Supporting Information

for

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

Nedra Touj, François Mazars, Guillermo Zaragoza and Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947-1956. doi:10.3762/bjoc.19.145

Experimental procedures, X-ray crystal structure determinations, copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and FTIR spectra

Table of contents

1. General information S2
2. Synthesis of triazolium iodides 5a-f and their precursors S2
2.1. Synthesis of 2-azido-1,3,5-trimethylbenzene S2
2.2. Synthesis of 1-mesityl-4-phenyl-1H-1,2,3-triazole S3
2.3. Synthesis of 4-butyl-1-mesityl-1H-1,2,3-triazole. S4
2.4. Synthesis of 1-(2,6-diisopropylphenyl)-4-phenyl-1H-1,2,3-triazole. S4
2.5. Synthesis of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5a) S5
2.6. Synthesis of 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5b) 56
2.7. Synthesis of 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5c) 56
2.8. Synthesis of 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5d) S7
2.9. Synthesis of 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium iodide (5e) S7
2.10. Synthesis of 4-butyl-3-ethyl-1-mesityl-1H-1,2,3-triazol-3-ium iodide (5f). 8
3. Synthesis of CAAC•CS ${ }_{2}$ zwitterions with $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$ S8
3.1. Typical procedure S8
3.2. Analytical data for CAAC-Mes-Cy•CS (4a) 59
3.3. Analytical data for CAAC-Dip-Cy•CS 2 (4b) S9
3.4. Analytical data for CAAC-Die-MePh $\cdot \mathrm{CS}_{2}$ (4c) S10
4. Synthesis of MIC•CS ${ }_{2}$ zwitterions with $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$ S10
4.1. Typical procedure S10
4.2. Analytical data for MIC-Mes-Ph-Me•CS 2 (6a) S11
4.3. Analytical data for MIC-Dip-Ph-Me-CS2 (6b). S11
5. Synthesis of MIC•CS z $_{2}$ witterions with $\mathrm{NaO}^{t} \mathrm{Bu}$ S11
5.1. Typical procedure S11
5.2. Analytical data for MIC-Mes-Ph-Et•CS CS_{2} (6c) S12
5.3. Analytical data for MIC-Mes-Ph-iPr-CS CS_{2} (6d) S12
5.4. Analytical data for MIC-Mes-Bu-Me-CS 2 (6e) S12
5.5. Analytical data for MIC-Mes-Bu-Et•CS ${ }_{2}$ (6f) S13
6. X-ray crystal structure determinations S13
6.1. Experimental details S13
6.2. Crystal data for CAAC-Mes-Cy•CS 2 (4a) S14
6.3. Crystal data for CAAC-Die-MePh $\cdot \mathrm{CS}_{2}$ (4c) S14
6.4. Crystal data for MIC-Dip-Ph-Me•CS 2 (6b) S14
6.5. Crystal data for MIC-Mes-Bu-Me•CS ${ }_{2}$ (6e). S14
7. References S15
8. NMR Spectra S16
9. IR Spectra S35

1. General information

The aldiminium hydrogen dichloride $\mathbf{3 b}$ (CAAC-Dip-Cy• 2 HCl) was purchased from TCl and the tetrafluoroborate salts 3a (CAAC-Mes-Cy• HBF_{4}) (Apeiron AS1056) and 3c (CAAC-Die-MePh•HBF4) (Apeiron AS1042) were kindly supplied by Apeiron Synthesis. All the syntheses of dithiocarboxylate zwitterions were carried out under a dry argon or nitrogen atmosphere using standard Schlenk techniques. Solvents were distilled from appropriate drying agents and deoxygenated prior to use. Sodium tert-butoxide and potassium bis(trimethylsilyl)amide (1 M solution in THF) were purchased from Aldrich. All the other chemicals were purchased from Aldrich or TCI and used without any further purification. Melting points were measured with an Electrothermal 9100 apparatus and are not corrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 298 K on a Bruker DRX 400 spectrometer operating at 400.13 and 100.62 MHz , respectively. Chemical shifts are listed in parts per million downfield from TMS and are referenced from the solvent peaks or TMS. Infrared spectra were recorded in the ATR mode on a Nicolet iS5 FT-IR spectrometer. Electrospray ionization mass spectra were obtained using a Micromass LCT Premier instrument. Elemental analyses were carried out in the Laboratory of Pharmaceutical Chemistry at the University of Liège.

2. Synthesis of triazolium iodides 5a-f and their precursors

2.1. Synthesis of 2-azido-1,3,5-trimethylbenzene

Caution: azides are heat- and shock-sensitive compounds that may decompose violently. They must be handled using appropriate safety precautions. Any attempt to scale up the procedures listed below should be carefully evaluated.

A saturated aqueous solution of $\mathrm{NaNO}_{2}(5.17 \mathrm{~g}, 75 \mathrm{mmol})$ was added to a mixture of 2,4,6-trimethylaniline ($6.46 \mathrm{~g}, 48 \mathrm{mmol}$), water (20 mL), and $\mathrm{AcOH}(20 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. After 1 h , a saturated aqueous solution of $\mathrm{NaN}_{3}(5.72 \mathrm{~g}, 88 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and further stirred for 1 h . It was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and distilled water (100 mL). Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was slowly added until the pH of the aqueous phase reached 7. The two phases were separated and the aqueous phase was
extracted with additional $\mathrm{Et}_{2} \mathrm{O}(2 \times 60 \mathrm{~mL})$. The combined organic phases were washed with distilled water (40 mL) and brine (40 mL). The resulting organic phase was dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated on a rotary evaporator and dried under high vacuum to afford the desired mesityl azide as a yellow-orange oil kept in a refrigerator (6.96 g, 90\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=6.84\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}}\right.$), $2.34\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.26 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}, p-$ CH_{3}). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=135.4\left(p-\mathrm{C}_{\mathrm{ar}}\right), 134.5(\mathrm{CN}), 131.9\left(o-\mathrm{C}_{\mathrm{ar}}\right), 129.6\left(m-\mathrm{CH}_{\mathrm{ar}}\right)$, $20.8\left(p-\mathrm{CH}_{3}\right), 18.1 \mathrm{ppm}\left(o-\mathrm{CH}_{3}\right)$. These data matched those reported in the literature [1].

