

Supporting Information

for

Nucleophile-induced ring contraction in pyrrolo[2,1c][1,4]benzothiazines: access to pyrrolo[2,1b][1,3]benzothiazoles

Ekaterina A. Lystsova, Maksim V. Dmitriev, Andrey N. Maslivets and Ekaterina E. Khramtsova

Beilstein J. Org. Chem. 2023, 19, 646–657. doi:10.3762/bjoc.19.46

Further experimental details, copies of NMR spectra, X-ray crystallographic details, optimization by HPLC-UV details

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (<u>https://creativecommons.org/</u> <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

General	S3
3-Aroylpyrrolo[2,1-c][1,4]benzothiazine-1,2,4-triones (1c,g,h). General procedure	S4
Alkyl 3-aroyl-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylates 3. General procedure	S14
3-Aroyl-2-hydroxy-3a-methoxy-1 <i>H</i> -pyrrolo[2,1- <i>c</i>][1,4]benzothiazine-1,4(3a <i>H</i>)-diones 5 . General procedure	S64
3-Aroyl-2,3a-dihydroxy-1H-pyrrolo[2,1-c][1,4]benzothiazine-1,4(3aH)-diones 6. General procedure	S74
3-Aroyl- <i>N</i> -benzyl-2-hydroxy-1-oxopyrrolo[2,1- <i>b</i>][1,3]benzothiazole-3a(1 <i>H</i>)-carboxamides 7. General procedure	S84
1-(Morpholin-4-yl)-3-(2-oxo-2H-1,4-benzothiazin-3(4H)-ylidene)-4-phenylbutane-1,2,4-trione (10a)	S111
N-Aryl-3-aroyl-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamides 12. General procedure	S115
N-Mesityl-2,4-dioxo-3-(2-oxo-2H-1,4-benzothiazin-3(4H)-ylidene)-4-phenylbutanamide (14ab)	S178
3-Benzoylpyrrolo[2,1-b][1,3]benzothiazole-1,2-dione 17a	S182
Preparation of samples for HPLC-UV analyses for optimization. General procedure to compounds 4, 8, 13	S186
Crystal structure determination	S197
References	S215

Experimental

General

¹H and ¹³C NMR spectra were acquired on a Bruker Avance-III spectrometer (400 and 100 MHz, respectively) in CDCl₃ or DMSO-*d*₆ using the HMDS signal (in ¹H NMR) or solvent residual signals (in ¹³C NMR, 77.00 for CDCl₃, 39.52 for DMSO-*d*₆; in ¹H NMR, 7.27 for CDCl₃, 2.50 for DMSO-*d*₆) as internal standards. ¹³C ssNMR spectra were acquired on a Bruker Avance III 400 WB NMR spectrometer (at 100 MHz). IR spectra were recorded on a Perkin–Elmer Spectrum Two spectrometer from mulls in mineral oil or from thin layers obtained from CHCl₃ solutions. Melting points were measured on a Mettler Toledo MP70 apparatus. Single crystal X-ray analyses were performed on an Xcalibur Ruby diffractometer. Elemental analyses were carried out on a Vario MICRO Cube analyzer. The reaction conditions were optimized using HPLC–UV [Hitachi Chromaster system; NUCLEODUR C18 Gravity column; grain size of 5 µm; acetonitrile–water as eluents; flow rate of 1.5 mL/min; Hitachi Chromaster 5430 diode array detector (wavelength range of 210–750 nm)] and UPLC–UV–MS [Waters ACQUITY UPLC I-Class system; Acquity UPLC BEH C18 column, grain size of 1.7 µm; acetonitrile–water as eluents; flow rate of 0.6 mL/min; ACQUITY UPLC PDA e Detector (wavelength range of 230–780 nm); Xevo TQD mass detector; electrospray ionization; positive and negative ion detection; ion source temperature of 150 °C; capillary voltage of 3500–4000 V; cone voltage of 20–70 V; vaporizer temperature of 200 °C]. Thin-layer chromatography (TLC) was performed on Merck silica gel 60 F₂₅₄ plates using EtOAc/toluene, 1:5 v/v, toluene, EtOAc as eluents. Column chromatography was performed on silica gel (Chrom-lab, KSKG, 63–200 µm).

APBTTs **1a,b,d,e,f** were prepared according to a reported procedure [1] from enaminones **15** [2] and commercially available reagents. APBTTs **1c,g,h** were prepared according to a general procedure described below from enaminones **15** [2] and commercially available reagents. Toluene, benzene, hexane, and 1,4-dioxane were distilled over Na before the use. Butyl acetate, chloroform, and acetone were distilled over P_2O_5 before the use. Alkanols **2** were dried over molecular sieves 4Å before the use. All other solvents and reagents were purchased from commercial vendors and were used as received. All operations with compounds **1** were carried out in oven-dried glassware.

3-Aroylpyrrolo[2,1-*c*][1,4]benzothiazine-1,2,4-triones (1c,g,h). General procedure.

