

Supporting Information

for

Nostochopcerol, a new antibacterial monoacylglycerol from the edible cyanobacterium *Nostochopsis lobatus*

Naoya Oku, Saki Hayashi, Yuji Yamaguchi, Hiroyuki Takenaka and Yasuhiro Igarashi

Beilstein J. Org. Chem. 2023, 19, 133–138. doi:10.3762/bjoc.19.13

Experimental details, characterization data and copies of spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

Experimental procedure	S2
Preparation of linoleic acid from methyl linoleate	
Chiral α -linoleyl- α' , β - O -isopropylidene glycerols 2a and 2b	
Chiral α -linoleoylglycerols 3a and 3b	
1 H (500 MHz) and 13 C (125 MHz) NMR data for compounds 2b and 3a in CDCl ₃	

MS and NMR spectra

nostochopcerol (1)

Positive ion HRESITOFMS spectrum		
¹ H NMR spectrum (CD ₃ OH, 500 MHz)	S6	
¹³ C NMR spectrum (CH ₃ OH, 125 MHz)	S7	
COSY spectrum (CH ₃ OH, 500 MHz)		
HSQC spectrum (CH ₃ OH, 500 MHz)		
HMBC spectrum (CH ₃ OH, 500 MHz)		

3-linoleoyl-1,2-O-isopropylidene-sn-glycerol (2b)

¹ H NMR spectrum (CDCl ₃ , 500 MHz)	S11
¹³ C NMR spectrum (CDCl ₃ , 125 MHz)	S12
COSY45 spectrum (CDCl ₃ , 500 MHz)	S13
HSQC spectrum (CDCl ₃ , 500 MHz)	S14
HMBC spectrum (CDCl ₃ , 500 MHz)	S15

1-linoleoyl-sn-glycerol (3a)

¹ H NMR spectrum (CDCl ₃ , 500 MHz)	S16
¹³ C NMR spectrum (CDCl ₃ , 125 MHz)	S17
COSY45 spectrum (CDCl ₃ , 500 MHz)	S18
HSQC spectrum (CDCl ₃ , 500 MHz)	S19
HMBC spectrum (CDCl ₃ , 500 MHz)	S20

Preparation of linoleic acid from methyl linoleate

Methyl linoleate (1.00 g), purchased from Tokyo Chemical Industry Co., Ltd. (product code S0325), was dissolved in a 1:1 mixture of *t*-BuOH (5 mL) and 2 N KOH (3 mL) and the solution was stirred for 3 h at an ambient temperature. After removing *t*-BuOH under reduced pressure, the resulting residue was partitioned between EtOAc (20 mL) and 2 N HCl (20 mL). The EtOAc layer was successively washed with water and brine and then slowly passed through anhydrous Na₂SO₄ to give linoleic acid (1.04 g), which was used for the next step without further purification.

Chiral α -linoleyl- α' , β -O-isopropylidene glycerols 2a and 2b

To the solution of linoleic acid (112.8 mg, 0.402 mmol for **2a**; 122.2 mg, 0.436 mmol for **2b**) in CH₂Cl₂ (3 mL) was added (*R*)- or (*S*)-solketal (2,2-dimethyl-1,3-dioxolane-4-methanol, Tokyo Chemical Industry, product codes D1705 and D1691, respectively: 59 mg, 0.45 mmol; 1.1 equiv), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (86.9 mg, 0.45 mmol: 1.1 equiv), and one crystal of *N*,*N*-dimethyl-4-aminopyridine (DMAP, \approx 5 mg), and the reaction mixture was stirred for 2.5 h at ambient temperature. After removing the solvent under reduced pressure, the resulting concentrate was passed through a short column of silica gel to remove DMAP and 1-(3-(dimethylamino)propyl)-3-ethylurea. The eluate was concentrated and purified by ODS-HPLC (solvent: 95%MeCN) to give 1-linoleoyl-2,3-*O*-isopropylidene-*sn*-glycerol (**2a**, 90.6 mg, 57.5%) and 3-linoleoyl-1,2-*O*-isopropylidene-*sn*-glycerol (**2b**, 125.0 mg, 72.7%), respectively [34].