2.2. Synthesis of 1-mesityl-4-phenyl-1H-1,2,3-triazole

2-Azido-1,3,5-trimethylbenzene ($6.7 \mathrm{~g}, 42 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(27 \mathrm{~mL})$ in a 100 mL round-bottomed flask and the solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath. A solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.04 \mathrm{~g}, 4.16 \mathrm{mmol})$ and sodium ascorbate ($3.95 \mathrm{~g}, 20 \mathrm{mmol}$) in water (14 mL) followed by phenylacetylene ($6.45 \mathrm{~g}, 63.17 \mathrm{mmol}$) were added dropwise. The reaction mixture was slowly warmed to room temperature and stirred overnight. Acetonitrile was removed on a rotary evaporator and a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to dissolve the solid materials. The reaction was quenched by adding a concentrated solution of aqueous $\mathrm{NH}_{4} \mathrm{OH}$ until the pH became basic and the resulting mixture was stirred for 3 h at room temperature. It was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 30 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous MgSO_{4}. The solvent was removed on a rotary evaporator and the crude product was recrystallized from n-heptane to yield pure 1-mesityl-4-phenyl-1H-1,2,3-triazole as a white solid ($7.47 \mathrm{~g}, 68 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=7.93\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 7.47(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), $7.37\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right.$), 7.01 ($\mathrm{s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right.$ Mes), $2.02 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3} \mathrm{Mes}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=147.7\left(\mathrm{C}_{\mathrm{ar}}\right), 140.2$ ($p-\mathrm{C}_{\mathrm{ar}}$ Mes), 135.3 (o-Car Mes), 133.6 ($i-C_{a r}$ Mes), 130.6 ($i-\mathrm{C}_{\mathrm{ar}} \mathrm{Ph}$), 129.3 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), 129.1 (o-CHar Ph), $128.4\left(p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 125.9\left(m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 121.6(\mathrm{NCH}), 21.3$ ($p-\mathrm{CH}_{3} \mathrm{Mes}$), $17.5 \mathrm{ppm}\left(o-\mathrm{CH}_{3} \mathrm{Mes}\right)$. These data matched those reported in the literature [2].

2.3. Synthesis of 4-butyl-1-mesityl-1H-1,2,3-triazole

2-Azido-1,3,5-trimethylbenzene ($3.44 \mathrm{~g}, 15 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ in a 50 mL round-bottomed flask and the solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath. A solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.37 \mathrm{~g}, 1.5 \mathrm{mmol})$ and sodium ascorbate ($1.39 \mathrm{~g}, 7 \mathrm{mmol}$) in water (5 mL) followed by 1-hexyne ($1.83 \mathrm{~g}, 22.3 \mathrm{mmol}$), were added dropwise. The reaction mixture was slowly warmed to room temperature and stirred overnight. The reaction was quenched by adding a concentrated solution of aqueous $\mathrm{NH}_{4} \mathrm{OH}$ until the pH became basic and the resulting mixture was stirred overnight at room temperature. It was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous MgSO_{4}. The solvent was removed on a rotary evaporator and the residue was dried under high vacuum to yield 4-butyl-1-mesityl-1H-1,2,3triazole as a dark yellow oil ($3.14 \mathrm{~g}, 88 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=7.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 6.92\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}\right), 2.78(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), 2.29 (s, 3H, $p-\mathrm{CH}_{3} \mathrm{Mes}$), 1.90 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3} \mathrm{Mes}$), 1.69 (quint, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), 1.38 (sext, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), $0.91 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K): $\delta=148.1$ (C_{ar}), 139.7 ($p-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 135.1 (o-Car Mes), 133.7 ($i-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 128.9 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), 122.5 (NCH), $31.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $25.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right), 22.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Bu}\right), 21.1$ ($p-\mathrm{CH}_{3} \mathrm{Mes}$), 17.2 $\left(o-\mathrm{CH}_{3} \mathrm{Mes}\right), 13.8 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Bu}\right)$. These data matched those reported in the literature [3].

2.4. Synthesis of 1-(2,6-diisopropylphenyl)-4-phenyl-1H-1,2,3-triazole

Freshly distilled 2,6-diisopropylaniline ($5.56 \mathrm{~g}, 31 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ in a 50 mL round-bottomed flask and the solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath. $90 \% t$-BuONO ($6.21 \mathrm{~mL}, 4.85 \mathrm{~g}, 47 \mathrm{mmol}$) and $95 \% \mathrm{Me}_{3} \mathrm{SiN}_{3}(5.12 \mathrm{~mL}, 4.34 \mathrm{~g}, 37 \mathrm{mmol})$ were sequentially added dropwise at $0{ }^{\circ} \mathrm{C}$, and stirring was maintained for 2 h at $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.79 \mathrm{~g}$, 3.1 mmol) and sodium ascorbate ($3.09 \mathrm{~g}, 15 \mathrm{mmol}$) in water (10 mL) followed by phenylacetylene
$(4.74 \mathrm{~g}, 47 \mathrm{mmol})$ were added dropwise. The reaction mixture was slowly warmed to room temperature and stirred overnight. The reaction was quenched by adding a concentrated solution of aqueous $\mathrm{NH}_{4} \mathrm{OH}$ until the pH became basic and the resulting mixture was stirred overnight at room temperature. It was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous MgSO_{4}. The solvent was removed on a rotary evaporator and the crude product was washed with n-pentane to yield 1-(2,6-diisopropylphenyl)-4-phenyl-1H-1,2,3triazole as a white solid ($2.86 \mathrm{~g}, 30 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.01-7.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 7.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 7.52(\mathrm{dt}, \mathrm{J}=$ $13.3,7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), $7.43-7.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Dip}\right), 7.34$ (d, J=7.8 Hz, 2H, CH ar Dip), 2.37 (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}$), 1.20 ($\mathrm{d}, \mathrm{J}=8.0, \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$), $1.18 \mathrm{ppm}\left(\mathrm{d}, J=4.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right.$).
 $130.4\left(p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 129.0\left(m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 128.4$ ($\left.p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Dip}\right)$, 125.8 ($o-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 123.9 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Dip}$), 122.4 (NCH), 28.4 (CH iPr), $24.4\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, $24.1 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$. These data matched those reported in the literature [4].

2.5. Synthesis of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5a)

1-Mesityl-4-phenyl-1H-1,2,3-triazole ($2.5 \mathrm{~g}, 9.5 \mathrm{mmol}$), acetonitrile (16 mL), and methyl iodide ($8.1 \mathrm{~g}, 57 \mathrm{mmol}, 6$ equiv) were stirred and heated in a closed Schlenk tube placed in an oil bath at $80^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the solvent was removed on a rotary evaporator. The orange sticky residue was washed with hot ethyl acetate ($6 \times 10 \mathrm{~mL}$) and dried under high vacuum to afford 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide as an offwhite solid ($3.6 \mathrm{~g}, 94 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.03$ (s, 1H, NCH), $8.06-7.95$ ($\mathrm{m}, 2 \mathrm{H}, m-\mathrm{CH}_{\text {ar }} \mathrm{Mes}$), 7.60 (dd, $\left.J=5.3,1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 7.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right)$, $4.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Me}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3} \mathrm{Mes}\right), 2.21$ ppm ($\mathrm{s}, 6 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3} \mathrm{Mes}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=144.4$ (Car^{2}), 142.8 ($p-\mathrm{C}_{\text {ar }} \mathrm{Mes}$), 134.6 (o-Car Mes), 132.3 ($p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 131.3 ($i-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 130.6 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), 130.3 (NCH), 130.1 (o-CH ar Ph), 129.9 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 121.4 ($i-\mathrm{C}_{\mathrm{ar}} \mathrm{Ph}$), 40.8 ($\mathrm{CH}_{3} \mathrm{Me}$), 21.4 ($p-\mathrm{CH}_{3} \mathrm{Mes}$), 18.7 ppm ($o-\mathrm{CH}_{3} \mathrm{Mes}$). These data matched those reported in the literature [5].
2.6. Synthesis of 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5b)

