

Supporting Information

for

Effects of the aldehyde-derived ring substituent on the properties of two new bioinspired trimethoxybenzoylhydrazones: methyl vs nitro groups

Dayanne Martins, Roberta Lamosa, Talis Uelisson da Silva, Carolina B. P. Ligiero, Sérgio de Paula Machado, Daphne S. Cukierman and Nicolás A. Rey

Beilstein J. Org. Chem. 2023, 19, 1713–1727. doi:10.3762/bjoc.19.125

Additional information

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Figure S1: Fourier difference maps without the H. (A) hdz-CH₃; plane 16.0517*x*, -1.4375y, -14.0518z, contour level (e/Å³) -0.25, 0.45, 0.05, resolution 26.4°. (B) hdz-NO₂; plane 6.3871*x*, 0.3473*y*, 8.5161*z*, contour level (e/Å³) -0.20, 0.45, 0.05, resolution 25.3°.

Figure S2: Hirshfeld surface for hdz-CH₃. (A) Hirshfeld surface and d_{norm} map (-0.5725 to 1.1747) for all interactions. (B) Curvedness. (C) d_{norm} map filtered by type of interaction and Fingerprint plots.

Figure S3: Hirshfeld surface for hdz-NO₂. (A) Hirshfeld surface and d_{norm} map (-0.5725 to 1.1747) for all interactions. (B) Left: curvedness. Right: electrostatic potential (-0.0811 to 0.1788 au) over the electron density surface [*isosurface* 0.008 e au⁻³/DFT/B3LYP/6-311(d,p)]. (C) d_{norm} map filtered by type of interaction and Fingerprint plots.

Figure S4: Optimized structures for **hdz-CH**³ (**A**) in the gas phase and (**B**) in water; and for **hdz-NO**² (**C**) in the gas phase and (**D**) in water. Levels of theory were [B3LYP/6-311G(d,p)] and [B3LYP/6-311G(d,p)IEFPCM] for each phase (gas and water-continuum model), respectively.

Table S1: Selected experimental and theoretical [levels of theory B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p)IEFPCM for gas and water phases, respectively] geometric parameters for **hdz-CH**₃.

Dand langths (Å)	Experimental	Calculated			
Bolid lengths (A)	Experimental	Gas phase	Water phase		
C1–C2	1.405(2)	1.418	1.418		
C1–C6	1.398(3)	1.407	1.407		
C201	1.357(2)	1.345	1.351		
C3–C18	1.507(3)	1.505	1.506		
C1–C7	1.450(3)	1.451	1.453		
C7=N1	1.279(3)	1.286	1.287		
N1-N2	1.375(2)	1.356	1.359		
N2-C8	1.355(3)	1.390	1.378		
C8=O2	1.226(2)	1.214	1.223		
C8–C9	1.491(2)	1.499	1.498		
C9–C14	1.387(3)	1.399	1.399		
C9–C10	1.385(2)	1.394	1.396		
C13–O5	1.368(2)	1.360	1.358		
C12–O4	C12–O4 1.372(2)		1.369		
C11–O3	1.363(2)	1.359	1.358		
Bond angles (°)					
C6C1C2	118.9(2)	119.042	118.976		
C2C3C18	119.7(2)	119.085	119.495		
C1C2O1	121.8(2)	122.718	122.031		
C7-N1-N2	-N1-N2 118.9(2)		118.955		
N1-N2-C8	116.9(2)	119.898	119.946		
N2-C8-O2	121.0(2)	122.275	122.153		
O2–C8–C9	121.4(2)	123.247	122.754		
C8–C9–C10	124.2(2)	123.052	122.635		
C14–C13–O5	124.2(2)	124.546	124.563		
C13-C12-O4	119.4(2)	119.288	120.405		
C12–C11–O3	115.3(2)	115.310	115.485		

