Supporting Information

for

Controlling the reactivity of $\mathrm{La}_{\mathrm{C}} \mathrm{C}_{82}$ by reduction: reaction of the La@C 82 anion with alkyl halide with high regioselectivity

Yutaka Maeda, Saeka Akita, Mitsuaki Suzuki, Michio Yamada, Takeshi Akasaka, Kaoru Kobayashi and Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858-1866. doi:10.3762/bjoc.19.138

Additional experimental data

1st stage: reaction mixture column: Buckyprep $20 \times 250 \mathrm{~mm}$ eluent: toluene $9.9 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

2nd stage: Fr. 1 column: 5PBB $10 \times 250 \mathrm{~mm}$ eluent: toluene $5 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

3rd stage: Fr. 2 column: Buckyprep $20 \times 250 \mathrm{~mm}$ eluent: toluene $9.9 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

Figure S1: HPLC separation/isolation schemes for 2a, 3a, 4a, and 5a.

Figure S2: Changes in absorption spectra during the reaction of $\mathrm{La} @ \mathrm{C}_{2 r} \mathrm{C}_{82}$ with (a) $\mathbf{1 b}$ and (b) 1c.

1st stage: reaction mixture column: Buckyprep 20×250 mm eluent: toluene $9.9 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

2nd stage: Fr. 1
column: 5PBB $10 \times 250 \mathrm{~mm}$ eluent: toluene $5 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

3rd stage: Fr. 2 column: Buckyprep $20 \times 250 \mathrm{~mm}$ eluent: toluene $9.9 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

Figure S3: HPLC separation/isolation schemes for $\mathbf{2 b}, \mathbf{3 b}, \mathbf{4 b}$, and $\mathbf{5 b}$.

Figure S4: HPLC profiles and MALDI-TOF mass (positive mode) spectra of $\mathbf{2 b}$, 3b, 4b, and 5b. HPLC conditions: column, Buckyprep ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$); eluent, toluene; flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; detector, UV detector, 330 nm .

1st stage: reaction mixture column: Buckyprep 20×250 mm eluent: toluene $9.9 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

2nd stage: Fr. 1
column: 5PBB $10 \times 250 \mathrm{~mm}$ eluent: toluene $5 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

3rd stage: Fr. 2
column: Buckyprep $20 \times 250 \mathrm{~mm}$ eluent: toluene $9.9 \mathrm{ml} / \mathrm{min}$ detector: 330 nm

Figure S5: HPLC separation/isolation schemes for $\mathbf{2 c}, \mathbf{3 c}, \mathbf{4 c}$, and $5 \mathbf{c}$.

Figure S6: HPLC profiles and MALDI-TOF mass (positive mode) spectra of 2c, 3c, 4c, and 5c. HPLC conditions: column, Buckyprep ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$); eluent, toluene; flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; detector, UV detector, 330 nm .

Figure S7: ORTEP drawings of an independent unit of 3a.

Table S1: Crystal data of 2(3a)•3CS2 (CCDC No. 2299232).

formula	$\mathrm{C}_{183} \mathrm{H}_{18} \mathrm{La}_{2} \mathrm{~S}_{6}$
formula weight	2686.16
color, habit	black, block
crystal system	monoclinic
space group	$P_{2}($ No. 4$)$
$T(\mathrm{~K})$	90
$a(\AA \AA)$	$16.4784(8)$
$b\left(\AA \AA^{\circ}\right)$	$14.5513(8)$
$c(\AA)$	$19.6146(9)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left(^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	$4703.2(4)$
Z	2
$\rho_{\text {calc }}$	1.897
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	1.110
crystal size (mm)	$0.690 \times 0.240 \times 0.180$
radiation (λ / \AA)	fine-focus sealed tube (0.71073)
reflection collected	70164
independent reflections	36557
data $(I>2 \sigma(\Lambda) /$ parameter/restraints	$33932 / 1771 / 4430$
$R_{\text {int }}$	0.0486
$R_{1} / w R_{2} / \mathrm{GOF}($ all data $)$	$0.2235 / 0.5384 / 2.461$
$R 1 / w R_{2} / \mathrm{GOF}(I>2 \sigma(\Lambda))$	$0.2180 / 0.5297 / 2.554$

The reason for the large R value is that the quality of the crystal is poor. This crystal data suggested an orthorhombic space group, but an initial structure could not be obtained. Therefore, the initial structure was shown in the monoclinic space group when the symmetry was lowered. This crystal data was analyzed based on this initial structure.