1-(2,6-Diisopropylphenyl)-4-phenyl-1H-1,2,3-triazole ($2.86 \mathrm{~g}, 9.4 \mathrm{mmol}$), acetonitrile (17 mL), and methyl iodide ($8.04 \mathrm{~g}, 56.4 \mathrm{mmol}, 6$ equiv) were stirred and heated in a closed Schlenk tube placed in an oil bath at $80^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the solvent was removed on a rotary evaporator. The solid residue was washed with ethyl acetate ($5 \times 10 \mathrm{~mL}$) and dried under high vacuum to afford 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide as an off-white solid ($3.23 \mathrm{~g}, 76 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=8.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 8.14-8.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right) 7.68-7.58(\mathrm{~m}$, $4 \mathrm{H}, 3 \mathrm{HCH}$ ar $\left.\mathrm{Ph}+1 \mathrm{H} p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Dip}\right), 7.39$ (d, J = 7.9 Hz, 2H, m-CHar Dip), 4.66 (s, 3H, CH3 Me), 2.53 (hept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{iPr}$), 1.26 (d, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$), $1.23 \mathrm{ppm}\left(\mathrm{d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right.$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=145.8\left(\mathrm{C}_{\mathrm{ar}}\right), 144.5$ (o- $\left.\mathrm{C}_{\mathrm{ar}} \mathrm{Dip}\right), 133.1\left(p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 132.4$ ($p-\mathrm{CH}_{\mathrm{ar}}$ Dip), 130.7 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 130.6 (NCH), 129.9 (o- $\left.\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 125.0\left(\mathrm{CH}_{\mathrm{ar}} \mathrm{Dip}\right), 121.2\left(i-\mathrm{C}_{\mathrm{ar}} \mathrm{Ph}\right), 41.2\left(\mathrm{CH}_{3}\right.$ Me), $29.0(\mathrm{CH} \mathrm{iPr}), 24.8\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 24.2\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$. These data matched those reported in the literature [6].

2.7. Synthesis of 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5c)

1-Mesityl-4-phenyl-1H-1,2,3-triazole ($1.5 \mathrm{~g}, 5.7 \mathrm{mmol}$), acetonitrile (16 mL), and ethyl iodide ($5.33 \mathrm{~g}, 34 \mathrm{mmol}, 6$ equiv) were stirred and heated in a closed Schlenk tube placed in an oil bath at $80^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the solvent was removed on a rotary evaporator. The dark red sticky residue was washed with hot ethyl acetate ($6 \times 10 \mathrm{~mL}$) and dried under high vacuum to afford 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide as a pale orange powder (1.28 g, 54\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 8.05-7.96$ (m, 2H, m-CHar Mes), 7.62 (dd, $\left.J=5.2,1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 7.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 4.92\left(\mathrm{q}, J=7.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Et}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3}\right.$

Mes), 2.23 (s, 6H, o-CH3 Mes), $1.68 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=7.3,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Et}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ $=143.8$ (Carar), 142.8 ($p-\mathrm{C}_{\mathrm{ar}}$ Mes), 134.6 (o-Car Mes), 132.3 ($p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 131.4 ($i-\mathrm{Car}_{\mathrm{ar}} \mathrm{Mes}$), 130.7 (NCH), $130.5\left(m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}\right), 130.2\left(o-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 130.0\left(m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 121.4\left(i-\mathrm{C}_{\mathrm{ar}} \mathrm{Ph}\right), 49.3\left(\mathrm{CH}_{2} \mathrm{Et}\right), 21.4\left(p-\mathrm{CH}_{3}\right.$ Mes), 18.6 (o- $\mathrm{CH}_{3} \mathrm{Mes}$), $14.3 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Et}\right)$.

2.8. Synthesis of 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5d)

1-Mesityl-4-phenyl-1H-1,2,3-triazole ($3.16 \mathrm{~g}, 12 \mathrm{mmol}$), acetonitrile (20 mL), and 2-iodopropane ($12.24 \mathrm{~g}, 72 \mathrm{mmol}, 6$ equiv) were stirred and heated in a closed Schlenk tube placed in an oil bath at $80^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the solvent was removed on a rotary evaporator. The sticky residue was washed with ethyl acetate ($6 \times 10 \mathrm{~mL}$) and dried under high vacuum to afford 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide as a pale yellow solid ($2.3 \mathrm{~g}, 44 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=9.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 7.98-7.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 7.62(\mathrm{~m}, \mathrm{~J}=$ 4.9, 1.9 Hz, 3H, CH ar Ph), 7.05 ($\mathrm{s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}}$ Mes), 5.24 (hept, J = 6.7, 2H, CH iPr), 2.36 (s, 3H, $p-\mathrm{CH}_{3}$ Mes), 2.18 (s, $6 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3} \mathrm{Mes}$), $1.73 \mathrm{ppm}\left(\mathrm{d}, \mathrm{J}=7.3,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right.$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=143.1$ ($p-\mathrm{C}_{\mathrm{ar}}$ Mes), 142.7 (Car), 134.3(o-Car Mes), 132.3 ($m-\mathrm{CH}_{\mathrm{ar}}$ Mes), 131.4 (i-Car Mes), 130.7 ($p-$ $\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 130.5 ($o-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), $130.2\left(m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right)$, $130.0(\mathrm{NCH})$, 121.4 ($i-\mathrm{C}_{\mathrm{ar}} \mathrm{Ph}$), $49.3\left(\mathrm{CH}_{3}\right), 21.4$ ($p-$ $\left.\mathrm{CH}_{3} \mathrm{Mes}\right)$, 18.6 (o-CH3 Mes), $14.3 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Et}\right)$.
2.9. Synthesis of 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium iodide (5e)

4-Butyl-1-mesityl-1H-1,2,3-triazole ($1.5 \mathrm{~g}, 6.2 \mathrm{mmol}$), acetonitrile (11 mL), and methyl iodide ($5.25 \mathrm{~g}, 37 \mathrm{mmol}, 6$ equiv) were stirred and heated in a closed Schlenk tube placed in an oil bath at $80^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the solvent was removed on a rotary evaporator. The brown solid residue was washed with hot ethyl acetate ($1 \times 60 \mathrm{~mL}$) and dried under high vacuum to afford 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium iodide as a white solid ($1.93 \mathrm{~g}, 81 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.46$ (s, 1H, NCH), 7.03 (s, 2H, $m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), 4.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ Me), $3.24\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3} \mathrm{Mes}\right), 2.11\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3} \mathrm{Mes}\right), 1.84$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), 1.51 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), $0.98 \mathrm{ppm}\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Bu}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=146.5$ (Carar), 142.6 ($p-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 134.5 (o-Car Mes), 131.3 ($i-\mathrm{C}_{\mathrm{ar}}$ Mes), 130.3 (NCH), $130.0\left(m-\mathrm{CH}_{\text {ar }} \mathrm{Mes}\right)$, $40.0\left(\mathrm{CH}_{3} \mathrm{Me}\right)$, $29.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $24.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $22.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Bu}\right)$, $21.3\left(p-\mathrm{CH}_{3} \mathrm{Mes}\right), 18.2$ (o- $\left.\mathrm{CH}_{3} \mathrm{Mes}\right), 13.9 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Bu}\right)$.

