Supporting Information

for

Asymmetric synthesis of a stereopentade fragment toward latrunculins

Benjamin Joyeux, Antoine Gamet, Nicolas Casaretto and Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 428-433. doi:10.3762/bjoc.19.32

Experimental procedures, compound characterizations and spectra

Content

General information S2
Compound preparation and characterization S3
Crystallographic data for compound 19 S19
References S25
Copies of NMR spectra S26

General information

All reactions were performed in flame-dried flasks fitted with rubber septa under a positive pressure of argon. DCM and Et2O were purified using a MB-SPS 800 (MBraun Solvent Purification System). THF was distilled over sodium and benzophenone. Anhydrous DMF was purchased from Merck. Other solvents were purchased from suppliers and were of technical quality. Petroleum ether refers to the fraction of petroleum boiling between 40 and $60^{\circ} \mathrm{C}$. Reagents were purchased and used without further purification except for allyl acetate and DiPEA, which were distilled.
Analytical TLC were carried out on aluminum plates coated with Merck F254 silica gel 60 and visualized by exposure to 240 nm UV light and/or exposure to a basic solution of potassium permanganate followed by heating. Column flash chromatography was performed using Merck PLC silica gel 60.

Infrared spectra were recorded on a Perkin Elmer Spectrum Two FTIR equipped with a Jasco ATR. Absorption maxima (\tilde{v}) are reported in wavenumbers (cm^{-1}). High resolution mass spectra (HRMS) were obtained on a Brucker tims-TOF mass spectrometer (ESI+) and reported as m / z. Optical rotary powers were recorded on an Anton Paar MCP 100 polarimeter, sample concentrations (c) are given in $\mathrm{g} / 100 \mathrm{~mL}$. Melting points were measured by a Stuart SMP40 automatic melting point apparatus. Nuclear magnetic resonance (NMR) spectra (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT-135, COSY, NOESY, HSQC, HMBC) were recorded at $25{ }^{\circ} \mathrm{C}$ with a Brucker Avance 400 spectrometer (${ }^{1} \mathrm{H}$ at 400 MHz and ${ }^{13} \mathrm{C}$ at 100 MHz). For CDCl_{3} solutions, chemical shifts are reported as parts per million (ppm) referenced to the residual proton or carbon peak of the solvent (CDCl_{3} : $\boldsymbol{\delta}_{\boldsymbol{H}}=7.26$ and $\delta с=77.1$). Coupling constants are reported in Hertz (Hz). Data for ${ }^{1} \mathrm{H}$ spectra are reported as follows: chemical shift ppm, referenced to protium (br s: broad singlet or s : singlet or $\mathrm{d}=$ doublet or t : triplet or q : quadruplet or m: multiplet, coupling constants J in Hz , integration, and attribution). All carbon spectra were recorded as ${ }^{1} \mathrm{H}$-decoupled or DEPT-135 (Distortionless Enhancement by Polarization Transfer at 135°).

Compound preparation and characterization

(S)-4-Methylhex-5-en-1-ol (11)

A three-necked round bottom flask was charged with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and (+)- β citronellene (10, $1.3 \mathrm{~mL}, 7.14 \mathrm{mmol}$, 1 equiv). The solution was cooled down to $-78{ }^{\circ} \mathrm{C}$ and a stream of ozone was bubbled for 55 min . The reaction was followed by TCL until near full consumption of the starting material. Without waiting for the full disappearence of 10 to avoid over-oxidation of the second double bond, NaBH_{4} was added (570 mg , $21.4 \mathrm{mmol}, 3.0$ equiv) followed $\mathrm{EtOH}(5 \mathrm{~mL})$. The reaction was left at room temperature for 3 h 30 . The reaction was carefully quenched with a 1 M solution of HCl , the product was extracted with DCM ($2 \times 50 \mathrm{~mL}$), washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography (pentane/Et2O: 80/20) yielded product 11 as a transparent oil ($638 \mathrm{mg}, 78 \%$ yield). Characterization data were in accordance with those of the literature [1,2].
$\left[\alpha_{D}\right]^{25}=+13.1$ (c 0.137, CHCl_{3}) [Lit.[1] +16.7, c 2.05, $\left.\mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68$ (ddd, J = 17.2, $10.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), 4.96 (ddd, J = $17.2,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{a}}$), 4.92 (ddd, J = 10.3, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}_{6 \mathrm{~b}}$), $3.63(\mathrm{t}, \mathrm{J}=6.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 2.20-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.62-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right), 1.41-1.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right)$, $1.00\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right)$.
${ }^{13}{ }^{3}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 144.6\left(\mathrm{C}_{5}\right)$, $112.9\left(\mathrm{C}_{6}\right), 63.3\left(\mathrm{C}_{1}\right)$, $37.8\left(\mathrm{C}_{4}\right), 32.7\left(\mathrm{C}_{3}\right)$, $30.6\left(\mathrm{C}_{2}\right), 20.4\left(4-\mathrm{CH}_{3}\right)$.
IR (ATR): $\tilde{\boldsymbol{v}}=3320,2077,2932,2867,1639,1454,1418,1373,1288,1203,1056$, 993, 908, 680.

(4R,7S)-7-MethyInona-1,8-dien-4-ol (12)

12 (d.r. 93:7)
A tube was charged with 29 mg of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.04 \mathrm{mmol}, 2.5 \%$ equiv), 54 mg of (S) SEGPHOS ($0.09 \mathrm{mmol}, 5 \%$ equiv), 29 mg of 3 -nitrobenzoic acid $(0.18 \mathrm{mmol}, 10 \%$ equiv) and 114 mg of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.35 \mathrm{mmol}, 20 \%$ equiv). The argon atmosphere was restored by a cycle of vacuum and argon and a solution of 200 mg of $11(1.75 \mathrm{mmol}$, 1 equiv) and 1.9 mL of allyl acetate ($17.5 \mathrm{mmol}, 10$ equiv) in 4 mL of distilled THF was added. The tube was sealed and the reaction heated at $100{ }^{\circ} \mathrm{C}$ during 24 h . After cooling, the solution was carefully concentrated under reduced pressure and purification by flash column chromatography (pentane/Et2O: 90/10) yielded 231 mg of product 12 as a light-yellow oil (yield: 86%, dr: 93/7). The stereochemistry of the major alcohol was deduced from the NMR analysis of the Mosher esters S1 and S2 (see next paragraph).
$\left[\alpha_{\mathrm{D}}\right]^{25}=+28.1$ (c 0.274, CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82$ (dddd, J = 17.6, 9.6, $7.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), 5.67 (ddd, $\left.J=17.2,10.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 5.16-5.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1 \mathrm{a}}\right), 5.13-5.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1 \mathrm{~b}}\right), 4.95$ (ddd, J = 17.2, 1.9, 1.1 Hz, 1H, H9a), 4.92 (ddd, J = 10.3, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9 \mathrm{~b}$), 3.62 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}$), $2.37-2.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$), 2.21 - $2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3 ь} \& \mathrm{H}_{7}\right), 1.59(\mathrm{~d}, \mathrm{~J}=4.2$ Hz, 1H, OH), 1.52 - 1.41 (m, 3H, H5 \& H6a), 1.38 - 1.24 (m, 1H, H6b), 1.00 (d, J = 6.7 $\left.\mathrm{Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right)$.
$\left.{ }^{13} \mathrm{C}_{\text {NMR (}} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.6\left(\mathrm{C}_{8}\right), 135.0\left(\mathrm{C}_{2}\right), 118.3\left(\mathrm{C}_{1}\right)$, 112.9 (C9), $70.8\left(\mathrm{C}_{4}\right)$, $42.1\left(\mathrm{C}_{3}\right), 37.9\left(\mathrm{C}_{7}\right), 34.5\left(\mathrm{C}_{5}\right), 32.6\left(\mathrm{C}_{6}\right), 20.4\left(7-\mathrm{CH}_{3}\right)$.
IR (ATR): $\widetilde{\boldsymbol{v}}=3342,3076,2938,2864,1639,1454,1417,1373,1293,993,908,680$, 638.

HRMS (ESI+): Calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}^{+}\left[\mathrm{MH}^{+}\right]$: 155.1430; Found: 155.1432.