In a round-bottomed double-necked flask with a reflux condenser equipped with a drying tube (CaCl₂), the corresponding enaminone **15** (3.6 mmol) and anhydrous benzene (30 mL) are placed. Argon is bubbled through the reaction mixture throughout the reaction. Oxalyl chloride (5.4 mmol, 0.46 mL) is added to the obtained suspension. The mixture is refluxed until HCl evolution stops (about 6 h, indicator paper control). While the reaction mixture has not yet cooled down, the formed dark violet spongy precipitate of APBTT **1** is filtered off, washed with hot (60–65 °C) anhydrous benzene (10–15 mL), dried in a laboratory oven at 90–95 °C for 30 min. The obtained APBTT **1** is pure enough for the subsequent reactions and does not need any additional purification procedures. Compounds **1** should be stored in a desiccator. APBTTs **1** readily undergo to a hydration reaction, which is typical for such compounds [3]. By this reason, and because of poor solubility of APBTTs **1** in CDCl₃ and DMSO-*d*₆, we did not succeed to acquire their ¹³C NMR spectra in solutions. Because of this, their ¹³C NMR spectra were acquired as solid-state NMR (ssNMR) spectra, and their ¹H NMR spectra were acquired immediately after the dissolution in DMSO-*d*₆.

3-(4-Methoxybenzoyl)pyrrolo[2,1-c][1,4]benzothiazine-1,2,4-trione (1c)

Dark violet solid; yield (1118 mg, 85%); mp 155–157 °C (decomp., benzene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.72 (m, 1H), 8.04 (m, 2H), 7.50 (m, 2H), 7.37 (m, 1H), 7.05 (m, 2H), 3.87 (s, 3H) ppm. ¹³C ssNMR (100 MHz): δ = 186.7, 179.9, 171.4, 167.6, 165.5, 163.5, 156.7, 149.1, 136.2, 134.1, 132.4, 130.9, 128.6, 125.9, 118.9, 117.4, 112.7, 110.1, 55.8 ppm. IR (thin layer obtained from CHCl₃): 1741, 1703, 1646 cm⁻¹. EA: Found: C, 62.66; H, 3.15; N, 3.92. Calc. for C₁₉H₁₁NO₅S: C, 62.46; H, 3.03; N, 3.83.

3-(4-Fluorobenzoyl)pyrrolo[2,1-c][1,4]benzothiazine-1,2,4-trione (1d)

Dark violet solid; yield (992 mg, 78%); mp 174–176 °C (decomp., benzene). ¹H NMR (400 MHz, DMSO-*d₆*): δ = 8.73 (m, 1H), 8.18 (m, 2H), 7.54 (m, 2H), 7.37 (m, 3H) ppm. ¹³C ssNMR (100 MHz): δ = 187.5, 181.5, 180.7, 169.0, 168.6, 166.2, 156.4, 149.8, 137.3, 135.0, 132.6, 128.1, 125.3, 119.7, 119.2, 116.6, 116.2, 110.1 ppm. IR (mineral oil): 1773, 1736, 1656 cm⁻¹. EA: Found: C, 61.32; H, 2.30; N, 4.00. Calc. for C₁₈H₈FNO₄S: C, 61.19; H, 2.28; N, 3.96.

3-(Furan-2-carbonyl)pyrrolo[2,1-c][1,4]benzothiazine-1,2,4-trione (1g)

Dark violet solid; yield (1030 mg, 88%); mp 190–192 °C (decomp., benzene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.71 (m, 1H), 8.07 (s, 1H), 7.65 (m, 1H), 7.53 (m, 2H), 7.34 (m, 1H), 6.72 (m, 1H) ppm. ¹³C ssNMR (100 MHz): δ = 182.4, 176.9, 176.1, 154.8, 152.6, 150.7, 132.7, 129.3, 127.8, 126.7, 119.9, 114.8, 107.8 ppm. IR (mineral oil): 1774, 1727, 1631 cm⁻¹. EA: Found: C, 59.23; H, 2.33; N, 4.42. Calc. for C₁₆H₇NO₅S: C, 59.08; H, 2.17; N, 4.31.

3-(Thiophene-2-carbonyl)pyrrolo[2,1-*c*][1,4]benzothiazine-1,2,4-trione (1h)

Dark violet solid; yield (1204 mg, 98%); mp 197–199 °C (decomp., benzene).

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.72$ (m, 1H), 8.09 (m, 2H), 7.53 (m, 2H), 7.34 (m, 1H), 7.23 (m, 1H) ppm.

¹³C ssNMR (100 MHz): δ = 181.1, 179.8, 155.3, 148.3, 145.2, 141.1, 140.0, 137.9, 129.4, 128.6, 127.6, 127.2, 120.5, 117.4, 110.6, 99.4 ppm.

IR (mineral oil): 1776, 1735, 1665, 1650 cm⁻¹.

EA: Found: C, 56.53; H, 2.31; N, 4.13. Calc. for C₁₆H₇NO₄S₂: C, 56.30; H, 2.07; N, 4.10.

Alkyl 3-aroyl-2-hydroxy-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxylates 3. General procedure.

A mixture of APBTT 1 (0.45 mmol) and alkanol 2 (5 mL) is stirred in a closed microreaction V-vial at the b.p. of the alkanol 2 (65 °C for MeOH 2a, 85 °C for EtOH 2c and iPrOH 2b) for 1-3 h (1 h for MeOH 2a, 2.5 h EtOH 2c, 3 h for iPrOH 2b). Then, the resulting solution is cooled to room temperature, and the solvent is evaporated under vacuum. The evaporated reaction mass is recrystallized from toluene (the compound 3ha is recrystallized from toluene/xylene, ~2:1); the formed precipitate of compound 3 is filtered off, and washed with toluene.

Methyl 3-benzoyl-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3aa)

Yellow solid; yield (86 mg, 52%); mp 217–219 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.78 (br.s, 1H), 7.84 (m, 2H), 7.64 (m, 1H), 7.54–7.47 (m, 3H), 7.40 (m, 1H), 7.25–7.17 (m, 2H), 3.61 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.4, 167.4, 166.5, 152.2, 136.9, 134.5, 134.2, 133.0, 128.9 (2C), 128.2 (2C), 126.6, 125.7, 122.9, 118.3, 117.7, 78.2, 53.7 ppm.