2.10. Synthesis of 4-butyl-3-ethyl-1-mesityl-1H-1,2,3-triazol-3-ium iodide (5f)

4-Butyl-1-mesityl-1H-1,2,3-triazole ($1.5 \mathrm{~g}, 6.2 \mathrm{mmol}$), acetonitrile (11 mL), and ethyl iodide (5.77 g , $37 \mathrm{mmol}, 6$ equiv) were stirred and heated in a closed Schlenk tube placed in an oil bath at $80^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the solvent was removed on a rotary evaporator. The solid residue was washed with hot ethyl acetate $(1 \times 30 \mathrm{~mL})$ and dried under high vacuum to afford 4-butyl-3-ethyl-1-mesityl-1H-1,2,3-triazol-3-ium iodide as a pale yellow solid ($2.94 \mathrm{~g}, 84 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=8.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 7.05\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}\right), 4.81(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Et}$), 3.26 (t, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3} \mathrm{Mes}$), 2.12 ($\mathrm{s}, 6 \mathrm{H}, o-\mathrm{CH}_{3} \mathrm{Mes}$), 1.86 (sext, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), $1.74\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Et}\right.$), 1.52 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), $1.00 \mathrm{ppm}\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=145.9\left(\mathrm{C}_{\mathrm{ar}}\right), 142.7\left(p-\mathrm{C}_{\mathrm{ar}}\right.$ Mes), 134.5 (o-Car Mes), 131.5 ($i-\mathrm{C}_{\text {ar }} \mathrm{Mes}$), 130.5 (NCH), 130.0 ($m-\mathrm{CH}_{\text {ar }} \mathrm{Mes}$), 48.4 ($\mathrm{CH}_{2} \mathrm{Et}$), 29.6 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right), 24.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $22.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Bu}\right)$, 21.4 ($p-\mathrm{CH}_{3} \mathrm{Mes}$), 18.1 (o- $\mathrm{CH}_{3} \mathrm{Mes}$), 14,0 $\left(\mathrm{CH}_{3} \mathrm{Et}\right), 13.9 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Bu}\right)$.

3. Synthesis of CAAC•CS $\mathbf{C l}_{2}$ zwitterions with $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$

3.1. Typical procedure

An oven-dried 50 mL round-bottomed flask equipped with a magnetic stirring bar and capped with a three-way stopcock was charged with an aldiminium salt (2.5 mmol). The reactor was purged of air by applying three vacuum/nitrogen cycles before dry THF (25 mL) was added. The suspension was cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath before a 1 M solution of $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in THF ($3 \mathrm{~mL}, 3 \mathrm{mmol}$) was slowly added with a syringe. The cooling bath was removed and the reaction mixture was
stirred for 30 min at room temperature. After the solid had settled down, the supernatant solution was transferred with a cannula and filtered through Celite under an inert atmosphere into a twoneck 100 mL round-bottomed flask equipped with a magnetic stirring bar and capped with a threeway stopcock. The filtering device was rinsed twice with dry THF ($2 \times 5 \mathrm{~mL}$). Carbon disulfide $(0.5 \mathrm{~mL}, 8.3 \mathrm{mmol})$ was added with a syringe to the carbene solution. A color change occurred instantaneously. After 30 min of stirring at room temperature, the solvent was evaporated under vacuum. The residue was brought back to air, washed twice with n-pentane ($2 \times 5 \mathrm{~mL}$), and dried under high vacuum.

3.2. Analytical data for CAAC-Mes-Cy•CS2 (4a)

Dark red crystals obtained by recrystallization from acetonitrile ($0.54 \mathrm{~g}, 60 \%$ yield); m.p. $216-218{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=6.92\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}}\right), 2.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36(\mathrm{~s}, 6 \mathrm{H}$, $\left.o-\mathrm{CH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3}\right), 2.09-2.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy}), 1.83-1.79(\mathrm{~m}, 2 \mathrm{H}$, Cy), 1.71-1.68 (m, 1H, Cy), 1.50 ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.44-1.37$ (m, 2H, Cy), 1.29-1.20 ppm (m, 1H, Cy). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=230.5$ (CS_{2}), 188.7 (CCS_{2}), 140.0 ($p-\mathrm{Car}_{\mathrm{ar}} \mathrm{Mes}$), 135.7 (o-Car Mes), 130.8 ($m-\mathrm{CH}_{\text {ar }}$ Mes), 129.8 ($i-\mathrm{C}_{\text {ar }}$ Mes), $77.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 52.8 (spiro-C) $46.1\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2} \mathrm{Cy}\right)$, $29.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.0\left(\mathrm{CH}_{2} \mathrm{Cy}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{Cy}\right) 22.2\left(o-\mathrm{CH}_{3} \mathrm{Mes}\right)$. $20.9 \mathrm{ppm}\left(p-\mathrm{CH}_{3} \mathrm{Mes}\right)$; IR (ATR): $v=$ 2922 (m), 2851 (w), 1552 (s$), 1442$ (m), 1377 (m), 1157 (m), 1037 (s$), 983$ (m), 852 (m), 702 (m), $566(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{~S}_{4}+\mathrm{K}^{+}$: 757.31144 [2M+K]+; found: 757.31945; elemental analysis calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NS}_{2}$: C 70.14, H 8.13, N 3.90, S 17.83; found: C $69.82, \mathrm{H} 8.11, \mathrm{~N}$ 4.02, S 16.64.