NMR analysis of Mosher esters of alcohol 12

Mosher esters S1 and S2 were prepared from 12 following the following procedure: A round bottom flask was charged with 50 mg of (R) - or (S) - α-methoxy- α trifluoromethylphenylacetic acid (MTPA, or Mosher's acid) ($0.21 \mathrm{mmol}, 1$ equiv), 10 mL
of n-hexane and $16 \mu \mathrm{~L}$ of DMF ($0.21 \mathrm{mmol}, 1.0$ equiv). To this solution was added 85 $\mu \mathrm{L}$ of $(\mathrm{COCl}) 2$ ($1.0 \mathrm{mmol}, 4.7$ equiv) and the reaction was stirred at room temperature for 1 hour. The opaque solution was filtered and evaporated under argon flow. The crude acyl chlorides were used as such in the next step:

A round bottom flask was charged with 5 mg ($0.03 \mathrm{mmol}, 1$ equiv) of $12,0.1 \mathrm{~mL}$ of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{mg}$ of DMAP ($0.008 \mathrm{mmol}, 20 \%$ equiv) and $10 \mu \mathrm{~L}$ of $\mathrm{NEt}_{3}(0.07 \mathrm{mmol}, 2.2$ equiv). The solution was placed at $0{ }^{\circ} \mathrm{C}$ and 0.5 mL of a 0.1 M solution of the acyl chloride ($0.05 \mathrm{mmol}, 1.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The reaction was kept at $0{ }^{\circ} \mathrm{C}$ for 1 hour then left at room temperature for another 2 h . The solution was concentrated under reduced pressure and the product isolated by column chromatography (pentane/Et2O: 90/10).
(4R,7S)-7-MethyInona-1,8-dien-4-yl (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S1)

S1
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhH}), 7.41$ - 7.35 (m, 3H, PhH), 5.75 (ddt, J = 16.9, 10.5, 7.0 Hz, 1H, H2), 5.52 (ddd, J = 16.9, 10.6, 7.8 Hz, 1H, H8), $5.21-$ $5.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.13-5.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 4.94-4.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 3.56(\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.45 - $2.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.07-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 1.61-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right)$, $1.21-1.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 0.91\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right)$.
(4R,7S)-7-MethyInona-1,8-dien-4-yl (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (S2)

S2
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.51$ (m, 2H, PhH), 7.43 - 7.37 (m, 3H, PhH), 5.71 $-5.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8} \& \mathrm{H}_{2}\right), 5.17-5.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.07-4.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 4.95$ (ddd, J $=17.2,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{a}}$), 4.93 (ddd, J = 10.3, $1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9 \mathrm{~b}$), 3.54 ($\mathrm{q}, \mathrm{J}=1.2$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.34 (ddt, J = 7.3, 6.3, $1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}$), $2.15-2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 1.71$ $1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 1.38-1.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 0.97\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right)$.

The two compounds were analyzed by ${ }^{1} \mathrm{H}$ NMR and the chemical shifts of the two esters were compared [3]. The protons of the C5-C9 chain on the carbinol ester were found more shielded (upfield-shifted) with the (R)-MTPA ester S1 than with the (S)MTPA ester $\mathbf{S 2}$ (Table S1), showing an anisotropic effect of the phenyl group on the same side. Conversely, the protons of the C1-C3 substituent were found less shielded. This observation indicates an (R)-configuration at C4. A copy of NMR spectra is shown in Figure 1.

Table 1. NMR analysis of Mosher's esters S1 and S2. The chemical shifts (ppm) for each ester and their differences $[(R)-(S)]$ are shown. The figure shows the shielding effect in preferred Mosher's ester conformers.

	$\mathbf{R}^{\mathbf{1}}$							$\mathbf{R}^{\mathbf{2}}$		
proton	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{7 - C H}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
$\mathbf{S 1}$ (R ester)	1.57	1.16	2.02	0.91	5.52	4.90	5.11	5.75	2.41	
S2 (S ester)	1.63	1.31	2.10	0.97	5.59	4.94	5.02	5.64	2.35	
$\boldsymbol{\Delta}_{(\mathbf{R})-(\mathbf{S})}$	-0.06	-0.15	-0.08	-0.06	-0.07	-0.04	+0.09	+0.09	+0.06	

Figure 1: ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of Mosher's ester $\mathbf{S 1}$ (top) and $\mathbf{S 2}$ (bottom) in CDCl_{3} (calibrated on residual chloroform peak at 7.26 ppm).

(2R,4R,7S)-1,2-Epoxy-7-methyInona-8-en-4-ol (13)

13 (d.r. 75:25)
A round bottom flask was charged with 1.17 g ($7.60 \mathrm{mmol}, 1$ equiv) of $12,15 \mathrm{~mL}$ of dry DCM and $350 \mu \mathrm{~L}$ of $\mathrm{V}(\mathrm{O})(\mathrm{OiPr}) 3$ ($1.52 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The solution was placed at $-30^{\circ} \mathrm{C}$ and 3.3 mL of a 5 M solution of di-tert-butylperoxide in decane (16.7 mmol , 2.2 equiv) was added. The solution was stirred at $-30^{\circ} \mathrm{C}$ for 6 days and quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The product was extracted with DCM, washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography (pentane/Et ${ }_{2} \mathrm{O}: 85 / 15$ to $60 / 40$) yielded 1.07 g of product 13 as a transparent oil (yield: 82%, dr $82: 18$). The yield and reaction time could be optimized at 86% and 6 hours when the reaction was performed at room
temperature, yet giving a lower dr of 75:25. The relative stereochemistry was deduced from the known reaction mechanism and similar examples [4].
$\left[\alpha_{\mathrm{D}}\right]^{25}=+53.1\left(\mathrm{c} 0.096, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major stereoisomer) $\delta 5.67$ (ddd, J = 17.2, 10.3, 7.7 Hz , $1 \mathrm{H}, \mathrm{H}_{8}$), 4.96 (ddd, J = 17.2, 1.9, 1.2 Hz, 1H, H9a), 4.92 (ddd, J = 10.3, 1.9, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}_{9 \mathrm{~b}}$), $3.92-3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.08\left(\mathrm{dtd}, \mathrm{J}=7.5,4.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.78(\mathrm{dd}, \mathrm{J}=4.8$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1 \mathrm{a}}$), $2.50\left(\mathrm{dd}, \mathrm{J}=4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1 \mathrm{~b}}\right), 2.19-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.02(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 1.85 (ddd, J = 14.5, 6.7, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}$), $1.55-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3 \mathrm{~b}}\right.$ \& $\mathrm{H}_{5} \& \mathrm{H}_{6 \mathrm{a}}$), $1.40-1.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{~b}}\right), 1.01\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major stereoisomer) $\delta 144.5$ (C8), 113.1 (C9), 70.8 (C4), $50.8\left(\mathrm{C}_{2}\right), 46.7\left(\mathrm{C}_{1}\right), 39.9\left(\mathrm{C}_{3}\right), 37.9\left(\mathrm{C}_{7}\right), 35.2\left(\mathrm{C}_{5}\right), 32.4\left(\mathrm{C}_{6}\right), 20.5\left(7-\mathrm{CH}_{3}\right)$.
IR (ATR): $\tilde{\boldsymbol{v}}=3409,2924,2864,2087,1638,1454,1411,1373,1258,1090,995,909$, 829, 749, 682.
HRMS (ESI+): Calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$]: 193.1199; Found: 193.1193.

(2R,4R,7S)-1,2-Epoxy-7-methyl-4-(4-methoxybenzyloxy)nona-8-ene (14)

14
A round bottom flask was charged with 195 mg ($1.15 \mathrm{mmol}, 1$ equiv) of 13 and 6.0 mL of dry DMF. The solution was placed at $0^{\circ} \mathrm{C}$ and 46 mg of $\mathrm{NaH}(60 \%$ on mineral oil, $1.15 \mathrm{mmol}, 1.0$ equiv) was added. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes and $198 \mu \mathrm{~L}$ of freshly prepared PMBBr^{1} ($1.37 \mathrm{mmol}, 1.2$ equiv) was added. The reaction was left at room temperature for 1 h 20 and quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography (pentane/Et2O: 90/10 to 80/20) yielded 261 mg of product 14 as a pure transparent oil (yield: 78\%).