IR (mineral oil): 3284, 3083, 1740, 1704, 1669 cm⁻¹.

EA: Found: C, 62.31; H, 3.60; N, 3.90. Calc. for C₁₉H₁₃NO₅S: C, 62.12; H, 3.57; N, 3.81.

Methyl 2-hydroxy-3-(4-methylbenzoyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3ba)

Yellow solid; yield (112 mg, 65%); mp 219–221 °C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.26 (br.s, 1H), 7.75 (m, 2H), 7.48 (m, 1H), 7.39 (m, 1H), 7.33 (m, 2H), 7.24–7.16 (m, 2H), 3.59 (s, 3H), 2.40 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.0, 167.4, 166.6, 151.6, 143.5, 134.6, 134.3, 134.2, 129.2 (2C), 128.8 (2C), 126.5, 125.7, 122.9, 118.5, 117.7, 78.3, 53.6, 21.1 ppm. IR (mineral oil): 3274, 3111, 1745, 1700, 1659 cm⁻¹. EA: Found: C, 63.17; H, 4.02; N, 3.81. Calc. for C₂₀H₁₅NO₅S: C, 62.98; H, 3.96; N, 3.67.

Methyl 2-hydroxy-3-(4-methoxylbenzoyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3ca)

Yellow solid; yield (102 mg, 57%); mp 212–214 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.87$ (m, 2H), 7.47 (m, 1H), 7.39 (m, 1H), 7.24–7.16 (m, 2H), 7.06 (m, 2H), 3.87 (s, 3H), 3.59 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.8, 167.4, 166.6, 163.4, 150.6, 134.7, 134.2, 131.6 (2C), 129.4, 126.5, 125.7, 122.9, 118.8, 117.7, 113.6 (2C), 78.3, 55.5, 53.6 ppm.

IR (mineral oil): 3184, 3089, 1755, 1732, 1666 cm⁻¹. EA: Found: C, 61.02; H, 3.99; N, 3.61. Calc. for C₂₀H₁₅NO₆S: C, 60.45; H, 3.80; N, 3.52.

Methyl 3-(4-fluorobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3da)

Yellow solid; yield (80 mg, 46%); mp 225–227 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.98 (m, 2H), 7.46 (m, 1H), 7.37 (m, 1H), 7.31 (m, 2H), 7.22–7.15 (m, 2H), 3.58 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.8, 167.5, 166.5, 166.1, 163.6, 152.6, 134.5, 134.2, 133.6, 133.5, 132.1, 131.9, 126.5, 125.7, 122.9, 117.8, 117.7, 115.4, 115.2, 78.2, 53.6 ppm.

IR (mineral oil): 3274, 3106, 1740, 1712, 1651 cm⁻¹.

EA: Found: C, 59.43; H, 3.25; N, 3.70. Calc. for C₁₉H₁₂FNO₅S: C, 59.22; H, 3.14; N, 3.63.

Methyl 3-(4-chlorobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3ea)

Yellow solid; yield (85 mg, 47%); mp 229–231 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.80 (br.s, 1H), 7.87 (m, 2H), 7.59 (m, 2H), 7.48 (m, 1H), 7.39 (m, 1H), 7.24–7.16 (m, 2H), 3.60 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO- d_6): δ = 187.0, 167.5, 166.5, 153.2, 137.7, 135.7, 134.4, 134.2, 130.8 (2C), 128.3 (2C), 126.5, 125.7,

122.9, 117.7, 117.6, 78.2, 53.6 ppm.

IR (mineral oil): 3232, 3071, 1751, 1725, 1660 cm⁻¹.

EA: Found: C, 56.94; H, 3.07; N, 3.56. Calc. for C₁₉H₁₂CINO₅S: C, 56.79; H, 3.01; N, 3.49.

Methyl 3-(4-bromobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3fa)

Yellow solid; yield (93 mg, 46%); mp 229–231 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.82 (br.s, 1H), 7.79 (m, 2H), 7.73 (m, 2H), 7.48 (m, 1H), 7.39 (m, 1H), 7.24–7.16 (m, 2H), 3.60 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.2, 167.5, 166.5, 153.3, 136.1, 134.4, 134.2, 131.3 (2C), 130.9 (2C), 126.8, 126.5, 125.7,

122.9, 117.7, 117.6, 78.2, 53.6 ppm.

IR (mineral oil): 3239, 3075, 1750, 1724, 1659 cm⁻¹.

EA: Found: C, 51.52; H, 2.99; N, 3.20. Calc. for C₁₉H₁₂BrNO₅S: C, 51.14; H, 2.71; N, 3.14.

Methyl 3-(furan-2-ylcarbonyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3ga)

Yellow solid; yield (88 mg, 55%); mp 155–157 °C (toluene). ¹H NMR (400 MHz, DMSO- d_6): δ = 10.34 (br.s, 1H), 8.04–7.78 (m, 2H), 7.46 (m, 2H), 7.19 (m, 2H), 6.76 (m, 1H), 3.59 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 173.2, 167.6, 166.7, 152.6, 151.1, 148.1, 134.6, 134.0, 126.6, 125.6, 122.8, 120.5, 118.1, 117.7, 112.4, 78.8, 53.7 ppm. IR (mineral oil): 3179, 3129, 1730, 1705, 1665 cm⁻¹.