	Experimental	Gas	Water
Bond lengths (Å)			
C1–C2	1.411(3)	1.427	1.427
C1–C6	1.390(4)	1.400	1.400
C2–O1	1.344(3)	1.326	1.326
C3–N3	1.452(5)	1.476	1.476
C1–C7	1.456(4)	1.454	1.454
C7=N1	1.279(3)	1.284	1.284
N1-N2	1.373(3)	1.351	1.351
N2–C8	1.365(3)	1.397	1.397
C8=O2	1.219(3)	1.212	1.212
C8–C9	1.488(3)	1.495	1.495
C9–C14	1.390(3)	1.400	1.400
C9–C10	1.384(3)	1.395	1.395
C13–O5	1.370(3)	1.359	1.359
C12–O4	1.373(3)	1.362	1.362
C11–O3	1.358(3)	1.358	1.358
Bond angles (°)			
C6-C1-C2	119.7(2)	119.867	119.867
C2-C3-N3	121.1(3)	121.171	121.171
C1–C2–O1	121.6(3)	122.499	122.499
C7–N1–N2	120.0(2)	119.984	119.984
N1-N2-C8	116.5(2)	119.492	119.492
N2-C8-O2	120.5(2)	121.836	121.836
O2–C8–C9	122.2(2)	123.699	123.699
C8–C9–C10	123.6(2)	122.938	122.938
C14–C13–O5	123.8(2)	124.574	124.574
C13–C12–O4	119.6(2)	119.233	119.233
C12–C11–O3	115.3(2)	115.325	115.325

Table S2: Selected experimental and theoretical [levels of theory B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p)IEFPCM for gas and water phases, respectively] geometric parameters for **hdz-NO**₂.

Frequencies (cm ⁻¹))			
Experimental	Experimental Calculated		Vibrational assignments		
(KBr)	Gas phase	Water phase			
3431 (w)	3407	3313	$\nu(O-H)_{phenol} + \nu(O-H)_{water}$		
3282 (w)	3227	3223	v(C–H) _{TMP ring}		
3175 (w)	3526	3538	ν(N–H)		
3063 (m)	3162	3166	$ u_{ m as}(m C-H)_{ m MBA\ ring}$		
3037 (m)	3029	3072	ν (C–H) _{azomethine}		
2983 (m)	3138	3146	$v_{as}(C-H)_{methoxyl}$		
2971 (m)	3129	3132	vas(C–H)methoxyl		
2950 (m)	3109	3111	$\nu_{as}(C-H)_{methyl}$		
2933 (m)	3083	3087	vas(C–H)methoxyl		
2917 (m)	3079	3073	$\nu_{as}(C-H)_{methyl}$		
2871 (m)	3030	3027	$\nu_{sym}(C-H)_{methyl}$		
2836 (m)	3008	3020	$v_{sym}(C-H)_{methoxyl}$		
1658 (s)	1762	1712	ν (C=O) + δ (N–N–H) _{hydrazone}		
1620 (m)	1675	1669	$\nu(C=N)_{hydrazone} + \delta_{ip}(N=C-H)_{azomethine} + \nu(C=C)_{MBA ring}$		