[^0]${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) (major stereoisomer) $\delta 7.31$ - 7.23 (m, 2H, ArH), 6.91 6.84 (m, 2H, ArH), 5.67 (ddd, J = 17.2, 10.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$), 4.95 (ddd, J = 17.2, 1.9, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{a}}$), 4.91 (ddd, J=10.3, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9 b}$), 4.46 (m, 2H, ArCH2$)_{2}$, 3.80 (s, 3H, OCH 3), $3.59-3.50\left(m, 1 H, H_{4}\right), 3.02$ (dddd, J = 6.3, 5.3, 4.0, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), 2.74 (dd, J = 5.0, 4.0 Hz, 1H, H1a), 2.46 (dd, J = 5.0, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1 \mathrm{~b}}$), 2.14 - 2.02 (m , $1 \mathrm{H}, \mathrm{H}_{7}$), 1.82 (dt, J = 14.3, 6.3 Hz, 1H, H3a), 1.70 (dt, J = 14.3, 5.3 Hz, 1H, H3b), $1.65-$ 1.53 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{5}$), $1.45-1.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 0.99\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major stereoisomer) $\delta 159.3$ (Ar), 144.6 (C8), 130.9 (Ar), 129.5 (Ar), 113.9 (Ar), $113.0(\mathrm{C} 9), 76.5\left(\mathrm{C}_{4}\right), 70.6\left(\mathrm{ArCH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 49.8\left(\mathrm{C}_{2}\right), 47.0$ (C_{1}), $37.9\left(\mathrm{C}_{7}\right), 37.0\left(\mathrm{C}_{3}\right), 32.1\left(\mathrm{C}_{6}\right), 31.7\left(\mathrm{C}_{5}\right), 20.4\left(7-\mathrm{CH}_{3}\right)$.
IR (ATR): $\tilde{v}=2931,2860,1736,1638,1611,1585,1512,1455,1418,1343,1300$, 1244, 1172, 1070, 1033, 996, 911, 820, 753, 683.

(4R,7S)-7-Methyl-4-(4-methoxybenzyloxy)nona-8-en-2-one (15)

15
(through

A round bottom flask was charged with 110 mg of 14 ($0.38 \mathrm{mmol}, 1$ equiv) and 4.0 mL of dry THF. The solution was placed at $0{ }^{\circ} \mathrm{C}$ and 29 mg of $\mathrm{LiAlH}_{4}(0.76 \mathrm{mmol}, 2$ equiv) was added. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 75 min . The reaction was quenched carefully with 1 M NaOH , the product was extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, dried over MgSO_{4}, filtered and dried under reduced pressure to furnish the crude secondary alcohol S3 (purification can be performed by column chromatography, petroleum ether/Et2O: 80/20 to 60/40).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of S3 $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 5.68 (ddd, J = 17.2, 10.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8$), 4.97 (ddd, J = 17.2, 1.9, 1.2 Hz, 1H, H9a), 4.94 (ddd, J = 10.3, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9 \mathrm{~b}$), $4.57\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2}-\mathrm{a}\right), 4.35$ (d, $\left.\mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}-\mathrm{b}\right), 3.98-3.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70-3.57$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.16-2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 1.72-1.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3} \& \mathrm{H}_{5}\right), 1.41-1.23(\mathrm{~m}, 2 \mathrm{H}$, H_{6}), $1.14\left(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 1.01\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right)$.
The crude extract was solubilized in 4 mL of dry DCM and placed at $0^{\circ} \mathrm{C}$. DMP (177 $\mathrm{mg}, 0.42 \mathrm{mmol}, 1.1$ equiv) was then added and the reaction was left at room temperature for 30 min . The reaction was quenched with a saturated solution of
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the product was extracted in DCM, washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography (petroleum ether/Et2O: 85/15 to 80/20) yielded 87 mg of product 15 as a transparent oil (yield: 78\%).
$[\alpha]^{25}=-8.1^{\circ}\left(\mathrm{c} 0.22, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.66$ (ddd, J = 17.2, 10.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$), 4.95 (ddd, J = 17.2, 1.9, 1.2 Hz, 1H, H9a), 4.91 (ddd, J = 10.3, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9 \mathrm{~b}}$), 4.45 (d, J = $11.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2}-\mathrm{a}$), 4.41 (d, J = $\left.11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}-\mathrm{b}\right), 3.93-3.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.74$ (dd, J = 15.8, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}$), 2.48 (dd, J = 15.8, $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{~b}}$), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 2.12-2.04$ (m, $1 \mathrm{H}, \mathrm{H}_{7}$), $1.62-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 1.40-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 0.98(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 7-$ CH_{3}).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 207.9 (C_{2}), 159.3 (Ar), 144.4 (C_{8}), 130.8 (Ar), 129.5 (Ar), 113.9 (Ar), $113.0\left(\mathrm{C}_{9}\right), 75.4\left(\mathrm{C}_{4}\right), 71.3\left(\mathrm{ArCH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 48.7\left(\mathrm{C}_{3}\right), 37.9\left(\mathrm{C}_{7}\right), 32.0$ (C_{5}), $31.9\left(\mathrm{C}_{6}\right), 31.3\left(\mathrm{C}_{1}\right), 20.4\left(7-\mathrm{CH}_{3}\right)$.
IR (ATR): $\tilde{\boldsymbol{v}}=1712,1612,1512,1355,1301,1245,1172,1065,1033,996,910,820$, 732, 682, 636.
HRMS (ESI+): Calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 291.1955; Found: 291.1959.

Ethyl (R)-2-oxothiazolidine-4-carboxylate (17)

 17

A round bottom flask was charged with 2.0 g ($10.8 \mathrm{mmol}, 1$ equiv) of L-cysteine ethyl ester hydrochloride (16) and 40 mL of dry DCM. The solution was placed at $0^{\circ} \mathrm{C}$ and 1.9 mg of CDI ($11.8 \mathrm{mmol}, 1.1$ equiv) was added. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 3 h and quenched with water, the product was extracted with EtOAc and filtered over a tall silica pad, eluting with 3 volumes of EtOAc. After evaporation of the solvent under reduced pressure, 2.4 g of product 17 was isolated as a transparent viscous oil (yield: 85\%).

Characterization data were in accordance with those of the literature [5].
$\left[\alpha_{\mathrm{D}}\right]^{25}=-51.1$ (c 1.95, CHCl_{3}) [Lit. [6] - 51.8 (c 3.14, $\left.\left.\mathrm{CHCl}_{3}\right)\right]$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.29$ (b, 1H, NH), 4.42 (ddd, J = 8.2, $5.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), $4.27\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.70\left(\mathrm{dd}, \mathrm{J}=11.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{a}}\right.$), 3.62 (ddd, J = $11.4,5.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{~b}}$), 1.31 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$).
 $31.9\left(\mathrm{C}_{5}\right)$, $14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl (R)-N-(4-methoxybenzyl)-2-oxothiazolidine-4-carboxylate (18)

A round bottom flask was charged with 1.9 g ($11.0 \mathrm{mmol}, 1$ equiv) of 17 and 40 mL of dry THF. The solution was placed at $0^{\circ} \mathrm{C}$ and 438 mg of $\mathrm{NaH}(60 \%$ on mineral oil, 10.9 mmol, 1.0 equiv) was added. The solution was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes and 1.73 mL of freshly prepared PMBBr ($12.1 \mathrm{mmol}, 1.1$ equiv) was added. The reaction was left at room temperature overnight and quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with EtOAc, washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography (petroleum ether/EtOAc: 80/20) yielded 2.52 g of product 18 as a transparent oil (yield: 72\%).