3.3. Analytical data for CAAC-Dip-Cy•CS 2 (4b)

Orange-brown microcrystalline powder ($0.79 \mathrm{~g}, 78 \%$ yield); m.p. $225^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=7.39(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{p}-$ $\mathrm{CH}_{\mathrm{ar}}$), 7.24 (d, $J=8.0,2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}}$), 2.93 (sept, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ iPr), 2.39 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.10-2.06 (m, 4H, Cy), 1.83-1.79 (m, 2H, Cy), 1.70-1.67 (m, $1 \mathrm{H}, \mathrm{Cy}$), $1.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.44-1.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cy}), 1.31\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.28$ (d, $\mathrm{J}=8.0$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right), 1.24-1.21 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}, \mathrm{Cy}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=227.7\left(\mathrm{CS}_{2}\right)$,
 53.3 (spiro-C) $45.9\left(\mathrm{CH}_{2}\right)$, $39.9\left(\mathrm{CH}_{2} \mathrm{Cy}\right)$, $29.9(\mathrm{CH} \mathrm{iPr}), 29.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.0\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 26.0\left(\mathrm{CH}_{3} \mathrm{iPr}\right)$, 25.0 ($\mathrm{CH}_{2} \mathrm{Cy}$), $23.1 \mathrm{ppm}\left(\mathrm{CH}_{2} \mathrm{Cy}\right)$; IR (ATR): $v=2927(\mathrm{~m})$, 2857 (m), 1536 (s$), 1446$ (m), 1143 (m),

1050 (s), 932 (m), 808 (m), 694 (m) cm ${ }^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{~S}_{4}+\mathrm{K}^{+}: 841.40534$ $[2 M+K]^{+}$; found: 841.41947; elemental analysis calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NS}_{2}$: C 71.77, H 8.78, N 3.49, S 15.96; found: C 71.33, H 8.47, N 3.77, S 16.04.

3.4. Analytical data for CAAC-Die-MePh•CS 2 (4c)

Dark red crystals obtained by recrystallization from acetonitrile ($0.52 \mathrm{~g}, 52 \%$ yield); m.p. $230{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $298 \mathrm{~K}): \delta=6.69-7.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.41-7.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 3.17$ (d, $\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00-2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Et}\right), 3.67-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $\mathrm{Et}), 2.63\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27$ $\operatorname{ppm}\left(q, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Et}\right) ;{ }_{-}^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta=228.8\left(\mathrm{CS}_{2}\right), 188.2\left(\mathrm{CCS}_{2}\right)$, $142.5\left(\mathrm{Car}_{\mathrm{ar}}\right), 141.7\left(\mathrm{C}_{\mathrm{ar}}\right), 141.2\left(\mathrm{Car}_{\mathrm{ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.1\left(\mathrm{CH}_{\mathrm{ar}}\right)$, $127.6\left(\mathrm{CH}_{\mathrm{ar}}\right)$, $127.3\left(\mathrm{CH}_{\mathrm{ar}}\right)$, $77.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 56.2(\mathrm{CMePh}), 51.8\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.0$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.0\left(\mathrm{CH}_{2} \mathrm{Et}\right)$, $26.5\left(\mathrm{CH}_{2} \mathrm{Et}\right), 14.9\left(\mathrm{CH}_{3} \mathrm{Et}\right)$, $14.6 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Et}\right)$; IR (ATR): $v=2961(\mathrm{w}), 2862$ (w), 1554 (s), 1456 (m), 1373 (m), 1148 (m), 1040 (s), 692 (s) cm^{-1}; HRMS (ESI): m/z calcd for $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{~S}_{4}+\mathrm{K}^{+}: 829.31144$ [2M+K] ${ }^{+}$; found: 829.32580; elemental analysis calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NS}_{2}$: C 72.86, H 7.39, N 3.54, S 16.21; found: C 72.98, H 7.57, N 3.80, S 15.54.

4. Synthesis of MIC•CS ${ }_{2}$ zwitterions with $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$

4.1. Typical procedure

An oven-dried 25 mL round-bottomed flask equipped with a magnetic stirring bar and capped with a three-way stopcock was charged with a triazolium salt (1 mmol). The reactor was purged of air by applying three vacuum/nitrogen cycles before dry THF (10 mL) was added. The suspension was cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath before a 1 M solution of $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in THF ($1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was slowly added with a syringe. The cooling bath was removed and the reaction mixture was stirred for 30 min at room temperature. After the solid had settled down, the supernatant solution was transferred with a cannula and filtered through Celite under an inert atmosphere into a twonecked 100 mL round-bottomed flask equipped with a magnetic stirring bar and capped with a three-way stopcock. The filtering device was rinsed twice with dry THF ($2 \times 5 \mathrm{~mL}$). Carbon disulfide ($0.2 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was added with a syringe to the carbene solution. A color change occurred instantaneously. After 30 min of stirring at room temperature, the solvent was evaporated under vacuum. The residue was brought back to air and washed twice with petroleum ether $(2 \times 10 \mathrm{~mL})$. It was recrystallized from acetonitrile.

4.2. Analytical data for MIC-Mes-Ph-Me•CS2 (6a)

Pink solid ($0.13 \mathrm{~g}, 67 \%$ yield); m.p. $192^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=7.79$ (dd, J=7.7, $2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\text {ar }} \mathrm{Ph}$), $7.66-7.53$ (m , $3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 7.03 ($\mathrm{s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), 4.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Me}$), 2.36 ($\mathrm{s}, 3 \mathrm{H}$, p-CH3 Mes), $2.28 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H}, o-\mathrm{CH}_{3} \mathrm{Mes}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298 K): $\delta=225.6$ (CS_{2}), 150.5 (CCS $_{2}$), 142.5 ($p-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 136.3 (o-Car Mes), 134.9 (C_{ar}), 131.8 ($p-\mathrm{CH}_{\mathrm{ar}}$ Ph), 130.9 (i-Car Mes), 129.9 ($m-\mathrm{CH}_{\text {ar }} \mathrm{Mes}$), 129.8 ($\mathrm{CH}_{\text {ar }} \mathrm{Ph}$), 129.7 ($\mathrm{CH}_{\text {ar }} \mathrm{Ph}$), 123.4 ($i-\mathrm{C}_{\text {ar }} \mathrm{Ph}$), 39.2 ($\mathrm{CH}_{3} \mathrm{Me}$), 21.4 ($p-\mathrm{CH}_{3} \mathrm{Mes}$), 18.9 ppm ($o-\mathrm{CH}_{3} \mathrm{Mes}$); IR (ATR): $v=2921$ (w), 2852 (w), $1482(\mathrm{w})$, 1296 (w), 1043 (s), $890(\mathrm{~m}), 690(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{~S}_{4}+\mathrm{K}^{+}: 745.16724$ [2M+K]+; found: 745.17064; elemental analysis calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}_{2}$: C 64.56, H 5.42, N 11.89, S 18.14; found: C 64.36, H 5.67, N 11.48, S 17.36.

