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S1 

Model architectures comparison  

Classification accuracy 

We evaluated the deep neural network model against two different techniques based on decision 
trees: a Random forest (RF)[1], an XGBoost (XGB) [2]. The Random forest (RF) and XGBoost 
(XGB) are both ”off-the-shelf” models from scikit-learn and xgboost libraries [2,3]. We performed a 
grid search with 5-fold cross-validation to select best hyperparameters for both models. RF was 
composed of 600 binary decision trees estimators with a maximum depth of 5, while XGB obtained 
its best performances for 100 estimators, a maximum depth of 4 and a learning rate of 0.2.  

Table S1 presents the classification accuracy for the validation subset (30% of set 1) and set 2. RF 
and DNN successfully predict all the validation examples whereas XGB reaches 99.94% accuracy. 

Table S1: Model accuracy for validation on the first dataset and testing on the exogenous dataset.  

 RF XGB DNN 

Validation (30% of 
dataset 1) 

100 % 99.94% 100 % 

Testing (dataset 2) 99.91% 99.61% 99.98% 

 

The models performances and their ability to generalize were further tested on set 2, which is by 
construction fully uncorrelated with the initial training and validation sets: set 2 was produced from 
an independent set of experimental data, moreover, these data were acquired on a different 
instrumental setup. An accurate prediction of more than 99.5% was obtained for all three models 
on over 8000 augmented spectra. 

We compared accuracies of all three methods as function of the data augmentation parameters we 
explored. It is illustrated in Figure 1 and shows an advantage of DNN and RF versus XGB. It is due 
to the fact that XGB only uses a limited amount of spectral bins to infer categories. 

  

Figure S1: Model accuracies on test dataset as a function of data augmentation parameters. 
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Finally, we have compared the three methods over discriminating out of sample molecules from 
the 4 known categories. It can be represented as a binary problem. We have investigated which 
model performed best based on the mean predicted probability for the infered category. In the case 
of the two ensemble models (RF and XGB) it corresponds to the average probability over all 
estimators binary results. For the DNN, the model output probability distribution was computed for 
each category by running it 200 times on each sample and by extracting the mean value of the 
obtained distribution for the predicted category.  

By varying a threshold value to discriminate ”good” spectra (properly predicted in one of the 4 
known monosaccahride categories) from ”bad” ones (unknown spectra or wrongly predicted) on 
the basis of the mean prediction probability we could build a receiver operating characteristic 
(ROC) curve for each model (Figure S2) that shows the relation between the true and false positive 
rates (TPR and FPR) or sensitivity versus specificity. 

The DNN appears to discriminate the samples way more efficiently than the two other methods: 
the area under the curve is maximized for this model and its TPR is above 80% for FPR = 0 when 
RF and XGB obtain ≈70% and ≈50%, respectively. Using the DNN therefore minimizes the amount 
of false negatives that would require manual audit and constitute a clear advantage over the other 
two methods in real experimental conditions. 

 

Figure S2: ROC curves for the DNN (blue), RF (yellow), and XGB (green).  
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