1607 (m)	1649	1645	ν (C=C) _{MBA ring}		
1590 (s)	1619	1617	ν (C=C) _{TMP ring}		
1551 (w)	1551	1561	δ (N–N–H) _{hydrazone}		
1505 (m)	1532	1528	ν (C=C) _{TMP ring} + δ_{ip} (C=C-H) _{TMP ring}		
1469 (m)	1513	1513	ν (C=C) _{MBA ring} + δ_{ip} (C=C-H) _{MBA ring}		
1454 (m)	1504	1494	$\delta(H-C-H)_{methyl} + \delta(H-C-H)_{methoxyl} + \delta_{ip}(C=C-H)_{MBA ring}$		
1435 (sh)	1487	1485	$\delta(H-C-H)_{methoxyl} + \delta(O-C-H)_{methoxyl}$		
1417 (s)	1442	1437	$\delta(O-C-H)_{methoxyl} + \delta_{ip}(C=C-H)_{TMP ring}$		
1395 (s)	1465	1456	$\delta(H-C-H)_{methyl} + \delta(O-C-H)_{methoxyl} + \delta_{ip}(C=C-H)_{MBA \ ring}$		
1376 (m)	1430	1441	$\delta_{ip}(C-O-H)_{phenol}$		
1355 (s)	1383	1385	$\delta_{ip}(N=C-H)_{azomethine} + \delta(N-N-H)_{hydrazone}$		
1337 (m)	1355	1348	ν (C-OCH ₃) + ν (C=C) _{TMP ring} + δ (O-C-H) _{methoxyl} + δ (N-N-H) _{hydrazone}		
1309 (m)	1350	1343	$V(C=C)_{MBA ring} + \delta_{in}(C-O-H)_{nhenol}$		
$\frac{1263}{1262}$ (m)	1307	1292	V(C=C)MBA ring + $V(C-Q)$ nhenol		
1243 (s)	1265	1252	$\delta_{in}(C=C-H)_{MBA ring} + \delta_{in}(C=C-H)_{TMP ring} + \delta_{in}(C-O-H)_{nhenol}$		
1230 (sh)	1347	1348	$\nu(C=C)_{TMP ring}$		
1135 (s)	1212	1203	$\delta(O-C-H)_{methoxyl} + \delta(N-N-H)_{hydrazone}$		
1083 (m)	1189	1185	δ _{ip} (C=C-H) _{MBA ring}		
1003 (m)	1164	1161	v(N–N) _{hydrazone}		
943 (w)	1116	1118	$\delta_{ip}(C=C-H)_{MBA ring} + \delta_{ip}(C=C-H)_{TMP ring}$		
869 (w)	1071	1047	v(O-CH ₃)methoxyl		
845 (w)	1062	1059	$\delta(C-C-H)_{methyl}$		
829 (w)	1056	-	$\delta_{ip}(N=C-H)_{azomethine}$		
773 (m)	1027	1009	TMP breathing mode $+ v(O-CH_3)_{methoxyl}$		
754 (m)	966	974	$\delta_{oop}(C-H)_{azomethine} + \delta_{oop}(C-H)_{MBA ring}$		
737 (m)	857	855	$\delta_{000}(C-H)_{TMP ring} + \delta(C=C-C)_{MBA ring}$		
720 (m)	786	768	δ _{oop} (O-H) _{nheno1}		
670 (w)	779	753	δ _{oop} (C–H) _{MBA ring}		