1-Linoleoyl-2,3-*O*-isopropylidene-*sn*-glycerol (**2a**): $[\alpha]^{23.7}_{D}$ 0.69 (*c* 1.0, MeOH); HRESIMS: *m/z* 417.2969 [M + Na]⁺ (calcd for C₂₄H₄₂NaO₄, 417.2975). IR (ATR) ν_{max} 3010, 2987, 2929, 2856, 1743, 1458, 1381, 1372, 1254 sh, 1215, 1161, 1087, 1059, 976, 844, 726 cm⁻¹. ¹H and ¹³C NMR data are essentially the same as **2b**.

3-Linoleoyl-1,2-*O*-isopropylidene-*sn*-glycerol (**2b**): $[\alpha]^{23.7}_{D}$ –0.64 (*c* 1.0, MeOH); HRESIMS: *m/z* 417.2961 [M + Na]⁺ (calcd for C₂₄H₄₂NaO₄, 417.2975). IR (ATR) ν_{max} 3010, 2987, 2929, 2857, 1743, 1458, 1381, 1372, 1254 sh, 1215, 1161, 1085, 1058, 977, 844, 727 cm⁻¹; ¹H and ¹³C NMR, see Table S1.

Chiral *a*-linoleoylglycerols 3a and 3b

Compound **2a** (5.9 mg, 15.0 μ mol) or **2b** (6.2 mg, 15.7 μ mol) was dissolved in 80% aqueous acetic acid (2 mL) and the solution was stirred occasionally in a sealed 6-mL screw-capped vial at 58–59 °C for 30 min. After removing the solvents by a stream of N₂ gas, the resulting concentrate was purified by silica gel-HPLC (Cosmosil SL-II \emptyset 1 × 25 cm) eluted with *n*-hexane/EtOAc 1:1 (4 mL/min) monitored at 210 nm to give 1-linoleoyl-*sn*-glycerol (**3a**, 4.3 mg, 81.1%) or 3-

linoleoyl-sn-glycerol (3b, 5.1 mg, 91.6%), respectively [1-4].

1-Linoleoyl-*sn*-glycerol (**3a**): $[\alpha]^{22.2}_{D}$ +5.5 (*c* 0.30, MeOH); HRESIMS: *m/z* 377.2652 [M + Na]⁺ (calcd for C₂₁H₃₈NaO₄, 377.2662). IR (ATR) ν_{max} 3404, 3010, 2927, 2856, 1740, 1458, 1378, 1243, 1177, 1118, 1052, 726 cm⁻¹; ¹H and ¹³C NMR, see Table S1.

3-Linoleoyl-*sn*-glycerol (**3b**): $[\alpha]^{22.7}_{D}$ – 5.5 (*c* 0.30, MeOH); HRESIMS: *m/z* 377.2642 [M + Na]⁺ (calcd for C₂₁H₃₈NaO₄, 417.2662). IR (ATR) ν_{max} 3407, 3010, 2926, 2856, 1739, 1458, 1379, 1242, 1177, 1120, 1053, 723 cm⁻¹. ¹H and ¹³C NMR data are essentially the same as for **3a**.

References

- 1. Zhang, G.-L.; Xing, Q.-Y.; Zhang, M.-Z. Phytochemistry, 1997, 45, 1213–1215.
- 2. Kim, C.; Ha, H.; Kim, J. S.; Kim, Y. T.; Kwon, S.-C.; Park, W.-W. Arch. Pharm. Res. 2003, 26, 34–39.
- 3. Fraser, B. H.; Perlmutter, P.; Wijesundera, C. J. Am. Oil Chem. Soc. 2007, 84, 11-21.
- 4. Degenhardt, A. G.; Hofmann, T.; J. Agric. Food Chem. 2010, 58, 12906–12915.