4.3. Analytical data for MIC-Dip-Ph-Me•CS2 (6b)

Brown solid ($0.29 \mathrm{~g}, 73 \%$ yield); m.p. $189{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=7.84$ (dd, $\mathrm{J}=7.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\text {ar }} \mathrm{Ph}$), $7.65-7.53$ ($\mathrm{m}, 4 \mathrm{H}$, $3 \mathrm{H} \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}+1 \mathrm{H} p-\mathrm{CH}_{\mathrm{ar}}$ Dip), 7.34 ($\mathrm{d}, \mathrm{J}=7.8,2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}}$ Dip), 4.23 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{Me}$), 2.76 (sept, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ iPr), 1.31 (d, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$), $1.11 \mathrm{ppm}\left(\mathrm{d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=225.0\left(\mathrm{CS}_{2}\right), 150.5$ (CCS 2), 147.0 (o- $\left.\mathrm{C}_{\mathrm{ar}} \mathrm{Dip}\right), 134.1$ (C_{ar}), 132.6 ($p-\mathrm{CH}_{\mathrm{ar}}$), 131.8 ($p-\mathrm{CH}_{\mathrm{ar}}$), 130.4 (i- $\mathrm{Carar}_{\mathrm{Dip}}$), 129.8 ($\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 129.7 ($\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 124.7 ($\mathrm{CH}_{\text {ar }} \mathrm{Dip}$), 123.4 ($i-\mathrm{C}_{\mathrm{ar}} \mathrm{Ph}$), 39.2 ($\mathrm{CH}_{3} \mathrm{Me}$), 29.9 (CH iPr), 25.8 ($\mathrm{CH}_{3} \mathrm{iPr}$), 22.4 ppm ($\mathrm{CH}_{3} \mathrm{iPr}$); IR (ATR): $v=2963(\mathrm{~m}), 2858(\mathrm{w}), 1465(\mathrm{~m}), 1230(\mathrm{~m}), 1044(\mathrm{~s}), 895(\mathrm{~m}) 754$ (m), 693 (m) cm^{-1}; HRMS (ESI): m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{~S}_{4}+\mathrm{Na}^{+}$: 829.26114 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$; found: 829.26122; elemental analysis calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~S}_{2}$: C 66.80, H 6.37, N 10.62, S 16.21; found: C 66.83, H 6.55, N 10.08, S 16.08.

5. Synthesis of $\mathrm{MIC} \cdot \mathrm{CS}_{2}$ zwitterions with $\mathrm{NaO}^{t} \mathrm{Bu}$

5.1. Typical procedure

An oven-dried 25 mL round-bottomed flask equipped with a magnetic stirring bar and capped with a three-way stopcock was charged with a triazolium salt (1 mmol) and sodium tert-butoxide ($0.48 \mathrm{~g}, 5 \mathrm{mmol}$). The reactor was purged of air by applying three vacuum/nitrogen cycles before dry THF (10 mL) was added followed by carbon disulfide ($1 \mathrm{~mL}, 16.6 \mathrm{mmol}$). The reaction mixture was stirred for 1 h in an oil bath at $60^{\circ} \mathrm{C}$. After cooling down to room temperature, the solvent was evaporated under vacuum. The residue was taken up with dichloromethane ($2 \times 10 \mathrm{~mL}$) and
filtered through a filter paper. The filtrate was concentrated under reduced pressure. The remaining solid was washed twice with n-pentane $(2 \times 5 \mathrm{~mL})$ and dried under high vacuum.

5.2. Analytical data for MIC-Mes-Ph-Et•CS ${ }^{2}$ (6c)

Brown solid ($0.21 \mathrm{~g}, 56 \%$ yield); m.p. $180^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=7.80-7.67$ (m, 2H, CHar Ph), $7.60-7.43$ (m, 3H, CHar Ph), 6.96 (s, 2H, m-CHar Mes), 4.56 ($\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Et}$), 2.31 (s, $3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3} \mathrm{Mes}$), 2.27 ($\mathrm{s}, 6 \mathrm{H}, o-\mathrm{CH}_{3} \mathrm{Mes}$), $1.59 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ Et); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=225.0\left(\mathrm{CS}_{2}\right), 150.2$ (CCS_{2}), 141.8 ($p-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 135.8 (o-Car Mes), 134.3 (C_{ar}), 131.4 ($p-\mathrm{CH}_{\text {ar }} \mathrm{Ph}$), 130.7 ($i-\mathrm{C}_{\text {ar }} \mathrm{Mes}$), 129.5 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), 129.5 ($\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 129.4 ($\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), $122.9\left(i-\mathrm{Car}_{\mathrm{ar}} \mathrm{Ph}\right), 47.4\left(\mathrm{CH}_{2} \mathrm{Et}\right)$, 21.2 ($\mathrm{p}-\mathrm{CH}_{3} \mathrm{Mes}$), $18.8\left(o-\mathrm{CH}_{3} \mathrm{Mes}\right), 14.8 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Et}\right)$; IR (ATR): $v=2915$ (w), 2850 (w), 1481 (m), 1221 (m), 1045 (s$) 884$ (m), 774 (m), $695(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~S}_{4}+\mathrm{Na}^{+}: 390.10691[\mathrm{M}+\mathrm{Na}]^{+}$; found: 390.10938; elemental analysis calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~S}_{2}$: C 65.36, H 5.76, N 11.43, S 17.45; found: C 65.83, H 5.81, N 11.12, S 16.83.

5.3. Analytical data for MIC-Mes-Ph-iPr-CS2 (6d)

Pink solid ($0.28 \mathrm{~g}, 75 \%$ yield); m.p. $220^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=7.78-7.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}\right), 7.63-7.42\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right.$ Ph), 6.97 (s, 2H, m-CH ar Mes), 4.96 (pent, J = $6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ iPr), $1.73-$ 1.61 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{iPr}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=224.9$ (CS 2), 150.3 (CCS $_{2}$), 141.9 ($p-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 135.9 ($o-\mathrm{C}_{a r} \mathrm{Mes}$), 133.9 (C_{ar}), 131.5 ($p-\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 131.0 ($i-\mathrm{C}_{\mathrm{ar}}$ Mes), 129.9 ($m-\mathrm{CH}_{\mathrm{ar}} \mathrm{Mes}$), 129.6 ($\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 129.5 ($\mathrm{CH}_{\mathrm{ar}} \mathrm{Ph}$), 123.1 ($i-\mathrm{C}_{\mathrm{ar}} \mathrm{Ph}$), 55.3 (CH iPr), 22.9 (CH_{3} iPr), 21.3 ($p-\mathrm{CH}_{3} \mathrm{Mes}$), $18.8 \mathrm{ppm}\left(o-\mathrm{CH}_{3} \mathrm{Mes}\right)$; IR (ATR): $v=2919$ (w), $2850(\mathrm{w}), 1480$ (w), 1448 (w), 1372 (w), 1230 (m), 1047 (s), 775 (m), 698 (m) cm ${ }^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{~S}_{4}+\mathrm{Na}^{+}$: $404.12256[\mathrm{M}+\mathrm{Na}]^{+}$; found: 404.12480; elemental analysis calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{~S}_{2}$: C $66.11, \mathrm{H} 6.08, \mathrm{~N}$ 11.01, S 16.80; found: C 65.74, H 5.99, N 11.09, S 16.04.
5.4. Analytical data for MIC-Mes-Bu-Me•CS2 (6e)

