as colorless liquid.

23
$[a]_{D^{22}}=49.0(c=1.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.28,1.48(2 \mathrm{~s}, 3 \mathrm{H}$ each $), 1.57(\mathrm{~s}$, 1 H), 2.68 ($\mathrm{s}, 1 \mathrm{H}$), 3.14 ($\mathrm{s}, 1 \mathrm{H}$), 3.70-3.74, 3.78-3.82 ($2 \mathrm{~m}, 1 \mathrm{H}$ each), 4.00-4.07 (m, 2 H), 4.09$4.14(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dt}, J=2.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52,4.59\left(\mathrm{AB}\right.$ system, J_{AB} $=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 5.38-5.42(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.36(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=26.5,29.6,42.5,54.0,57.3,57.7,64.5,64.6,66.4,67.2,71.3$, $73.2,122.4,127.1,128.0,128.2,128.5,128.7,129.0,134.5,137.8,145.6$; IR (ATR): $u=3365$, 3065, 3030, 2920, 2870, 1495, $1455 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF): calcd for $m / z\left[\mathrm{M}+\mathrm{H}^{+} \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$: 465.2502; found: 465.2468 ; calcd for $m / z[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{4}: 487.2321$; found: 487.2288; calcd for $m / z[M+K]^{+} \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{KO}_{4}$: 503.2061; found: 503.2028.
(3S,4S,5R,6S)-5-Amino-6-\{[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]methyl\}-3-
(hydroxymethyl)-2,2-dimethyltetrahydro-2H-pyran-4-ol (24): A stirred suspension of
palladium on carbon $(10 \%, 50 \mathrm{mg})$ in methanol $(4 \mathrm{~mL})$ was saturated with hydrogen for 30 min . Compound 23 ($12 \mathrm{mg}, 0.026 \mathrm{mmol}$) was added and the mixture was stirred under an atmosphere of hydrogen at room temperature for 21 h . After filtration, the solution was concentrated under vacuum to give $\mathbf{2 4}$ ($9 \mathrm{mg}, 92 \%$, estimated purity ca. 80%) as colorless liquid.

$[a]_{\mathrm{D}}{ }^{22}=10.2(c=0.35 \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta=1.27,1.48(2 \mathrm{~s}, 3 \mathrm{H}$ each, 1.60 $\left(m_{c}, 1 \mathrm{H}\right), 2.65\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.67(\mathrm{dd}, J=6.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, \mathrm{J}=6.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}$, $J=1.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=1.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{dt}, \mathrm{J}=1.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51,4.58\left(\mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}}=12.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.64(\mathrm{t}, \mathrm{J}=3.5$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 7.13-7.24, 7.29-7.38 (2 m, $2 \mathrm{H}, 3 \mathrm{H}$), 7.79 (s, 2 H); ${ }^{13} \mathrm{C}$ NMR (CD3 ${ }_{3} \mathrm{OD}, 100 \mathrm{MHz}$): $\delta=26.2,29.2,43.2,54.3,53.2,57.5,58.3,64.0,64.5,66.4,68.1,71.7,74.3,124.7,127.6,128.5$, 128.6, 129.0, 129.3, 129.4, 136.1, 138.6, 145.9.

Reduction of 1,4-Bis(1,2,3-triazole) 21 to compound 25: Analogously to the reduction of compound 23, palladium on carbon ($10 \%, 21 \mathrm{mg}$) in dry methanol (1 mL) and compound 21 ($22 \mathrm{mg}, 0.026 \mathrm{mmol}$) gave after 5 d at room temperature, work-up and purification by column chromatography (aluminum oxide, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 5: 1$ to $1: 3$) provided 25 ($7 \mathrm{mg}, 40 \%$, estimated purity ca. 80%) as colorless liquid.