EA: Found: C, 57.25; H, 3.32; N, 3.99. Calc. for C₁₇H₁₁NO₆S: C, 57.14; H, 3.10; N, 3.92.

Methyl 2-hydroxy-1-oxo-3-(thiophen-2-ylcarbonyl)pyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3ha)

Yellow solid; yield (71 mg, 42%); mp 208–210 °C (toluene : xylene, 2 : 1).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.63 (br.s, 1H), 8.35 (m, 1H), 8.04 (m, 1H), 7.46 (m, 1H), 7.38 (m, 1H), 7.28 (m, 1H), 7.22–7.16 (m, 2H), 3.59 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 178.9, 167.6, 166.8, 152.4, 143.2, 135.3, 134.6, 134.4, 134.1, 128.5, 126.6, 125.6, 122.9, 118.3, 117.7, 78.9, 53.7 ppm.

IR (mineral oil): 3269, 3085, 1739, 1707, 1663 cm⁻¹.

EA: Found: C, 54.94; H, 3.00; N, 3.51. Calc. for C₁₇H₁₁NO₅S₂: C, 54.68; H, 2.97; N, 3.75.

Isopropyl 3-benzoyl-2-hydroxy-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxylate (3ab)

Yellow solid; yield (80 mg, 45%); mp 193–195 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.85 (m, 2H), 7.65 (m, 1H), 7.54 (m, 2H), 7.48 (m, 1H), 7.40 (m, 1H), 7.25–7.16 (m, 2H), 4.80 (m, 1H), 0.99 (d, J = 8 Hz, 3H), 0.94 (d, J = 8 Hz, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.6, 166.3, 166.0, 151.3, 136.8, 134.9, 134.3, 133.1, 128.9 (2C), 128.2 (2C), 126.4, 125.7, 122.9, 118.1, 117.6, 78.1, 70.3, 20.8 (2C) ppm.

IR (mineral oil): 3255, 3065, 1733, 1698, 1650 cm⁻¹.

EA: Found: C, 63.96; H, 4.43; N, 3.62. Calc. for C₂₁H₁₇NO₅S: C, 63.79; H, 4.33; N, 3.54.

Isopropyl 2-hydroxy-3-(4-methylbenzoyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3bb)

Yellow solid; yield (63 mg, 34%); mp 192–194 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.76 (m, 2H), 7.47 (m, 1H), 7.39 (m, 1H), 7.34 (m, 2H), 7.24–7.16 (m, 2H), 4.79 (m, 1H), 2.40 (s, 3H), 0.98 (d, *J* = 8 Hz, 3H), 0.93 (d, *J* = 8 Hz, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.8, 166.8, 166.8, 151.2, 144.3, 135.1, 134.9, 134.8, 129.7 (2C), 129.4 (2C), 127.0, 126.3, 123.5, 118.9, 118.2, 78.7, 70.9, 21.7, 21.4 (2C) ppm.

IR (mineral oil): 3258, 3070, 1733, 1700, 1651 cm⁻¹.

EA: Found: C, 64.86; H, 4.72 N, 3.48. Calc. for C₂₂H₁₉NO₅S: C, 64.53; H, 4.68; N, 3.42.

Isopropyl 2-hydroxy-3-(4-methoxylbenzoyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3cb)

Yellow solid; yield (69 mg, 36%); mp 193–195 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.87 (m, 2H), 7.47 (m, 1H), 7.39 (m, 1H), 7.24–7.16 (m, 2H), 7.07 (m, 2H), 4.78 (1H), 3.87 (s, 3H), 0.98 (d, *J* = 4 Hz, 3H), 0.91 (d, *J* = 8 Hz, 3H) ppm.

¹³C NMR (100 MHz, DMSO- d_6): δ = 187.0, 166.4, 166.0, 163.4, 149.7, 135.0, 134.4, 131.6 (2C), 129.4, 126.4, 125.7, 122.9, 118.5, 117.6, 113.7 (2C), 78.1, 70.3, 55.5, 20.8 (2C) ppm.

IR (mineral oil): 3227, 3075, 1742, 1694, 1644 cm⁻¹.

EA: Found: C, 62.86; H, 4.72 N, 3.48. Calc. for C₂₂H₁₉NO₆S: C, 62.11; H, 4.50; N, 3.29.

Isopropyl 3-(4-chlorobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3eb)

Yellow solid; yield (58 mg, 30%); mp 202–204°C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.37 (br.s, 1H), 7.87 (m, 2H), 7.60 (m, 2H), 7.47 (m, 1H), 7.39 (m, 1H), 7.24–7.16 (m, 2H), 4.83–4.75 (m, 1H), 0.97 (m, 6H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.3, 166.3, 166.0, 152.2, 137.8, 135.6, 134.8, 134.3, 130.8 (2C), 128.4 (2C), 126.4, 125.7, 122.9, 117.6, 117.5, 78.0, 70.3, 20.8 (2C) ppm.

IR (mineral oil): 3248, 3074, 1735, 1703, 1657 cm⁻¹.

EA: Found: C, 58.83; H, 3.79; N, 3.30. Calc. for C₂₁H₁₆CINO₅S: C, 58.68; H, 3.75; N, 3.26.