Dark brown solid (0.22 g, 61% yield); m.p. $101{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=6.93$ (s, $2 \mathrm{H}, m-\mathrm{CH}_{\text {ar }}$ Mes), 4.23 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ Me), 3.06 ($\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), 2.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3} \mathrm{Mes}$), 2.17 (s , $6 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3} \mathrm{Mes}$), 1.79 (q, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), 1.46-1.41 (m, 2H, CH2
$\mathrm{Bu})$, 0.97-0.93 ppm (m, 3H, $\left.\mathrm{CH}_{3} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=225.5\left(\mathrm{CS}_{2}\right), 150.3$ (CCS 2), 141.7 (p - $\mathrm{C}_{\text {ar }}$ Mes), 136.7 (Car), 135.8 ($o-\mathrm{Car}_{\text {ar }} \mathrm{Mes}$), 130.8 ($i-\mathrm{C}_{\text {ar }}$ Mes), 129.4 ($m-\mathrm{CH}_{\text {ar }}$ Mes), 37.7
$\left(\mathrm{CH}_{3} \mathrm{Me}\right)$, $29.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $23.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Bu}\right), 21.3\left(p-\mathrm{CH}_{3} \mathrm{Mes}\right)$, 18.7 (o$\mathrm{CH}_{3}$ Mes), $13.8 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Bu}\right)$; IR (ATR): $v=2923(\mathrm{~m}), 2857(\mathrm{~m}), 1454(\mathrm{~m}), 1359(\mathrm{~m}), 1228(\mathrm{~s}), 1044$ (s), $852(\mathrm{~m}), 606(\mathrm{~s}) \mathrm{cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{~S}_{4}+\mathrm{Na}^{+}$: $356.12256[\mathrm{M}+\mathrm{Na}]^{+}$; found: 356.12422; elemental analysis calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{~S}_{2}$: C 61.22 , H $6.95, \mathrm{~N} 12.60$, S 19.23 ; found: C 61.40, H 6.94, N 12.61, S 19.04.

5.5. Analytical data for MIC-Mes-Bu-Et•CS 2 (6f)

Dark brown solid ($0.20 \mathrm{~g}, 59 \%$ yield), m.p. $105{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1 \mathrm{H}} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=6.99\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{ar}}\right.$), 4.51 ($\mathrm{q}, \mathrm{J}=7.3,2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Et}$), $3.03\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}\right.$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.16(\mathrm{~s}, 6 \mathrm{H}$,
$o-\mathrm{CH}_{3}$), 1.78 (quint, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bu}$), $1.68\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ Et), 1.46 (sext, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bu}), 0.96 \mathrm{ppm}\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Bu}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298 K): $\delta=226.3$ (CS_{2}), 150.4 (CCS $_{2}$), 142.1 ($p-\mathrm{C}_{\mathrm{ar}} \mathrm{Mes}$), 136.3 ($\mathrm{Carar}^{\text {) , }} 136.2$ (o-Car Mes), 131.3 ($i-\mathrm{C}_{\mathrm{ar}}$ Mes), $129.5\left(m-\mathrm{CH}_{\text {ar }} \mathrm{Mes}\right)$, $47.0\left(\mathrm{CH}_{2} \mathrm{Et}\right)$, $30.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $23.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Bu}\right)$, $23.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ Bu), 21.3 ($p-\mathrm{CH}_{3} \mathrm{Mes}$), 18.6 ($o-\mathrm{CH}_{3} \mathrm{Mes}$), 14.8 ($\mathrm{CH}_{3} \mathrm{Et}$), $13.8 \mathrm{ppm}\left(\mathrm{CH}_{3} \mathrm{Bu}\right)$; IR (ATR): $v=2957(\mathrm{~m}$, 2864 (w), 1455 (m), 1225 (m), 1042 (s), 887 (m), 854 (m), 609 (m) cm¹; HRMS (ESI): m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{~S}_{4}+\mathrm{Na}^{+}$: 733.26114 [2M+Na] ${ }^{+}$; found: 733.26925; elemental analysis calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~S}_{2}: \mathrm{C}$ 62.21, H 7.25, N 12.09, S 18.45; found: C 61.98, H 7.34, N 12.16, S 17.99.

6. X-ray crystal structure determinations

6.1. Experimental details

Data for compound 6b were collected on a Bruker APEX II diffractometer using the Mo K α radiation ($\lambda=0.71073 \AA$) from a fine focus sealed tube source at 100 K . Data for all the other compounds were collected on a Bruker D8 VENTURE PHOTON III-14 diffractometer using an Incoatec multilayer mirror monochromated with the $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54178$ Å) from a microfocus sealed tube source at 100 K and with a detector resolution of 7.3910 pixels mm^{-1}. Computing data and reduction was made with the APEX 3 software [7]. Absorption corrections based on the multiscan method were applied [8]. All the structures were solved using SIR2004 [9]. They were refined by full-matrix, least-squares based on F^{2} using SHELXL [10]. An empirical absorption correction was applied using SADABS [11]. All non-hydrogen atoms were anisotropically refined and the hydrogen atom positions were calculated and refined using a riding model.

Deposition Numbers 2130664 -2130667 (for compounds 4a, 4c, 6b, and 6e, respectively) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

6.2. Crystal data for CAAC-Mes-Cy-CS 2 (4a)

Orange-red needles with dimensions $0.08 \times 0.08 \times 0.06 \mathrm{~mm}$ obtained by slow diffusion of cyclohexane in THF at $6{ }^{\circ} \mathrm{C}$, trigonal, $R-3: H, a=23.7061(3), c=18.9250(3) \AA, V=9210.6(3) \AA^{3}, Z=$ $18, \mu=2.35 \mathrm{~mm}^{-1}$, reflections collected/unique $=42444 / 4185\left(R_{\text {int }}=0.075\right)$, final refinement converged with $R^{1}=0.036$ and $w R^{2}=0.086$ for all reflections, GOF $=1.02, \Delta \rho_{\max } / \Delta \rho_{\min }=$ $0.31 /-0.23 \mathrm{e} \cdot \AA^{-3}$.

6.3. Crystal data for CAAC-Die-MePh•CS ${ }_{2}$ (4c)

Orange plates with dimensions $0.16 \times 0.13 \times 0.06 \mathrm{~mm}$ obtained by slow diffusion of cyclohexane in THF at $6{ }^{\circ} \mathrm{C}$, monoclinic, $P 2_{1} / c, a=13.3795(4), b=9.7866(3), c=16.6010(5) \AA, \beta=105.355(2)^{\circ}, V=$ 2096.14(11) $\AA^{3}, Z=4, \mu=2.35 \mathrm{~mm}^{-1}$, reflections collected/unique $=32932 / 4277$ ($R_{\text {int }}=0.053$), final refinement converged with $R^{1}=0.032$ and $w R^{2}=0.078$ for all reflections, $G O F=1.05, \Delta \rho_{\max } / \Delta \rho_{\min }$ $=0.33 /-0.23 \mathrm{e} \cdot \AA^{-3}$.