Characterization data were in accordance with those of the literature [5].
$\left[\alpha_{D}\right]^{25}=-92.5$ (c 0.87, EtOH) [Lit. [5] - 96.7 (c 1.3, EtOH)].
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.12$ (m, 2H, ArH), $6.89-6.83$ (m, 2H, ArH), 5.08 (d, J = $14.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2}-\mathrm{a}$), $4.24\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 4.11 (dd, $\mathrm{J}=8.5$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), $3.98\left(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}-\mathrm{b}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48(\mathrm{dd}, \mathrm{J}=$ $11.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{a}}$), 3.33 (dd, J = 11.4, $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}_{5 \mathrm{~b}}$), $1.30(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 171.7$ (C_{2}), 170.1 (COOEt), 159.5 (Ar), 129.9 (Ar), 127.7 (Ar), 114.4 (Ar), $62.3\left(\mathrm{O}_{2} \mathrm{H}_{2} \mathrm{CH}_{3}\right), 59.4\left(\mathrm{C}_{4}\right), 55.4\left(\mathrm{O}_{\mathrm{CH}}^{3}\right), 47.4\left(\mathrm{ArCH}_{2}\right), 29.2\left(\mathrm{C}_{5}\right), 14.3$ $\left(\mathrm{OCH}_{2} \underline{\mathrm{C}}_{3}\right)$.
(R)-4-(Hydroxymethyl)-3-(4-methoxybenzyl)thiazolidin-2-one (19)

19
A round bottom flask was charged with 2.07 g ($7.02 \mathrm{mmol}, 1$ equiv) of $\mathbf{1 8}, 40 \mathrm{~mL}$ of dry THF and 8 mL of dry EtOH. A first batch of $\mathrm{LiBH}_{4}(510 \mathrm{mg}, 7.0 \mathrm{mmol}, 1.0$ equiv) was added and the solution was stirred vigorously for 30 minutes. A second batch of LiBH_{4} ($510 \mathrm{mg}, 7.0 \mathrm{mmol}, 1.0$ equiv) was performed and the solution was stirred vigorously for another 30 minutes. The reaction was carefully quenched with a 1 M HCl solution and the product was extracted with EtOAc, washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by column chromatography (petroleum ether/EtOAc: 50/50) yielded 1.60 g of product 19 as a white crystallin solid (yield: 90\%). Suitable crystals for X-ray crystallographic analysis were obtained from petroleum ether/ethyl acetate.

Melting point: $74.1^{\circ} \mathrm{C}$.
$\left[\alpha_{\mathrm{D}}\right]^{25}=-9.8$ (c 1.14, $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.19-7.24 (m, 2H, ArH), 6.85-6.90 (m, 2H, ArH), $4.74(\mathrm{~d}$, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC\underline {H}} 2-\mathrm{a}), 4.26\left(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2}-\mathrm{b}\right), 3.88-3.70(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{OCH}_{3} \& \mathrm{CH}_{2} \mathrm{OH}-\mathrm{a} \& \mathrm{H}_{4}$), 3.64 (ddd, $\mathrm{J}=10.4,6.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}-\mathrm{b}$), 3.30 (dd, $\mathrm{J}=$ $11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{a}}$), 3.26 (dd, J = 11.3, $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 b}$), 1.50 (dd, J = $6.5,4.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 173.1$ (C2), 159.3 (Ar), 129.4 (Ar), 128.4 (Ar), 114.4 (Ar), $61.1\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{OH}\right), 59.6\left(\mathrm{C}_{4}\right), 55.4\left(\mathrm{OCH}_{3}\right), 46.8\left(\mathrm{ArCH}_{2}\right), 28.0\left(\mathrm{C}_{5}\right)$.
HRMS (ESI+): Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 276.0665; Found: 276.0664.

(R)-3-(4-Methoxybenzyl)-2-oxothiazolidine-4-carbaldehyde (8)

A round bottom flask was charged with 400 mg of 19 ($1.58 \mathrm{mmol}, 1$ equiv) and 16 mL of dry DCM. The solution was placed at $0^{\circ} \mathrm{C}$ and 737 mg of DMP ($1.74 \mathrm{mmol}, 1.1$ equiv) was added. The reaction was stirred at room temperature for 70 min and quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The product was extracted with DCM, washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced
pressure. Purification by column chromatography (EP/EtOAc: 50/50) yielded 305 mg of product 8 as a transparent viscous oil (yield: 77\%).
$\left[\alpha_{\mathrm{D}}\right]^{25}=-31.3^{\circ}\left(\mathrm{c} \mathrm{0.21,CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.49$ ($\mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), $7.19-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $6.88-6.83(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}), 4.85(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}-2-\mathrm{a}), 4.27(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}_{2}-\mathrm{b}$), 4.04 (ddd, J = 9.0, 3.3, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), 3.79 (s, 3H, OCH 3), 3.47 (dd, J = 11.5, $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{a}}$), 3.30 (dd, J = 11.5, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 b}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3} \delta 197.9$ (CHO), 171.7 (C2), 159.7 (Ar), 130.1 (Ar), 127.3 (Ar), 114.5 (Ar), $65.1\left(\mathrm{C}_{4}\right), 55.4\left(\mathrm{OCH}_{3}\right), 47.9\left(\mathrm{ArCH}_{2}\right), 26.4\left(\mathrm{C}_{5}\right)$.
IR (ATR): $\tilde{v}=1661,1610,1511,1440,1393,1372,1302,1244,1172,1109,1028$, 978, 840, 815, 663.
HRMS (ESI+): Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 252.0689; Found: 252.0694.
(R)-4-((1R,5R,8S)-1-Hydroxy-5-((4-methoxybenzyl)oxy)-8-methyl-3-oxodec-9-en-1-yl)-3-(4-methoxybenzyl)thiazolidin-2-one (21)

21 (the atom numbering follows that of latrunculin B, as found in the article)
A round bottom flask was charged with 356 mg ($1.23 \mathrm{mmol}, 1$ equiv) of ketone 15, 4 mL of dry DCM, 6 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ and $430 \mu \mathrm{~L}$ of DiPEA ($2.45 \mathrm{mmol}, 2.0$ equiv). The solution was placed at $-78^{\circ} \mathrm{C}$ and 1.35 mL of a 1 M solution of Cy 2 BCl in hexanes (1.35 mmol, 1.1 equiv) was added slowly. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The obtained suspension was added dropwise through a syringe transfer at $-78^{\circ} \mathrm{C}$ into a solution of 343 mg of aldehyde 8 ($1.36 \mathrm{mmol}, 1.1$ equiv) in 4.5 mL of dry DCM. The reaction was kept at $-78^{\circ} \mathrm{C}$ for 45 min before quenching with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with EtOAc, washed with brine, dried over MgSO_{4}, filtered and dried under reduced pressure. The product was purified by column chromatography (EP/EtOAc: 85/15 to 75/25) followed by washing with a saturated solution of NaHSO_{3}. Evaporation of the solvent yielded 343 mg of product 21 as a colorless oil (yield: 55%) with a dr of $91: 9$ (NMR).
$[\alpha \mathrm{D}]^{25}=-49.3^{\circ}\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ - 7.19 (m, 2H, ArHopmв), 7.19 - 7.14 (m, 2H,
 $17.2,10.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}$), 4.96 (ddd, J = 17.2, 1.8, 1.2 Hz, 1H, H6a), 4.94 (ddd, J = $10.3,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 4.78\left(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}-\mathrm{a}\right), 4.47(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{~N}-\mathrm{a}$), $4.34\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{~N}-\mathrm{b}\right), 4.36-4.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 3.96(\mathrm{~d}$, $\left.J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{O}-\mathrm{b}\right), 3.91-3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 3.81-3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 3.78$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.44(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.24$ (dd, J = 11.9, 8.9 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{a}}$), 3.06 (dd, J = 11.9, $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{~b}}$), 2.64 (dd, J = 15.2, 8.2 Hz, 1H,
 $\left.\mathrm{H}_{12 \mathrm{~b}}\right), 2.14-2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 1.66-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.37-1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 1.00$ (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.9$ (C_{13}), 172.2 ($\mathrm{C}=$ Othiazolidinone), 159.4 \& 159.4 (para Aropmв and Arnpmb), 144.3 (C7), 130.3 (ipso Aropmb), 129.7 (ortho Arnpmb), 129.6 (ortho Агормв), 128.4 (ipso Arnpmв), 114.3 (meta Arnpmв), 114.0 (meta Aropmв), 113.2 (C6), $75.5\left(\mathrm{C}_{11}\right), 71.1\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 66.6\left(\mathrm{C}_{15}\right), 60.1\left(\mathrm{C}_{16}\right), 55.4 \& 55.4\left(2 \mathrm{OCH}_{3}\right), 48.3\left(\mathrm{C}_{12}\right)$, 47.3 ($\mathrm{ArCH}_{2} \mathrm{~N}$), 44.1 (C_{14}), 37.9 (C_{8}), 31.7 (C_{9}), 31.5 (C_{10}), 25.7 (C_{17}), 20.4 (8- CH_{3}).

