Supporting Information

for

Synthesis of 7-azabicyclo[4.3.1]decane ring systems from tricarbonyl(tropone)iron via intramolecular Heck reactions

Aaron H. Shoemaker, Elizabeth A. Foker, Elena P. Uttaro, Sarah K. Beitel and Daniel R. Griffith

Copies of 1H and 13C NMR spectra of all purified novel compounds
1H NMR (400 MHz, CDCl$_3$)
\[\begin{align*}
\text{Br} & \quad \text{Boc} \\
\text{6} & \quad \text{Fe(CO)}_3
\end{align*} \]

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

![NMR Spectrogram](image)
13C NMR (100 MHz, CDCl$_3$)
HSQC (CDCl$_3$)

12

Fe(CO)$_3$

O

Boc

I

S5
Phenyl vinyl
Boc
Iron tricarbonyl

\(^1H \text{ NMR (400 MHz, CDCl}_3 \)
13C NMR (100 MHz, CDCl$_3$)
HSQC (CDCl$_3$)

Fe(CO)$_3$

S1
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

S2

Fe(CO)$_3$

S10
1H NMR (400 MHz, CDCl$_3$)
S3

13C NMR (100 MHz, CDCl$_3$)
\(^1\)H NMR (400 MHz, CDCl\(_3\))
\[\text{NH}_2 \]

13C NMR (100 MHz, CDCl$_3$)
Ph\[\text{CCH}_2\text{NHNH}_2\]

1H NMR (400 MHz, CDCl$_3$)
PhCH=CHNH₂

13C NMR (100 MHz, CDCl₃)
^1H NMR (400 MHz, CDCl\textsubscript{3})
13C NMR (100 MHz, CDCl$_3$)
\[\text{I} \equiv \text{NH}_2 \]

$^1\text{H NMR (400 MHz, CDCl}_3$)
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

![Chemical structure](image)
$^{1}\text{H NMR (400 MHz, CDCl}_3\text{)}$
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)
$\text{^{13}C NMR (100 MHz, CDCl}_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
$\text{13C NMR (100 MHz, CDCl}_3$}
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
1H-1H COSY (CDCl$_3$)

18

19
^{1}H-^{13}C HSQC (CDCl$_3$)