Isopropyl 3-(4-bromobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3fb)

Yellow solid; yield (178 mg, 87%); mp 186–188 °C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.20 (br.s, 1H), 7.80–7.73 (m, 4H), 7.47 (m, 1H), 7.39 (m, 1H), 7.24–7.16 (m, 2H), 4.80 (m, 1H), 1.00 (d, *J* = 4 Hz, 3H), 0.96 (d, *J* = 4 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = (ppm) 187.5, 166.3, 166.1, 152.4, 136.0, 134.8, 134.3, 131.3 (2C), 130.9 (2C), 126.9, 126.4, 125.6, 122.9, 117.6, 117.4, 78.1, 70.3, 20.8 (2C) ppm. IR (mineral oil): 3202, 3063, 1737, 1712, 1659 cm⁻¹. EA: Found: C, 53.41; H, 3.68; N, 3.07. Calc. for C₂₁H₁₆BrNO₅S: C, 53.18; H, 3.40; N, 2.95.

Isopropyl 2-hydroxy-1-oxo-3-(thiophen-2-ylcarbonyl)pyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3hb)

Yellow solid; yield (116 mg, 64%); mp 170–172°C (toluene, xylene).

¹H NMR (400 MHz, DMSO- d_6): $\bar{\delta}$ = 9.96 (br.s, 1H), 8.23 (m, 1H), 8.06 (m, 1H), 7.46 (m, 1H), 7.38 (m, 1H), 7.28 (m, 1H), 7.23–7.15 (m, 2H), 4.77 (m, 1H), 0.99 (d, J = 4 Hz, 3H), 0.93 (d, J = 4 Hz, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 179.5, 166.5, 166.0, 151.0, 143.2, 135.5, 134.9, 134.7, 134.3, 128.5, 126.4, 125.6, 122.8, 118.0, 117.6, 78.5, 70.3, 20.8, 20.7 ppm.

IR (mineral oil): 3245, 3098, 1733, 1699, 1672 cm⁻¹.

EA: Found: C, 57.12; H, 3.89; N, 3.61. Calc. for C₁₉H₁₅NO₅S₂: C, 56.85; H, 3.77; N, 3.49.

Ethyl 3-benzoyl-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxylate (3ac)

Yellow solid; yield (70 mg, 41%); mp 207–209 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.84 (m, 2H), 7.64 (m, 1H), 7.53 (m, 2H), 7.47 (m, 1H), 7.40 (m, 1H), 7.24–7.16 (m, 2H), 4.05 (m, 2H), 0.96 (t, *J* = 8 Hz, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.7, 166.8, 166.5, 151.8, 136.9, 134.8, 134.3, 133.2, 129.1 (2C), 128.3 (2C), 126.6, 125.8,

123.1, 118.2, 117.8, 78.2, 62.6, 13.5 ppm.

IR (mineral oil): 3249, 3068, 1738, 1704, 1661 cm⁻¹.

EA: Found: C, 63.31; H, 4.18; N, 3.83. Calc. for C₂₀H₁₅NO₅S: C, 62.98; H, 3.96; N, 3.67.

S24

S50

S57

3-Aroyl-2-hydroxy-3a-methoxy-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-diones 5. General procedure.

A mixture of APBTT 1 (0.45 mmol), methanol (20 μ L, 0.49 mmol), and anhydrous toluene (300 μ L) is stirred in a closed microreaction V-vial at room temperature for 24 h. Then, the formed precipitate of compound **5** is filtered off, and washed with anhydrous toluene. Compounds **5** should not be dried in an oven or under vacuum, since they readily eliminate methanol.

3-Benzoyl-2-hydroxy-3a-methoxy-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-dione (5a)

Beige solid; yield (83 mg, 50%); mp 126–128°C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.02 (m, 1H), 7.85 (m, 2H), 7.62 (m, 1H), 7.54–7.48 (m, 4H), 7.39 (m, 1H), 3.11 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 189.4, 188.2, 162.5, 152.3, 137.5, 132.7, 129.2 (2C), 128.1 (2C), 128.0, 127.8, 126.6, 126.5, 123.0, 122.6, 108.7, 90.7, 50.1 ppm.

IR (mineral oil): 3180, 1747, 1700, 1642 cm⁻¹.

EA: Found: C, 62.36; H, 3.71; N, 3.86. Calc. for C₁₉H₁₃NO₅S: C, 62.12; H, 3.57; N, 3.81.

2-Hydroxy-3a-methoxy-3-(4-methylbenzoyl)-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-dione (5b)

Beige solid; yield (129 mg, 75%); mp 107–109°C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.02 (m, 1H), 7.75 (m, 2H), 7.53 (m, 2H), 7.39 (m, 1H), 7.31 (m, 2H), 3.10 (s, 3H), 2.40 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 189.0, 188.3, 162.6, 151.7, 143.2, 135.0, 129.4 (2C), 128.7 (2C), 128.0, 127.8, 126.6, 126.5, 123.0, 122.6, 109.1, 90.7, 50.1, 21.1 ppm.

IR (mineral oil): 3182, 1744, 1699, 1633 cm⁻¹.

EA: Found: C, 65.15; H, 4.36; N, 3.44. Calc. for 3C₂₀H₁₅NO₅S · C₇H₈: C, 65.09; H, 4.32; N, 3.40.

3-(4-Chlorobenzoyl)-2-Hydroxy-3a-methoxy-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-dione (5e)

White solid; yield (136 mg, 75%); mp 113–115°C (toluene). ¹H NMR (400 MHz, DMSO-*d₆*): δ = 8.01 (m, 1H), 7.87 (m, 2H), 7.58–7.49 (m, 4H), 7.39 (m, 1H), 3.09 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d₆*): δ = 188.3, 188.2, 162.5, 152.9, 137.7, 136.3, 131.0 (2C), 128.3 (2C), 128.0, 127.7, 126.6, 126.5, 122.99, 122.6, 108.2, 90.6, 50.1 ppm. IR (mineral oil): 3193, 1744, 1701, 1633 cm⁻¹.