IR (ATR): $\tilde{v}=1667,1610,1511,1398,1302,1245,1216,1199,1174,1108,1065$, 1031, 997, 912, 818.
HRMS (ESI+): Calculated for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{NO}_{6} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 542.2571; Found: 542.2575.
(1R,3R,5R,8S)-1-Hydroxy-1-((R)-3-(4-methoxybenzyl)-2-oxothiazolidin-4-yl)-5-((4-methoxybenzyl)oxy)-8-methyldec-9-en-3-yl 4-nitrobenzoate (23)

23 (66:10 mixture with 22)
(the atom numbering follows that of latrunculin B, as found in the article)
A round bottom flask was charged with 67 mg ($0.44 \mathrm{mmol}, 1.2$ equiv) of samarium dust. The argon atmosphere was restored by a cycle of vacuum and argon and 4.4 mL of distilled THF was added. To this suspension was added $30 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ (0.37 mmol ,

1 equiv) and the reaction was stirred during 15 min as the solution turns deep blue. This $0.1 \mathrm{M} \mathrm{Sml}_{2}$ solution was used as such.

Another round bottom flask was charged with 82 mg ($0.15 \mathrm{mmol}, 1$ equiv) of aldol product 21 and 97 mg of para-nitrobenzaldehyde ($0.45 \mathrm{mmol}, 3$ equiv). The argon atmosphere was restored by a cycle of vacuum and argon and 1.5 mL of distilled THF was added. After full dissolution, 1.5 mL of the Sml_{2} solution ($0.15 \mathrm{mmol}, 1.0$ equiv) was added dropwise and the reaction was left at room temperature for 24 hours. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted in EtOAc, washed with brine, dried over MgSO_{4}, filtered and dried under reduced pressure. Purification by column chromatography (petroleum ether/EtOAc: 90/10 to 80/20) yielded 79 mg of a 66:10 mixture of unseparable products $\mathbf{2 3}$ and $\mathbf{2 2}$ as a yellow viscous oil (yield: 76\%).
$\left[\alpha_{\mathrm{D}}\right]^{25}=-51.6\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of major isomer: $\delta 8.26$ - 8.19 (m, 2H, ArHpnb), $8.10-8.02$ (m, 2H, ArHopnв), 7.20 - 7.13 (m, 2H, ArHopmb), 7.11 - 7.02 (m, 2H, ArHnpmb), 6.80 6.75 (m, 2H, ArHормв), $6.75-6.69$ (m, 2H, ArHnpmв), 5.64 (ddd, J = 17.0, 10.5, 7.7 Hz , $1 \mathrm{H}, \mathrm{H}_{7}$), $5.44-5.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 4.90$ (ddd, J = 17.4, 1.8, 1.1 Hz, 1H, H6a) ,4.89 (ddd, $\left.J=10.3,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{~b}}\right), 4.77\left(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{O}-\mathrm{a}\right), 4.50(\mathrm{~d}, \mathrm{~J}=11.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}_{2} \mathrm{~N}-\mathrm{a}\right), 4.28\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH} \underline{H}_{2} \mathrm{~N}-\mathrm{b}\right), 4.06(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{O}-\mathrm{b}\right), 3.79-3.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15} \& \mathrm{H}_{16}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.63-3.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.57-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 3.23\left(\mathrm{dd}, \mathrm{J}=11.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{a}}\right)$, 2.99 (dd, J = 11.7, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{~b}}$), 2.16 - 2.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{12 \mathrm{a}}$ \& H_{8}), 1.89 - 1.74 (m , $3 \mathrm{H}, \mathrm{H}_{14} \& \mathrm{H}_{12 \mathrm{~b}}$), $1.63-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.38-1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 0.98(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}, 8-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of major isomer $\delta 172.4$ ($\mathrm{C}=\mathrm{O}_{\text {thiazolidinone }}$), 165.6 ($\mathrm{C}=\mathrm{OPNB}_{\text {}}$), 159.3 \& 159.3 (para Aropmв and Arnpmв), 150.7 (ipso Arpnв), 144.2 (C_{7}), 135.0 (para Arpnb), 130.9 (ortho Arpnb), 130.1 (ipso Aropmb), 129.7 (ortho Aropmb), 129.4 (ortho Arnpmb), 128.3 (ipso Arnpmb), 123.6 (meta ArpnB), 114.2 (meta Arnpmb), 113.8 (meta Агормв), $113.2\left(\mathrm{C}_{6}\right), 75.4\left(\mathrm{C}_{11}\right), 71.9\left(\mathrm{C}_{13}\right), 70.2\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 66.8\left(\mathrm{C}_{15}\right), 61.2\left(\mathrm{C}_{16}\right), 55.3$ \& $55.3\left(2 \mathrm{OCH}_{3}\right), 47.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 38.9\left(\mathrm{C}_{12}\right), 37.9\left(\mathrm{C}_{8}\right), 36.0\left(\mathrm{C}_{14}\right), 31.4\left(\mathrm{C}_{9}\right), 30.9\left(\mathrm{C}_{10}\right)$, 26.0 (C_{17}), 20.4 ($8-\mathrm{CH}_{3}$).

IR (ATR): $\tilde{\boldsymbol{v}}=1665,1526,1512,1347,1272,1246,1174,1102,1032,1014,908,819$, 720, 665.

HRMS (ESI+): Calculated for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 693.2840; Found: 693.2831.

Data for minor isomer 22

22 (the atom numbering follows that of latrunculin B, as found in the article)
Compound 22 was obtained during optimization attempts, through a slightly different, but poorly reproducible method: a round bottom flask was charged with 17 mg (0.031 mmol, 1 equiv) of 21 and 24 mg of para-nitrobenzaldehyde ($0.157 \mathrm{mmol}, 5$ equiv). An argon atmosphere was restored by a cycle of vacuum and argon and 0.3 mL of distilled THF was added. The reaction was placed at $0^{\circ} \mathrm{C}$ and $30 \mu \mathrm{~L}$ of an Sml_{2} solution freshly prepared as above ($0.003 \mathrm{mmol}, 10 \%$ equiv) was added. The reaction was left at room temperature for 5 h . The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted in EtOAc, washed with brine, dried over MgSO_{4}, filtered and dried under reduced pressure. Purification by column chromatography (petroleum ether/EtOAc: 85/15 to 80/20) yielded 16 mg of product 22 (yield: 71%) containing residual amounts of starting material 21.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30-8.26$ (m, 2H, meta ArHpns), 8.19 - 8.13 ($\mathrm{m}, 2 \mathrm{H}$, ortho ArHPNB), $7.35-7.29$ (m, 2H, ortho ArHNPMB), $7.19-7.16$ (m, 2H, ortho ArHopmв), $6.92-6.86$ (m, 2H, meta ArHnpmв), $6.77-6.74$ (m, 2H, meta ArHopmв), 5.82 (ddd, J = 10.6, 4.0, 2.0 Hz, 1H, H15), 5.65 (ddd, J = 17.2, 10.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}$), 5.07 (d, J = 14.9 $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{O}$), 4.95 (ddd, J = 17.2, 1.9, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{a}}$), 4.92 (ddd, J = 10.3, 1.9, $\left.0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{~b}}\right), 4.54\left(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{~N}\right), 4.30\left(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{~N}\right)$, 4.06-4.01 (m, 1H, H16), $4.02\left(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78$ $-3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.67-3.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{11}\right)$, 3.30 (dd, J = 11.6, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{a}}$), 3.21 (dd, J = 11.6, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{~b}}$), $2.15-2.03$ (m, 1H, H8), $1.97-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 1.78-1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{12 \mathrm{a}}\right), 1.66-1.48(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}_{12 \mathrm{~b}} \& \mathrm{H}_{10}$), $1.39-1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 0.99\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0$ (C=Othiazolidinnene), 164.0 (C=Opnв), 159.6 \& 159.4 (2 para Arpmb), 150.9 (para ArpnB), 144.3 (C7), 135.1 (ipso Arpnb), 130.9 (ortho ArpnB), 130.1 (ortho Arnpmb), 130.0 (ipso Aropmв), 129.5 (ortho Aropmb), 127.9 (ipso Arnpmb), 123.8 (meta ArpNB), 114.4 (meta Arnpmb), 114.0 (meta Aropmb), 113.2 (C_{6}), 79.1 (C_{11}),
$70.7\left(\mathrm{C}_{15}\right), 69.9\left(\mathrm{ArCl}_{2} \mathrm{O}\right), 67.3\left(\mathrm{C}_{13}\right), 57.6\left(\mathrm{C}_{16}\right), 55.4 \& 55.3\left(2 \mathrm{OCH}_{3}\right), 46.9\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$, $41.4\left(\mathrm{C}_{12}\right)$, $38.0\left(\mathrm{C}_{8}\right), 35.9\left(\mathrm{C}_{14}\right), 31.2\left(\mathrm{C}_{9}\right), 30.8\left(\mathrm{C}_{10}\right), 26.1\left(\mathrm{C}_{17}\right), 20.4\left(8-\mathrm{CH}_{3}\right)$.
(R)-4-((1S,3R,5R,8S)-1,3-Dihydroxy-5-((4-methoxy-benzyl)oxy)-8-methyldec-9-en-1-yl)-3-(4-methoxybenzyl)thiazolidin-2-one (24)