${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 500 \mathrm{MHz}$): $\delta=1.21,1.29(2 \mathrm{~s}, 6 \mathrm{H}$ each, $1.78-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}$, 2 H), 3.49 (dd, J = 8.5, $11.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.64-3.72 (m, 4 H), 3.81 (dd, J = 5.0, 11.0 Hz), 4.00-4.07 $(\mathrm{m}, 4 \mathrm{H}), 4.59,4.65\left(\mathrm{AB}\right.$ system, $\left.\mathrm{J}_{\mathrm{AB}}=11.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 5.59(\mathrm{~s}, 4 \mathrm{H}), 7.34(\mathrm{~s}, 4 \mathrm{H}), 7.94(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CD 3 OD, 125 MHz): $\delta=23.0,26.5,42.7,49.4,53.8,62.5,64.4,66.5,70.7,71.3,71.7,75.8$, 124.4, 128.7, 129.1, 129.5, 136.6, 146.1 (s, C-4').

Samarium diiodide-promoted reduction of 1,4-bis(1,2,3-triazole) 24 to compound 26: 1,2Diiodoethane ($178 \mathrm{mg}, 0.63 \mathrm{mmol}$) and samarium ($103 \mathrm{mg}, 0.69 \mathrm{mmol}$) were transferred into a dried flask under argon. THF (4 mL) was added under argon and the resulting solution was
stirred under argon [5]. After the solution turned blue, the mixture was stirred for further 2 h . To 2 mL of the solution was added $\mathbf{2 1}(40 \mathrm{mg}, 0.047 \mathrm{mmol})$. The mixture stirred for 5 h at room temperature, then quenched with aqueous NaHCO_{3} solution. After extraction of the mixture with dichloromethane, the organic phases were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and removal of solvent, the residue was purified by column chromatography (aluminum oxide, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10: 1$) to give $\mathbf{2 6}$ ($20 \mathrm{mg}, 50 \%$, estimated purity ca. 90%) as colorless liquid.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta=1.30,1.40(2 \mathrm{~s}, 6 \mathrm{H}$ each, $1.68-1.70(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 3.62-$ 3.66 (m, 4 H), 3.70-3.75, 3.76-3.82 ($2 \mathrm{~m}, 2 \mathrm{H}$ each), 3.93 (dd, $J=4.0,11.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.03, 4.15 (2 d, $J=13.0 \mathrm{~Hz}, 2 \mathrm{H}$ each), 4.13-4.19 (m, 4 H), $4.23\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right.$), 4.59, 4.60 (AB system, $J=12.1$ Hz), $5.57(\mathrm{~s}, 4 \mathrm{H}), 7.22-7.27,7.28-7.35(2 \mathrm{~m}, 5 \mathrm{H}, 9 \mathrm{H}), 7.88(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CD3OD, 125 $\mathrm{MHz}): \delta=25.9,26.8,50.2,53.2,58.7,61.8,64.2,65.3,66.0,69.9,71.4,75.0,123.9,128.3$, 128.6, 128.7, 129.0, 135.4, 135.8, 144.2; HRMS (ESI-TOF): calcd for $m / z\left[M+\mathrm{H}^{+} \mathrm{C}_{46} \mathrm{H}_{63} \mathrm{~N}_{8} \mathrm{O}_{8}\right.$: 855.4769; found: 855.4778; calcd. for $m / z[M+N a]^{+} \mathrm{C}_{46} \mathrm{H}_{62} \mathrm{~N}_{8} \mathrm{NaO}_{8}$: 877.4588; found: 877.4603.

3. References

[1] Zhu, W.; Ma, D. Chem. Commun. 2004, 888-889. doi: 10.1039/B400878B
[2] Hoffmann, R. W.; Kemper, B.; Metternich, R.; Lehmeier, T. Liebigs Ann. Chem. 1985, 22462260. doi: 10.1002/jlac. 198519851115
[3] Al-Harrasi, A.; Pfrengle, F.; Prisyazhnyuk, V.; Yekta, S.; Koóš, P.; Reissig, H.-U. Chem.- Eur. J. 2009, 15, 11632-11641. doi: 10.1002/chem. 200900996
[4] Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853-2855. doi: 10.1021/ol0493094
[5] Wefelscheid, U. K.; Berndt, M.; Reissig, H.-U. Eur. J. Org. Chem. 2008, 3635-3646. doi: 10.1002/ejoc. 200800293

4. Copies of NMR spectra

\qquad

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	O
								f1 (ppm)	60	50		3	20	10	0

\int / J

22

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