EA: Found: C, 59.31; H, 3.46; N, 3.32. Calc. for 3C₁₉H₁₂CINO₅S · C₇H₈: C, 59.24; H, 3.42; N, 3.24.

3-Aroyl-2,3a-dihydroxy-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-diones 6. General procedure.

A mixture of APBTT 1 (0.45 mmol) and water (8.8 μ L, 0.49 mmol) in anhydrous toluene (3 mL) is stirred in a closed microreaction Vvial at 113 °C for 2 h. Then, the resulting solution is cooled to room temperature. Then, the formed precipitate of compound **6** is filtered off, and washed with toluene. Compounds **6** should not be dried in an oven or under vacuum, since they readily eliminate water.

3-Benzoyl-2,3a-dihydroxy-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-dione (6a)

Beige solid; yield (127 mg, 80%); mp 148–150°C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.98 (m, 1H), 7.82 (m, 2H), 7.62 (m, 1H), 7.55–7.46 (m, 4H), 7.36 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 189.8, 189.5, 162.6, 151.0, 137.9, 132.6, 129.1 (2C), 129.0, 128.1 (2C), 127.6, 126.3, 126.1, 122.8, 122.6, 113.2, 86.6 ppm. IR (mineral oil): 3233, 1727, 1666 cm⁻¹. EA: Found: C, 61.51; H, 3.31; N, 4.22. Calc. for C₁₈H₁₁NO₅S: C, 61.19; H, 3.14; N, 3.96.

2,3a-Dihydroxy-3-(4-methylbenzoyl)-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-dione (6b)

Beige solid; yield (136 mg, 82%); mp 147–149°C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.97 (m, 1H), 7.72 (m, 2H), 7.53–7.45 (m, 2H), 7.37–7.24 (m, 3H), 2.40 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 189.5, 189.5, 162.7, 150.5, 143.0, 135.3, 129.2 (2C), 128.7, 128.7 (2C), 127.6, 126.3, 126.1, 122.8, 122.6, 113.4, 86.6, 21.0 ppm. IR (mineral oil): 3382, 3085, 1727, 1702, 1661 cm⁻¹.

EA: Found: C, 62.35; H, 3.73; N, 3.94. Calc. for C₁₉H₁₃NO₅S: C, 62.12; H, 3.57; N, 3.81.

3-(4-Chlorobenzoyl)-2,3a-dihydroxy-1*H*-pyrrolo[2,1-*c*][1,4]benzothiazine-1,4(3a*H*)-dione (6e)

Beige solid; yield (152 mg, 87%); mp 161–163°C (toluene).

¹H ŇMR (400 MHz, DMSO- d_6): $\delta = 7.97$ (m, 1H), 7.82 (m, 2H), 7.56 (m, 2H), 7.53 (m, 1H), 7.48 (m, 1H), 7.35 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 189.5$, 188.6, 162.5, 151.5, 137.4, 136.7, 130.8 (2C), 128.7, 128.3 (2C), 127.6, 126.3, 126.2, 122.8, 122.6, 112.7, 86.5 ppm.

IR (mineral oil): 3188, 3061, 1759, 1708 cm⁻¹.

EA: Found: C, 55.93; H, 2.74; N, 3.86. Calc. for C₁₈H₁₀CINO₅S: C, 55.75; H, 2.60; N, 3.61.

S75

3-Aroyl-*N*-benzyl-2-hydroxy-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamides 7. General procedure.

A mixture of APBTT 1 (0.45 mmol), benzylamine (0.49 mmol, 54 μ L), and anhydrous toluene (3 mL) is stirred in a closed microreaction V-vial at 113 °C for 3 h. Then, the resulting solution is cooled to room temperature. After 24 h, the formed precipitate of compound **7** is filtered off and recrystallized from toluene.

3-Benzoyl-*N*-benzyl-2-hydroxy-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (7a)

Yellow solid; yield (88 mg, 44%); mp 203–205 °C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.90 (m, 1H), 8.31 (br.s, 1H), 7.77 (m, 2H), 7.63 (m, 1H), 7.50 (m, 3H), 7.40 (m, 1H), 7.26–7.18 (m, 2H), 7.11 (m, 3H), 7.00 (m, 2H), 4.23 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.9, 166.8, 166.4, 154.0, 138.7, 137.3, 134.5, 133.8, 132.6, 128.8 (2C), 128.0 (2C), 127.9 (2C),

126.5, 126.5, 126.5, 126.4 (2C), 125.5, 123.0, 118.0, 80.5, 42.9 ppm.

IR (mineral oil): 3338, 3085, 1789, 1742, 1644 cm⁻¹.

EA: Found: C, 68.03; H, 4.15; N, 6.31. Calc. for C₂₅H₁₈N₂O₄S: C, 67.86; H, 4.10; N, 6.33.

N-Benzyl-2-hydroxy-3-(4-methylbenzoyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (7b)

Yellow solid; yield (144 mg, 70%); mp 199–201 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.88 (m, 1H), 7.70 (m, 2H), 7.50 (m, 1H), 7.39 (m, 1H), 7.32 (m, 2H), 7.25-7.18 (m, 2H), 7.10 (m, 3H), 6.99 (m, 2H), 4.22 (m, 2H), 2.41 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.7, 166.6, 166.4, 152.4, 143.4, 138.7, 134.7, 134.5, 133.7, 129.0 (2C), 128.7 (2C), 126.6, 126.6, 126.5, 126.4 (2C), 125.5, 123.0, 119.1, 118.1, 80.6, 42.9, 21.1 ppm.