24 (the atom numbering follows that of latrunculin B, as found in the article)
A round bottom flask was charged with 17 mg ($0.025 \mathrm{mmol}, 1$ equiv) of unseparable $\mathbf{2 2} / \mathbf{2 3}$ and 0.4 mL of MeOH . $\mathrm{NaOH}(0.120 \mathrm{mmol}, 4.8$ equiv) was added. The reaction was left at room temperature for 30 min and then quenched with a solution of NaOH 1 M . The product was extracted in EtOAc, washed with brine, dried over MgSO_{4}, filtered and dried under reduced pressure. Purification by column chromatography (petroleum ether/EtOAc: 75/25 to 60/40) yielded 13 mg of pure diol product 24 as a light-yellow viscous oil (yield: 97\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.19$ (m, 4H, ortho Aropmв and Arnpmb), 6.91 - 6.82 (m, 4H, meta Aropmb and Arnpmb), 5.71 (ddd, J = 17.2, 10.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}$), 5.01 (ddd, $\mathrm{J}=14.3,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{a}}$), 4.97 (ddd, J = 7.5, 1.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{~b}}$), $4.80(\mathrm{~d}, \mathrm{~J}=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}-\mathrm{a}$), $4.60\left(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}-\mathrm{a}\right), 4.36$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 4.31 (d, J = $\left.10.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH} \underline{H}_{2} \mathrm{O}-\mathrm{b}\right), 4.27-4.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 4.20(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}$, ArCH2 $\mathrm{H}_{2}-\mathrm{b}$), $4.13-4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 3.96(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.72 - 3.65 (m, 1H, H ${ }_{11}$), 3.29 (dd, J = 11.7, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{a}}$), 3.19 (dd, J $\left.=11.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{~b}}\right), 2.17-2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 1.88-1.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 1.77-1.66$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{12}$), $1.65-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9} \& \mathrm{H}_{10}\right), 1.48$ (ddd, J = 14.4, 5.4, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14}$), $1.39-1.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{12} \& \mathrm{H}_{10} \& \mathrm{H}_{9}\right), 1.04\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6$ ($\mathrm{C}=$ Othiazolidinone), $159.6 \& 159.4$ (2 para Arpmb), 144.3 (C_{7}), 129.8 (2 ortho Arpmв), 129.6 (ipso Arnpmb), 128.9 (ipso Aropmв), 114.3 \& 114.2 (meta Агрмв), $113.3\left(\mathrm{C}_{6}\right), 80.4\left(\mathrm{C}_{11}\right), 71.0\left(\mathrm{C}_{13}\right), 70.4\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 68.0\left(\mathrm{C}_{15}\right), 61.4$ $\left(\mathrm{C}_{16}\right), 55.4\left(2 \mathrm{OCH}_{3}\right), 47.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 39.2\left(\mathrm{C}_{12}\right), 38.2\left(\mathrm{C}_{8}\right), 35.5\left(\mathrm{C}_{14}\right), 31.0\left(\mathrm{C}_{9}\right.$ or $\left.\mathrm{C}_{10}\right)$, 30.7 (C_{9} or C_{10}), 26.0 (C_{17}), 20.4 ($8-\mathrm{CH}_{3}$).
$\left[\alpha_{\mathrm{D}}\right]^{25}=-43.2\left(\mathrm{c} 0.04, \mathrm{CHCl}_{3}\right)$.
(R)-4-((1S,3R,5R,8S)-1,3-((R)-(4-Methoxyphenyl)methylenedioxy)-5-((4-methoxy-benzyl)oxy)-8-methyldec-9-en-1-yl)-3-(4-methoxybenzyl)thiazolidin-2-one (25)

25 (the atom numbering follows that of latrunculin B, as found in the article)
A round bottom flask was charged with 5 mg ($0.0092 \mathrm{mmol}, 1$ equiv) of $24,4 \AA$ molecular sieves and 0.2 mL of dry DCM. The reaction mixture was placed at $0^{\circ} \mathrm{C}$ and a first solution of DDQ ($0.0119 \mathrm{mmol}, 1.3$ equiv) in 0.6 mL of dry DCM with $4 \AA$ molecular sieves was added. The reaction was left at $0^{\circ} \mathrm{C}$ for 3 h . A second solution of DDQ (0.0088 mmol, 0.9 equiv) in 0.5 mL of dry DCM with $4 \AA$ molecular sieves was added. The reaction was left at $0^{\circ} \mathrm{C}$ for 40 min and then at room temperature for 3 h . The reaction was then filtered and quenched with a saturated solution of NaHCO_{3}. The product was extracted in EtOAc, washed with brine, dried over MgSO_{4}, filtered and dried under reduced pressure. Purification by column chromatography (petroleum ether/EtOAc: 80/20 to 50/50) yielded 4 mg of pure ketal product 27 as a light-yellow viscous oil (yield: 74\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ - 7.34 (m, 2H, ortho Arpmp), 7.21 - 7.12 (m, 2H, ortho Arnpmb), $6.92-6.86$ (m, 2H, meta Arpmp), $6.86-6.80$ (m, 2H, meta Arnpmb), 5.69 (ddd, J = 17.2, 10.3, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}$), 5.43 (s, 1H, $\operatorname{ArCHO} \mathrm{H}_{2}$), $5.02-4.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right)$, $4.80\left(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH} \underline{H}_{2} \mathrm{~N}-\mathrm{a}\right), 4.34-4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 4.20(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArCH} 2 \mathrm{~N}-\mathrm{b}), 4.17-4.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 3.83-3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.79 (s, 3H, OCH 3), 3.76 - 3.71 (m, 1H, H11), 3.31 (dd, J = 11.7, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{a}}$), 3.21 (dd, J = 11.7, 3.6 Hz, 1H, H17b), 2.16 - 2.09 (m, 1H, H8), 1.91 (ddd, J = 14.4, 10.5, 3.7 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 1.72-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14} \& \mathrm{H}_{10}\right), 1.53-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10} \& \mathrm{H}_{9}\right), 1,42-1,27$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{12} \& \mathrm{H}_{9}$), $1.02\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7$ ($\mathrm{C}=\mathrm{O}_{\text {thiazolidinone), }} 160.1$ (para Arpmp), 159.4 (para Агрмв), 144.5 (C_{7}), 131.0 (ipso Arpmp), 129.7 (ortho Arnpmb), 128.7 (ipso Arnpmb), 127.4 (ortho Arpmp), 114.3 (meta Arnpmb), 113.8 (meta Arpmp), 113.1 (C_{6}), 101.2 (Cacetal), 77.2 $\left(\mathrm{C}_{11}\right), 74.6\left(\mathrm{C}_{13}\right), 67.3\left(\mathrm{C}_{15}\right), 61.4\left(\mathrm{C}_{16}\right), 55.5 \& 55.4\left(2 \mathrm{OCH}_{3}\right), 47.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 37.9$ (C_{8}), $35.6\left(\mathrm{C}_{12}\right), 35.2\left(\mathrm{C}_{14}\right), 33.6\left(\mathrm{C}_{10}\right), 31.9(\mathrm{C} 9), 26.1\left(\mathrm{C}_{17}\right), 20.4\left(8-\mathrm{CH}_{3}\right)$.

$$
\left[\alpha_{\mathrm{D}}\right]^{25}=-15.1\left(\mathrm{c} 0.05, \mathrm{CHCl}_{3}\right) .
$$

Crystallographic data for compound 19

The picture of the compound structures shown in the article was generated from Mercury 2022.1.0. The crystal structures of 19 was deposited on the Cambridge Crystallographic Data Centre under CCDC number 2225628.