6.4. Crystal data for MIC-Dip-Ph-Me-CS 2 (6b)

Orange prisms with dimensions $0.32 \times 0.20 \times 0.18 \mathrm{~mm}$ obtained by slow diffusion of petroleum ether in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-18{ }^{\circ} \mathrm{C}$, monoclinic, $\mathrm{P} 2_{1} / n, a=6.9421(2), b=12.7912(3), c=23.4319$ (7) $\mathrm{A}, ~ \beta=$ 91.629(2) ${ }^{\circ}, V=2079.86(10) \AA^{3}, Z=4, \mu=0.27 \mathrm{~mm}^{-1}$, reflections collected/unique $=48100 / 6335$ ($R_{\text {int }}=0.032$), final refinement converged with $R^{1}=0.039$ and $w R^{2}=0.109$ for all reflections, GOF $=$ $1.04, \Delta \rho_{\text {max }} / \Delta \rho_{\text {min }}=0.59 /-0.49 \mathrm{e} \cdot \AA^{-3}$.

6.5. Crystal data for MIC-Mes-Bu-Me•CS $\mathbf{C S}_{2}$ (6e)

Dark red-brown blocky crystals with dimensions $0.14 \times 0.03 \times 0.01 \mathrm{~mm}$ obtained by slow diffusion of n-hexane in CDCl_{3} at $6{ }^{\circ} \mathrm{C}$, monoclinic, $P 2_{1} / c, a=6.6167(4), b=12.1170(6), c=22.420(2) \AA$ A , $\beta=$ 93.361(4) ${ }^{\circ}, V=1794.4(2) \AA^{3}, Z=4, \mu=0.30 \mathrm{~mm}^{-1}$, reflections collected/unique $=28369 / 3668$ ($R_{\text {int }}=0.044$), final refinement converged with $R^{1}=0.036$ and $w R^{2}=0.096$ for all reflections, GOF $=$ $1.05, \Delta \rho_{\max } / \Delta \rho_{\text {min }}=0.29 /-0.25 \mathrm{e} \cdot \AA^{-3}$.

7. References

[1] D. Brown, N. Sanguantrakun, B. Schulze, U. Schubert, C. Berlinguette, J. Am. Chem. Soc. 2012, 134, 12354-12357.
[2] D. Kumar, V. B. Reddy, Synthesis 2010, 1687-1691.
[3] C. Johnson, M. Albrecht, Organometallics 2017, 36, 2902-2913.
[4] G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2010, 49, 4759-4762.
[5] J. Lorkowski, P. Żak, M. Kubicki, C. Pietraszuk, D. Jędrzkiewicz, J. Ejfler, New J. Chem. 2018, 42, 10134-10141.
[6] L. Hettmanczyk, D. Schulze, L. Suntrup, B. Sarkar, Organometallics 2016, 35, 3828-3836.
[7] Bruker, APEX 3, Madison, WI, USA, 2005.
[8] R. C. Clark, J. S. Reid, Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1995, 51, 887-897.
[9] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crystallogr. 2005, 38, 381-388.
[10] G. M. Sheldrick, SHELX-97 (SHELXS 97 and SHELXL 97), Programs for Crystal Structure Analyses, University of Göttingen: Göttingen (Germany), 1998.
[11] G. M. Sheldrick, SADABS, Programs for Scaling and Correction of Area Detection Data, University of Göttingen: Göttingen (Germany), 1996.

8. NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 2-azido-1,3,5-trimethylbenzene.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 2-azido-1,3,5-trimethylbenzene.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 1-mesityl-4-phenyl-1H-1,2,3-triazole.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 1-mesityl-4-phenyl-1H-1,2,3triazole.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-1-mesityl-1H-1,2,3-triazole.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-1-mesityl-1H-1,2,3triazole.

Figure S7．${ }^{1} \mathrm{H}$ NMR spectrum（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ）of 1－（2，6－diisopropylphenyl）－4－phenyl－1H－ 1，2，3－triazole．

Figure S8．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ）of 1－（2，6－diisopropylphenyl）－4－phenyl－ 1H－1，2，3－triazole．
$\stackrel{m}{U}$
0
0
$\stackrel{0}{0} \mathrm{O}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5a).

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5a).

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5b).

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5b).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5c).

$\begin{array}{lllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5c).

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5d).

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f1 (ppm)									

Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium iodide (5d).

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium iodide (5e).

Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium iodide (5e).

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-3-ethyl-1-mesityl-1H-1,2,3-triazol-3-ium iodide (5f).

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-3-ethyl-1-mesityl-1H-1,2,3-triazol-3-ium iodide (5f).

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 2-mesityl-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium-1-dithiocarboxylate (4a).

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 2-mesityl-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium-1-dithiocarboxylate (4a).

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium-1-dithiocarboxylate (4b).

Figure S24. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium-1-dithiocarboxylate (4b).

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1-(2,6-diethylphenyl)-2,2,4-trimethyl-4-phenyl-3,4-dihydro-2H-pyrrol-1-ium-5-dithiocarboxylate (4c).

Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1-(2,6-diethylphenyl)-2,2,4-trimethyl-4-phenyl-3,4-dihydro-2H-pyrrol-1-ium-5-dithiocarboxylate (4c).

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6a).

Figure S28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6a).

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6b).

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6b).

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6c).

Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6c).

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6 d).

Figure S34. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6d).

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6e).

Figure S36. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6e).

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298 K) of 4-butyl-3-ethyl-1-mesityl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6f).

Figure S38. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 4-butyl-3-ethyl-1-mesityl- 1 H -1,2,3-triazol-3-ium-5-dithiocarboxylate (6f).

9. IR Spectra

Figure S39. IR spectrum of 2-mesityl-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium-1-
dithiocarboxylate (4a).

Figure S40. IR spectrum of 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium-1-dithiocarboxylate (4b).

Figure S41. IR spectrum of 1-(2,6-diethylphenyl)-2,2,4-trimethyl-4-phenyl-3,4-dihydro-2H-pyrrol-1-ium-5-dithiocarboxylate (4c).

Figure S42. IR spectrum of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6a).

Figure S43. IR spectrum of 1-(2,6-diisopropylphenyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5dithiocarboxylate (6b).

Figure S44. IR spectrum of 3-ethyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6c).

Figure S45. IR spectrum of 3-isopropyl-1-mesityl-4-phenyl-1H-1,2,3-triazol-3-ium-5-
dithiocarboxylate (6d).

Figure S46. IR spectrum of 4-butyl-1-mesityl-3-methyl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6e).

Figure S47. IR spectrum of 4-butyl-3-ethyl-1-mesityl-1H-1,2,3-triazol-3-ium-5-dithiocarboxylate (6f).