IR (mineral oil): 3307, 3090, 1779, 1741, 1662 cm⁻¹.

EA: Found: C, 68.51; H, 4.48; N, 6.21. Calc. for C₂₆H₂₀N₂O₄S: C, 68.41; H, 4.42; N, 6.14.

N-Benzyl-2-hydroxy-3-(4-methoxybenzoyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (7c)

Yellow solid; yield (83 mg, 39%); mp 202–204 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): δ = 8.86 (s, 1H), 7.81 (m, 2H), 7.50 (m, 1H), 7.39 (m, 1H), 7.22 (m, 2H), 7.05 (m, 8H), 4.21 (m, 2H), 3.87 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.6, 166.6 (2C), 163.3, 151.2, 138.7, 135.0, 133.7, 131.5 (2C), 129.6, 127.9 (2C), 126.5, 126.5, 126.4 (2C), 125.5, 123.0, 119.4, 118.1, 113.5 (2C), 80.7, 55.5, 42.8 ppm.

IR (mineral oil): 3327, 3185, 1742, 1693, 1648 cm⁻¹.

EA: Found: C, 66.31; H, 4.34; N, 6.00. Calc. for C₂₆H₂₀N₂O₅S: C, 66.09; H, 4.27; N, 5.93.

N-Benzyl-3-(4-fluorobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (7d)

Yellow solid; yield (102 mg, 49%); mp 215–217 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.87 (m, 1H), 7.85 (m, 2H), 7.49 (m, 1H), 7.38 (m, 1H), 7.31 (m, 2H), 7.21 (m, 2H), 7.12 (m, 3H), 7.00 (m, 2H), 4.21 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.5, 166.6, 166.3, 166.0, 163.5, 153.8, 138.7, 134.6, 133.8, 133.8, 133.7, 131.8, 131.7, 127.9 (2C), 126.6, 126.5, 126.4 (2C), 125.5, 123.1, 118.3, 118.0, 115.3, 115.0, 80.6, 42.9 ppm.

IR (mineral oil): 3326, 3172, 1741, 1658, 1647 cm⁻¹.

EA: Found: C, 65.44; H, 3.87; N, 6.15. Calc. for C₂₅H₁₇FN₂O₄S: C, 65.21; H, 3.72; N, 6.08.

N-Benzyl-3-(4-chlorobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (7e)

Yellow solid; yield (93 mg, 43%); mp 217–219 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.89 (m, 1H), 7.78 (m, 2H), 7.56 (m, 2H), 7.49 (m, 1H), 7.39 (m, 1H), 7.25–7.12 (m, 5H), 7.00 (m, 2H), 4.22 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.6, 166.8, 166.3, 155.0, 138.7, 137.3, 136.1, 134.4, 133.8, 130.6 (2C), 128.2 (2C), 127.9 (2C), 126.5, 126.5, 126.4 (2C), 125.5, 123.1, 117.9, 117.2, 80.5, 42.9 ppm.

IR (mineral oil): 3310, 3088, 1784, 1739, 1659 cm⁻¹.

EA: Found: C, 63.14; H, 3.64 N, 5.92. Calc. for C₂₅H₁₇ClN₂O₄S: C, 62.96; H, 3.59; N, 5.87.

N-Benzyl-3-(4-bromobenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (7f)

Yellow solid; yield (153 mg, 65%); mp 210–212 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.87 (m, 1H), 7.69 (m, 4H), 7.50 (m, 1H), 7.38 (m, 1H), 7.21 (m, 2H), 7.13 (3H), 7.02 (m, 2H), 6.63 (br.s, 1H), 4.21 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.7, 166.7, 166.2, 155.0, 138.7, 136.4, 134.4, 133.8, 131.1 (2C), 130.7 (2C), 127.9 (2C), 126.5, 126.5, 126.5, 126.4 (2C), 125.5, 123.1, 117.9, 117.7, 80.5, 42.9 ppm.

IR (mineral oil): 3311, 3105, 1751, 1709, 1670 cm⁻¹.

EA: Found: C, 57.73; H, 3.42 N, 5.40. Calc. for C₂₅H₁₇BrN₂O₄S: C, 57.59; H, 3.29; N, 5.37.

N-Benzyl-3-(furan-2-ylcarbonyl)-2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (7g)

Yellow solid; yield (35 mg, 18%); mp 152–154 °C (toluene). ¹H NMR (400 MHz, DMSO- d_6): δ = 8.86 (m, 1H), 8.61 (br.s, 1H), 8.04 (m, 1H), 7.79 (m, 1H), 7.49 (m, 1H), 7.38 (m, 1H), 7.20 (m, 2H), 7.13 (m, 3H), 6.99 (m, 2H), 6.76 (m, 1H), 4.21 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 173.0, 166.7, 166.2, 153.5, 151.2, 148.0, 138.7, 134.4, 133.8, 127.9 (2C), 126.5, 126.5, 126.3 (2C), 125.5, 123.0, 120.2, 118.1, 117.8, 112.3, 80.5, 42.9 ppm. IR (mineral oil): 3318, 3110, 1775, 1720, 1660 cm⁻¹. EA: Found: C, 64.11; H, 3.91 N, 6.63. Calc. for C₂₃H₁₆N₂O₅S: C, 63.88; H, 3.73; N, 6.48.