	2b			3a	
Position	δ	$\delta_{ m H}{}^a$	$\delta_{\rm C}$	$\delta_{ m H}{}^a$	
1	173.6		173.4		
2	34.1	2.34, t (7.6), 2H	34.1	2.35, t (7.6), 2H	
3	24.9	1.62, brqui (7.3), 2H	24.9	1.63, brqui (7.2), 2H	
4	29.081^{b}	1.30, ovl	29.12	1.3068, ovl	
5	29.087^{b}	1.30, ovl	29.06	1.3076, ovl	
6	29.1	1.30, ovl	29.06	1.3076, ovl	
7	29.3 ^c	1.32, ovl, 2H	29.3^{i}	1.31, ovl, 2H	
8	27.19^{d}	2.05, ovl, 2H	27.18 ^j	2.05, ovl, 2H	
9	130.2 ^e	5.38 [/] , m, 1H	130.2^{k}	5.38 ^{<i>l</i>} , m, 1H	
10	128.1 ^g	5.323 ^{<i>h</i>} , m, 1H	128.1^{m}	5.348 ⁿ , m, 1H	
11	25.6	2.77, brt (6.6), 2H	25.6	2.77, brt (6.6), 2H	
12	127.9 ^g	5.316 ^{<i>h</i>} , m, 1H	127.9^{m}	5.32 ^{<i>n</i>} , m, 1H	
13	130.0 ^e	5.36 ^f , ovl, 1H	130.0^{k}	5.355 ^{<i>l</i>} , ovl, 1H	
14	27.18^{d}	2.05, ovl, 2H	27.15 ^j	2.05, ovl, 2H	
15	29.6 ^c	1.33, ovl, 2H	29.6^{i}	1.34, ovl, 2H	
16	31.5	1.29, ovl, 2H	31.5	1.29, ovl, 2H	
17	22.6	1.30, ovl, 2H	22.5	1.302, ovl, 2H	
18	14.1	0.89, t (7.0), 3H	14.0	0.89, t (6.9), 3H	
sn-1	66.4	3.74, dd (6.2, 8.4), 1H	63.3	3.60, dd (5.8, 11.4), 1H	
		4.07, dd (6.4, 8.6), 1H		3.70, dd (4.0, 11.5), 1H	
sn-2	73.7	4.31, m, 1H	70.3	3.93, m, 1H	
sn-3	64.5	4.09, dd (6.0, 11.5), 1H	65.2	4.15, dd (6.2, 11.7), 1H	
		4.16, dd (4.7, 11.5), 1H		4.21, dd (4.7, 11.7), 1H	
acetonide-OCO	109.8				
acetonide-CH3-1	26.7	1.43, s, 3H			
acetonide-CH ₃ -2	25.4	1.37, s, 3H			
^a Chemical shift in ppm	multiplicity (Lin Hz) integral b-uInterch	angaabla		

Table S1: $^1\mathrm{H}$ (500 MHz) and $^{13}\mathrm{C}$ (125 MHz) NMR data for compounds 2b and 3a in CDCl3.

^aChemical shift in ppm, multiplicity (J in Hz), integral. ^{b-u}Interchangeable.

Mass Spectrum Molecular Formula Report

Positive ion HRESITOFMS spectrum of nostochopcerol (1)

¹H NMR spectrum of nostochopcerol (1) (500 MHz, CD₃OH)

¹³C NMR spectrum of nostochopcerol (1) (125 MHz, CD₃OH)

COSY spectrum of nostochopcerol (1) (500 MHz, CD₃OH)

HSQC spectrum of nostochopcerol (1) (500 MHz, CD₃OH)

HMBC spectrum of nostochopcerol (1) (500 MHz, CD₃OH)

¹H NMR spectrum of 3-linoleoyl-1,2-*O*-isopropylidene-*sn*-glycerol (**2b**) (500 MHz, CDCl₃)

¹³C NMR spectrum of 3-linoleoyl-1,2-O-isopropylidene-sn-glycerol (2b) (500 MHz, CDCl₃)

COSY45 spectrum of 3-linoleoyl-1,2-O-isopropylidene-sn-glycerol (2b) (500 MHz, CDCl₃)

HSQC spectrum of 3-linoleoyl-1,2-O-isopropylidene-sn-glycerol (2b) (500 MHz, CDCl₃)

HMBC spectrum of 3-linoleoyl-1,2-O-isopropylidene-sn-glycerol (2b) (500 MHz, CDCl₃)

S16

S17

COSY45 spectrum of 1-linoleoyl-*sn*-glycerol (**3a**) (500 MHz, CDCl₃)

HSQC spectrum of 1-linoleoyl-*sn*-glycerol (**3a**) (500 MHz, CDCl₃)

HMBC spectrum of 1-linoleoyl-*sn*-glycerol (**3a**) (500 MHz, CDCl₃)