Single crystals of $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$ (19) were crystallized from petroleum ether/ethyl acetate. A suitable crystal was selected and mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at 150.0 K during data collection. Using Olex2 [7], the structure was solved with the SHELXT [8] structure solution program using Intrinsic Phasing and refined with the SHELXL [9] refinement package using Least Squares minimisation.

X-ray crystallographic structure of 19

Table S2. Crystal data and structure refinement for 19.

Identification code	BJm04_Om
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight	253.31
Temperature/K	150.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a / \AAA	$5.5075(16)$

b/Ă	5.6395(15)
c/Ă	19.524(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.936(9)
$\mathrm{Y} /{ }^{\circ}$	90
Volume/Ă ${ }^{3}$	605.0(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.391
μ / mm^{-1}	0.263
F(000)	268.0
Crystal size/mm ${ }^{3}$	$0.35 \times 0.3 \times 0.12$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.182 to 54.916
Index ranges	-7 $\leq \mathrm{h} \leq 6,-7 \leq \mathrm{k} \leq 7,-25 \leq \mathrm{l} \leq 25$
Reflections collected	9492
Independent reflections	$2769\left[R_{\text {int }}=0.0876, R_{\text {sigma }}=0.0987\right]$
Data/restraints/parameters	2769/9/167
Goodness-of-fit on F^{2}	1.078
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0832, \mathrm{wR}_{2}=0.2167$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1064, \mathrm{wR}_{2}=0.2346$
Largest diff. peak/hole / e A $^{-3}$	1.17/-0.51
Flack parameter	0.0(3)

Table S3. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 19. Ueq is defined as $1 / 3$ of of the trace of the orthogonalised Uıs tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
C1	$701(12)$	$2974(11)$	$8536(3)$	$39.3(14)$
C3	$3088(12)$	$6466(13)$	$8740(3)$	$41.8(16)$
C4	$5543(16)$	$7022(18)$	$8495(4)$	$64(3)$
C5	$1007(12)$	$5618(11)$	$7567(3)$	$40.7(16)$

Table S3. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 19. Ueq is defined as $1 / 3$ of of the trace of the orthogonalised Uıs tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
C6	$2795(12)$	$5012(10)$	$7051(3)$	$33.8(14)$
C7	$4301(12)$	$3002(12)$	$7113(3)$	$39.9(15)$
C8	$5880(12)$	$2453(12)$	$6625(3)$	$39.7(15)$
C9	$6060(13)$	$3879(13)$	$6050(3)$	$39.5(15)$
C10	$4565(13)$	$5882(12)$	$5982(3)$	$41.9(17)$
C11	$3011(13)$	$6399(14)$	$6469(3)$	$43.4(16)$
C12	$9227(15)$	$1513(16)$	$5612(4)$	$52.6(19)$
N1	$1689(10)$	$4920(10)$	$8267(3)$	$40.5(13)$
O1	$-604(10)$	$1551(9)$	$8212(3)$	$52.5(14)$
O2	$6823(11)$	$8484(13)$	$8975(3)$	$72(2)$
O3	$7551(9)$	$3474(9)$	$5541(2)$	$48.0(13)$
S1	$1459(3)$	$2760(3)$	$9424.4(8)$	$48.6(6)$
C2A	$3690(30)$	$5070(30)$	$9407(6)$	$52(4)$
C2	$2650(60)$	$5770(40)$	$9463(10)$	$51(4)$

Table S4. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 19. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
C1	$43(3)$	$23(3)$	$48(3)$	$-4(3)$	$-19(3)$	$2(3)$
C3	$40(4)$	$29(3)$	$54(4)$	$-12(3)$	$-15(3)$	$0(3)$
C4	$66(5)$	$80(6)$	$44(4)$	$-14(4)$	$2(4)$	$-37(5)$
C5	$46(4)$	$28(3)$	$45(4)$	$3(3)$	$-20(3)$	$-6(3)$
C6	$41(3)$	$17(3)$	$40(3)$	$1(3)$	$-14(3)$	$-4(3)$
C7	$54(4)$	$27(3)$	$37(3)$	$7(3)$	$-11(3)$	$-5(3)$
C8	$47(4)$	$29(3)$	$41(3)$	$-1(3)$	$-14(3)$	$2(3)$
C9	$47(4)$	$41(4)$	$29(3)$	$0(3)$	$-7(3)$	$-10(3)$
C10	$51(4)$	$36(4)$	$37(3)$	$10(3)$	$-17(3)$	$-1(3)$

Table S4. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 19. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11+2 h k a *}{ }^{*} U_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
C11	$45(4)$	$40(4)$	$43(4)$	$12(3)$	$-15(3)$	$1(3)$
C12	$57(5)$	$55(5)$	$45(4)$	$-9(4)$	$0(4)$	$-1(4)$
N1	$44(3)$	$36(3)$	$39(3)$	$-4(2)$	$-8(2)$	$-6(3)$
O1	$64(3)$	$32(3)$	$58(3)$	$1(2)$	$-24(3)$	$-12(3)$
O2	$77(4)$	$89(5)$	$48(3)$	$-5(3)$	$-14(3)$	$-52(4)$
O3	$55(3)$	$47(3)$	$40(2)$	$0(2)$	$-8(2)$	$-1(2)$
S1	$58.1(11)$	$38.4(9)$	$46.1(9)$	$1.3(8)$	$-18.3(8)$	$0.7(9)$
C2A	$35(8)$	$76(9)$	$45(5)$	$-8(6)$	$3(6)$	$-22(7)$
C2	$34(9)$	$74(10)$	$46(6)$	$-15(7)$	$1(7)$	$-25(8)$

Table S5. Bond Lengths for 19.

Atom	Atom	Length/Ă	Atom	Atom	Length/Ă
C1	N1	$1.348(9)$	C6	C7	$1.405(9)$
C1	O1	$1.225(8)$	C6	C11	$1.390(9)$
C1	S1	$1.759(6)$	C7	C8	$1.369(9)$
C3	C4	$1.498(11)$	C8	C9	$1.391(9)$
C3	N1	$1.452(8)$	C9	C10	$1.399(10)$
C3	C2A	$1.540(14)$	C9	O3	$1.351(8)$
C3	C2	$1.500(19)$	C10	C11	$1.355(10)$
C4	O2	$1.402(9)$	C12	O3	$1.441(10)$
C5	C6	$1.496(9)$	S1	C2A	$1.790(12)$
C5	N1	$1.446(8)$	S1	C2	$1.82(2)$

Table S6. Bond Angles for 19.

Atom	Atom	Atom	Angle $^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
N1	C1	S1	$111.5(5)$	C7	C8	C9	$121.0(6)$
O1	C1	N1	$124.7(6)$	C8	C9	C10	$118.0(6)$
O1	C1	S1	$123.8(5)$	O3	C9	C8	$125.2(7)$

Table S6. Bond Angles for 19.

Atom	Atom	Atom	${\text { Angle }{ }^{\circ}}^{\circ}$	Atom	Atom	Atom	${\text { Angle }{ }^{\circ}}^{\text {C4 }}$
C3	C2A	$103.4(8)$	O3	C9	C10	$116.7(6)$	
C4	C3	C2	$124.2(14)$	C11	C10	C9	$120.2(6)$
N1	C3	C4	$111.9(6)$	C10	C11	C6	$123.1(7)$
N1	C3	C2A	$107.7(7)$	C1	N1	C3	$116.8(6)$
N1	C3	C2	$109.3(10)$	C1	N1	C5	$120.3(6)$
O2	C4	C3	$109.4(6)$	C5	N1	C3	$122.0(6)$
N1	C5	C6	$115.7(6)$	C9	O3	C12	$118.4(6)$
C7	C6	C5	$122.5(5)$	C1	S1	C2A	$92.8(4)$
C11	C6	C5	$121.2(6)$	C1	S1	C2	$92.1(7)$
C11	C6	C7	$116.3(6)$	C3	C2A	S1	$106.3(7)$
C8	C7	C6	$121.4(6)$	C3	C2	S1	$106.5(12)$

Table S7. Torsion Angles for 19.