Table S3: Experimental and calculated [gas, level of theory B3LYP/6-311++G(2d,p) and water phase, B3LYP/6-311G(d,p)/IEFPCM] IR data for the main absorptions of **hdz-CH**₃, with proposed assignments.

Intensities: w = weak; m = medium; s = strong; sh = shoulder.

Table S4: Experimental and calculated [gas, level of theory B3LYP/6-311++G(2d,p) and water phase, B3LYP/6-311G(d,p)/IEFPCM] IR data for the main absorptions of **hdz-NO**₂, with proposed assignments.

Frequencies (cm ⁻¹)		1 ⁻¹)	
Experimental	Experimental Calculated		Vibrational assignments
(KBr)	Gas phase	Water phase	
3455 (w)	3326	3154	ν (O–H) _{phenol} + ν (O–H) _{water}
3222 (w)	3527	3542	v(N–H)
3188 (sh)	3226	3227	ν (C–H) _{TMP ring}
3088 (w)	3219	3206	$ u(C-H)_{ m NBA\ ring}$
3008 (w)	3041	3085	$\nu(C-H)_{azomethine}$
2976 (w)	3139	3146	$\nu_{as}(C-H)_{methoxyl}$
2949 (w)	3088	3133	$\nu_{as}(C-H)_{methoxyl}$
2936 (w)	3066	3086	$\nu_{as}(C-H)$ methoxyl
2837 (w)	3010	3021	$\nu_{sym}(C-H)_{methoxyl}$
1648 (s)	1768	1718	ν (C=O) + δ (N-N-H) _{hydrazone}
1622 (m)	1677	1672	$v(C=N)_{hydrazone} + \delta_{ip}(N=C-H)_{azomethine}$
1615 (sh)	1664	1655	ν (C=C) _{NBA ring}
1584 (m)	1620	1615	ν (C=C) _{TMP ring} + δ_{ip} (C=C-H) _{TMP ring}
1523 (sh)	1613	1612	ν (C=C) _{NBA ring} + δ_{ip} (C-O-H) _{phenol} + $_{ip}$ (C=C-H) _{NBA ring}
1519 (m)	1608	1572	$v_{as}(NO_2) + v(C=C)_{NBA ring} + \delta_{ip}(C=C-H)_{NBA ring}$
1503 (s)	1548	1554	$\delta(N-N-H)_{hydrazone} + \nu(C=C)_{TMP ring}$
1462 (m)	1504	1497	$\delta(H-C-H)_{methoxyl}$
1455 (m)	1493	1495	δ(H–C–H)methoxyl
1436 (w)	1487	-	$\delta_{ip}(C=C-H)_{NBA ring} + \delta(H-C-H)_{methoxyl} + \delta(O-C-H)_{methoxyl}$
1414 (m)	1465	1461	δ(O–C–H) _{methoxyl}
1359 (m)	1432	1447	$\delta_{ip}(C-O-H)_{phenol} + \delta_{ip}(C=C-H)_{NBA ring}$
1336 (s)	1379	1369	$v_{sym}(NO_2) + \delta_{ip}(C-O-H)_{phenol} + \delta_{ip}(C=C-H)_{NBA ring}$
1305 (w)	1332	1332	v(C=C) _{NBA ring}
1272 (m)	1326	1303	$v(C-O)_{phenol} + \delta_{ip}(C=C-H)_{NBA ring}$
1245 (m)	1274	1276	$v(C-OCH_3) + \delta_{ip}(C=C-H)_{TMP ring}$
1230 (m)	1261	1250	$v(C-OCH_3) + \delta_{ip}(C=C-H)_{TMP ring}$
1100 ()	1259	1263	$\delta_{ip}(C=C-H)_{TMP ring} + \delta_{ip}(C=C-H)_{NBA ring} +$
1188 (m)			$\delta_{ip}(N=C-H)_{azomethine}$
1135 (s)	1222	1225	$\delta(O-C-H)_{methoxyl} + \delta(N-N-H)_{hydrazone}$
1081 (w)	1206	1205	$\delta_{ip}(C=C-H)_{NBA ring}$
997 (m)	1169	1167	$v(N-N)_{hydrazone} + \delta(O-C-H)_{methoxyl} + \delta_{in}(C=C-H)_{aromatic}$
862 (w)	1115	1117	$\delta_{in}(C=C-H)$ aromatic
845 (w)	1067	1148	v(O-CH3)methoxvl
819 (w)	958	961	$v(C-NO_2) + \delta(C=C-C)_{aromatic}$
770 (w)	879	863	$\delta(C = C - C)_{\text{NBA ring}} + \delta_{\text{con}}(C - H)_{\text{TMP ring}}$
747 (m)	818	832	NBA breathing mode + $\delta_{\text{con}}(\Omega - H)_{\text{shanol}}$
<u>665 (w)</u>	757	757	$\delta_{res}(C-H)$ where $\delta_{res}(C-H)$
005 (w)	151	151	Coop(C=11)NBA ring

Intensities: w = weak; m = medium; s = strong; sh = shoulder.

Figure S5: ¹³C NMR (100 MHz) spectra of hdz-CH₃ in DMSO-*d*₆ at 25 °C.

Figure S6: COSY contour map of hdz-CH₃ in DMSO-*d*₆ at 25 °C.

Figure S9: ¹³C NMR (100 MHz) spectra of hdz-NO₂ in DMSO- d_6 at 25 °C.

Figure S10: COSY contour map of hdz-NO₂ in DMSO-*d*₆ at 25 °C.

Figure S12: HMBC contour map of hdz-NO₂ in DMSO-*d*₆ at 25 °C.

hdz-CH ₃					hdz-NO ₂			
C/H	δ ¹³ C (ppm)	δ ¹ H (ppm)	¹³ C, ¹ H HMBC	C/H	δ ¹³ C (ppm)	δ ¹ H (ppm)	¹³ C, ¹ H HMBC	
1	117.22	-	Н5 (³ <i>J</i> _{CH}), Н7 (² <i>J</i> _{CH}), Н18 (⁴ <i>J</i> _{CH})	1	121.73	-	H5 (³ <i>J</i> _{CH}), H7 (² <i>J</i> _{CH})	
2	155.97	-	H4 (³ <i>J</i> _{CH}), H5 (⁴ <i>J</i> _{CH}), H6 (³ <i>J</i> _{CH}), H7 (³ <i>J</i> _{CH}), H18 (³ <i>J</i> _{CH})	2	151.56	-	H4 (³ <i>J</i> _{CH}), H5 (⁴ <i>J</i> _{CH}), H6 (³ <i>J</i> _{CH}), H7 (³ <i>J</i> _{CH})	
3	125.03	-	H4 (² <i>J</i> _{CH}), H5 (³ <i>J</i> _{CH}), H7 (⁴ <i>J</i> _{CH}), H18 (² <i>J</i> _{CH})	3	137.64	-	H4 (² <i>J</i> _{CH}), H5 (³ <i>J</i> _{CH}), H6 (⁴ <i>J</i> _{CH}), H7 (⁴ <i>J</i> _{CH})	
4	132.44	7.22 (d, 1H, ${}^{3}J_{\rm HH} = 7.5$ Hz)	Н5 (² <i>J</i> _{CH}), Н6 (³ <i>J</i> _{CH}), Н18 (³ <i>J</i> _{CH})	4	126.56	8.01 (dd, 1H, ${}^{3}J_{\rm HH} = 7.9$ Hz, ${}^{4}J_{\rm HH} = 1.5$ Hz)	H5 (² <i>J</i> _{CH}), H6 (³ <i>J</i> _{CH})	
5	118.94	6.86 (t, 1H, ${}^{3}J_{\rm HH} = 7.5$ Hz)	-	5	119.23	7.14 (t, 1H, ${}^{3}J_{\rm HH} = 7.9$ Hz)	-	
6	128.61	7.28 (d, 1H, ${}^{3}J_{\rm HH} = 7.5$ Hz)	Н4 (³ <i>J</i> _{CH}), Н5 (² <i>J</i> _{CH}), Н7 (³ <i>J</i> _{CH})	6	134.95	7.94 (dd, 1H, ${}^{3}J_{\rm HH} = 7.9$ Hz, ${}^{4}J_{\rm HH} = 1.5$ Hz)	Н4 (³ <i>J</i> сн), Н5 (² <i>J</i> сн), Н7 (³ <i>J</i> сн)	
7	149.95	8.58 (s, 1H)	H6 (${}^{3}J_{CH}$), NH (${}^{3}J_{CH}$)	7	146.70	8.74 (s, 1H)	Нб (³ <i>J</i> _{CH}), NH (³ <i>J</i> _{CH})	
8	162.21	-	H10/H14 (³ <i>J</i> _{CH}), NH (² <i>J</i> _{CH})	8	162.46	-	H10/H14 (³ <i>J</i> _{CH}), NH (² <i>J</i> _{CH})	
9	127.65	-	H10/H14 (² <i>J</i> сн)	9	127.37	-	H10/H14 (² <i>J</i> сн)	
10, 14	105.32	7.27 (s, 2H)	H10/H14 (³ <i>J</i> _{CH})*, H15/H17 (⁴ <i>J</i> _{CH})	10, 14	105.38	7.28 (s, 2H)	H10/H14 (³ <i>J</i> _{CH})*, H15/H17 (⁴ <i>J</i> _{CH})	
11, 13	152.78	-	H10/H14 (² <i>J</i> _{CH} / ⁴ <i>J</i> _{CH}), H15/H17 (³ <i>J</i> _{CH})	11, 13	152.79	-	H10/H14 (² <i>J</i> _{CH} / ⁴ <i>J</i> _{CH}), H15/H17 (³ <i>J</i> _{CH})	
12	140.70	-	H10/H14 (³ Jсн), H16 (³ Jсн)	12	140.87	-	H10/H14 (³ <i>J</i> _{CH}), H16 (³ <i>J</i> _{CH})	
15, 17	56.16	3.88 (s, 6H)	-	15, 17	56.15	3.88 (s, 6H)	-	
16	60.16	3.74 (s, 3H)	-	16	60.16	3.74 (s, 3H)	-	
18	15.48	2.22 (s, 3H)	H4 (³ <i>J</i> _{CH})	-	-	-	-	
OH	-	11.89 (s, 1H)	-	OH	-	12.84 (s, 1H)	-	
NH	-	12.05 (s, 1H)	-	NH	-	12.27 (s, 1H)	-	

Table S5: ¹H (400 MHz) and ¹³C (100 MHz) NMR signal assignments for hdz-CH3 and hdz-NO2, in DMSO-*d*₆ at 25 °C.

Multiplicity: s = singlet; d = doublet; dd = double of doublets; t = triplet.

*C10 to H14 and C14 to H10

Figure S13: Electronic absorption spectra in selected wavelength regions for a solution of **hdz-NO**₂ in 10% DMSO/HEPES mixture (pH 7.4). Experimental conditions: l = 1.0 cm and $T = (25.0 \pm 0.1)$ °C. Spectra were measured at t_0 and after 12, 24, 30, and 48 h. Absorption in pure DMSO was added for the sake of comparison.