A	B	C	D	Angle $^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
C1	S1	C2A	C3	$19.3(11)$	N1	C1	S1	C2	$11.6(12)$
C1	S1	C2	C3	$-17.6(19)$	N1	C3	C4	O2	$-179.1(7)$
C4	C3	N1	C1	$129.3(8)$	N1	C3	C2A	S1	$-22.6(13)$
C4	C3	N1	C5	$-61.5(9)$	N1	C3	C2	S1	$19(2)$
C4	C3	C2A	S1	$-141.3(9)$	N1	C5	C6	C7	$31.4(8)$
C4	C3	C2	S1	$-116.4(14)$	N1	C5	C6	C11	$-150.1(6)$
C5	C6	C7	C8	$178.4(6)$	O1	C1	N1	C3	$176.9(7)$
C5	C6	C11	C10	$-178.4(6)$	O1	C1	N1	C5	$7.5(10)$
C6	C5	N1	C1	$-101.9(7)$	O1	C1	S1	C2A	$170.3(9)$
C6	C5	N1	C3	$89.3(7)$	O1	C1	S1	C2	$-167.0(13)$
C6	C7	C8	C9	$0.4(9)$	O3	C9	C10	C11	$179.6(6)$
C7	C6	C11	C10	$0.1(10)$	S1	C1	N1	C3	$-1.6(7)$
C7	C8	C9	C10	$-0.5(10)$	S1	C1	N1	C5	$-171.0(5)$
C7	C8	C9	O3	$-179.6(6)$	C2A	C3	C4	O2	$-63.4(11)$
C8	C9	C10	C11	$0.5(10)$	C2A	C3	N1	C1	$16.3(11)$

Table S7. Torsion Angles for 19.

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
C8	C9	O3	C12	-4.7(9)	C2A	C3	N1	C5	-174.5(10)
C9	C10	C11	C6	-0.3(10)	C2	C3	C4	O 2	-44.3(16)
C10	C9	O3	C12	176.2(6)	C2	C3	N1	C1	-12.2(17)
C11	C6	C7	C8	-0.2(9)	C2	C3	N1	C5	157.0(16)
N1	C1	S1	C2A	-11.1(8)					

Table S8. Hydrogen Atom Coordinates ($\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 19.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathrm{eq})$
H3A	2167.7	7948.45	8830.49	50
H3B	2210.22	8012.99	8683.73	50
H4A	6460.84	5534.85	8435.73	76
H4B	5354.7	7835.61	8044.66	76
H5A	746.01	7354.61	7557.25	49
H5B	-566.63	4858.02	7423.43	49
H7	4220.78	2001.58	7502.87	48
H8	6868.76	1076.85	6680.63	48
H10	4640.06	6882.38	5592.38	50
H11	2022.14	7774.58	6411.19	52
H12A	10162.34	1415.7	5203.97	79
H12B	8316.75	36	5661.45	79
H12C	10340.15	1752.33	6019.75	79
H2	7878.15	9259.02	8779.18	108
H2AA	3607.38	6114.3	9811.43	62
H2AB	5345.32	4381.73	9410.26	62
H2A	1464.94	6863.47	9655.35	62
H2B	4190.29	5836.85	9755.86	62

Table S9. Atomic Occupancy for 19.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H3A	$0.65(3)$	H3B	$0.35(3)$	C2A	$0.65(3)$
H2AA	$0.65(3)$	H2AB	$0.65(3)$	C2	$0.35(3)$
H2A	$0.35(3)$	H2B	$0.35(3)$		

References

(1) Paquette, L. A.; Maynard, G. D. J. Am. Chem. Soc. 1992, 114, 5018-5027. doi:10.1021/ja00039a011
(2) Magauer, T.; Martin, H. J.; Mulzer, J. Angew. Chem. Int. Ed. Engl. 2009, 48, 6032-6036. doi:10.1002/anie.200900522
(3) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat Protoc 2007, 2, 2451-2458. doi:10.1038/nprot.2007.354
(4) Mihelich, E. D.; Daniels, K.; Eickhoff, D. J. J. Am. Chem. Soc. 1981, 103, 76907692. doi:10.1021/ja00415a067
(5) Fürstner, A.; De Souza, D.; Turet, L.; Fenster, M. D. B.; Parra-Rapado, L.; Wirtz, C.; Mynott, R.; Lehmann, C. W. Chem. Eur. J. 2007, 13, 115-134. doi:10.1002/chem. 200601135
(6) Fürstner, A.; Kirk, D.; Fenster, M. D. B.; Aïssa, C.; De Souza, D.; Nevado, C.; Tuttle, T.; Thiel, W.; Müller, O. Chem. Eur. J. 2007, 13, 135-149.
doi:10.1002/chem. 200601136
(7) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. a. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341. doi:10.1107/S0021889808042726
(8) Sheldrick, G. M. Acta Cryst. A 2015, 71, 3-8. doi:10.1107/S2053273314026370
(9) Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8. doi:10.1107/S2053229614024218

Copies of NMR spectra

(S)-4-Methylhex-5-en-1-ol (11)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
BJ387-13C 101 "C:UsersiNay BastieniDocumentsiRMNBENJAMIN JoYEUX 2019-202"
(2R,4R,7S)-1,2-Epoxy-7-methyl-4-(4-methoxybenzyloxy)nona-8-ene (14)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
BJ374-13C 101 "C:USersiNay Bastien DocumentsiRMN:BENJAMIN JOYEUX 2019-2022"

Intermediate S3

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

(4R,7S)-7-Methyl-4-(4-methoxybenzyloxy)nona-8-en-2-one (15)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl (R)-2-oxothiazolidine-4-carboxylate (17)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl (R)-N-(4-methoxybenzyl)-2-oxothiazolidine-4-carboxylate (18)
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-4-(Hydroxymethyl)-3-(4-methoxybenzyl)thiazolidin-2-one (19)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-3-(4-Methoxybenzyl)-2-oxothiazolidine-4-carbaldehyde (8)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S35
(R)-4-((1R,5R,8S)-1-Hydroxy-5-((4-methoxybenzyl)oxy)-8-methyl-3-oxodec-9-en-1-yl)-3-(4-methoxybenzyl)thiazolidin-2-one (21)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(1R,3R,5R,8S)-1-Hydroxy-1-((R)-3-(4-methoxybenzyl)-2-oxothiazolidin-4-yl)-5-((4-methoxybenzyl)oxy)-8-methyldec-9-en-3-yl 4-nitrobenzoate (23)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Data for minor isomer 22 (ca. 3:1 mixture with 23)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-4-((1S,3R,5R,8S)-1,3-Dihydroxy-5-((4-methoxy-benzyl)oxy)-8-methyldec-9-en-1-yl)-3-(4-methoxybenzyl)thiazolidin-2-one (24)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-4-((1S,3R,5R,8S)-1,3-((R)-(4-Methoxyphenyl)methylenedioxy)-5-((4-methoxy-benzyl)oxy)-8-methyldec-9-en-1-yl)-3-(4-methoxybenzyl)thiazolidin-2-one (25)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

COSY NMR (CDCl3)

NOESY NMR (CDCl_{3})

[^0]: ${ }^{1} p$-Methoxybenzyl bromide (PMBBr) was prepared from p-methoxybenzyl alcohol. This alcohol (10.0 g , $72.36 \mathrm{mmol}, 1.0$ equiv) was slowly added at $0^{\circ} \mathrm{C}$ to a 48% solution of HBr ($25 \mathrm{~mL}, 3.0$ equiv) during 15 minutes under strong stirring and further left 15 minutes at $0^{\circ} \mathrm{C}$. After dilution with water and $\mathrm{Et}_{2} \mathrm{O}$ at 0 ${ }^{\circ} \mathrm{C}, \mathrm{PMBBr}$ was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried over MgSO_{4}, filtrated and evaporated under reduced pressure. The purity of PMBBr was checked by NMR before use.