N-Benzyl-2-hydroxy-1-oxo-3-(thiophen-2-ylcarbonyl)pyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (7h)

Yellow solid; yield (40 mg, 20%); mp 187–186 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.30 (br.s, 1H), 8.86 (m, 1H), 8.30 (m, 1H), 8.03 (m, 1H), 7.50 (m, 1H), 7.38 (m, 1H), 7.27 (m, 1H), 7.24–7.17 (m, 2H), 7.11 (m, 3H), 6.98 (m, 2H), 4.21 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 178.6, 166.8, 166.3, 153.5, 143.6, 138.7, 135.2, 134.5, 134.0, 133.8, 128.4, 127.9 (2C), 126.5,

126.4, 126.3 (2C), 125.5, 123.0, 118.2, 117.9, 80.7, 42.9 ppm.

IR (mineral oil): 3333, 3170, 1785, 1743, 1659 cm⁻¹.

EA: Found: C, 61.72; H, 3.69; N, 6.32. Calc. for C₂₃H₁₆N₂O₄S₂: C, 61.59; H, 3.60; N, 6.25.

S93

S105

S106

S108

1-(Morpholin-4-yl)-3-(2-oxo-2H-1,4-benzothiazin-3(4H)-ylidene)-4-phenylbutane-1,2,4-trione (10a)

A mixture of compound **1a** (150 mg, 0.45 mmol), morpholine (43 µL, 0.49 mmol), and anhydrous toluene (3 mL) is stirred in a closed microreaction V-vial at 113 °C for 1.5 h. Then, the reaction mixture is cooled to room temperature, and hexane (5 mL) is added to it. The formed precipitate of compound **10a** is filtered off.

Orange solid; yield (127 mg, 67%); mp 151–153 °C (hexane, toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 14.15 (s, 1H), 7.83 (m, 2H), 7.62 (m, 1H), 7.51 (m, 3H), 7.43 (m, 2H), 7.34 (m, 1H), 3.66 (m, 2H), 3.54 (m, 2H), 3.44 (m, 2H), 3.35 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 193.4, 189.1, 181.2, 165.0, 144.2, 139.8, 132.5, 129.8, 129.3, 128.7 (2C), 128.7 (2C), 128.2, 125.8, 122.9, 120.8, 115.0, 66.3, 66.2, 46.5, 41.5 ppm.

IR (mineral oil): 3462, 1728, 1651, 1640 cm⁻¹.

EA: Found: C, 62.83; H, 4.42; N, 6.71. Calc. for C₂₂H₁₈N₂O₅S: C, 62.55; H, 4.29; N, 6.63.

N-Aryl-3-aroyl-2-hydroxy-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamides 12. General procedure.

A mixture of APBTT 1 (0.45 mmol), arylamine 11 (0.49 mmol for 11a,b or 0.45 mmol for 11c,d), and anhydrous toluene (3 mL) is stirred in a closed microreaction V-vial at 113 °C for 3 or 8 h (3 h for compounds 12ad,bd). Then, the resulting solution is cooled to room temperature. In 24 h, the formed precipitate of compound 12 is filtered off and recrystallized from toluene (compound 12ca is recrystallized from acetonitrile).

3-Benzoyl-2-hydroxy-1-oxo-N-phenylpyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (12aa)

Yellow solid; yield (77 mg, 40%); mp 196–198 °C (toluene). ¹H NMR (400 MHz, DMSO- d_6): $\delta = 10.18$ (s, 1H), 9.90 (br.s, 1H), 7.82 (m, 2H), 7.59 (m, 1H), 7.53 (m, 1H), 7.49 (m, 4H), 7.40 (m, 1H), 7.27 (m, 2H), 7.21 (m, 2H), 7.05 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 188.0$, 166.8, 165.3, 155.7, 138.0, 137.5, 134.4, 133.9, 132.5, 128.8 (2C), 128.5 (2C), 128.0 (2C), 126.6, 125.5, 124.1, 123.0, 120.3 (2C), 118.2, 117.0, 81.7 ppm. IR (mineral oil): 3200, 3080, 1727, 1678 cm⁻¹.

EA: Found: C, 67.41; H, 3.81 N, 6.60. Calc. for C₂₄H₁₆N₂O₄S: C, 67.28; H, 3.76; N, 6.54.

2-Hydroxy-3-(4-methoxybenzoyl)-1-oxo-*N*-phenylpyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12ca)

Yellow solid; yield (66 mg, 34%); mp 215–217 °C (acetonitrile). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.15 (s, 1H), 7.87 (m, 2H), 7.53 (m, 1H), 7.46 (m, 2H), 7.39 (m, 1H), 7.27–7.17 (m, 4H), 7.04 (m, 3H), 3.84 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.8, 167.3, 165.2, 163.4, 152.9, 138.0, 135.2, 133.8, 131.6 (2C), 129.8, 128.6 (2C), 126.8, 125.6, 124.3, 123.1, 120.5 (2C), 118.5, 118.2, 113.7 (2C), 82.2, 55.6 ppm. IR (mineral oil): 3342, 3215, 1720, 1691, 1659 cm⁻¹. EA: Found: C, 65.59; H, 4.00 N, 6.15. Calc. for C₂₅H₁₈N₂O₅S: C, 65.49; H, 3.96; N, 6.11.

3-Benzoyl-2-hydroxy-*N*-mesityl-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12ab)

Yellow solid; yield (83 mg, 39%); mp 227–229 °C (toluene). ¹H NMR (400 MHz, DMSO- d_6): δ = 9.64 (s, 1H), 7.85 (m, 2H), 7.63 (m, 1H), 7.52 (m, 3H), 7.42 (m, 1H), 7.26–7.19 (m, 2H), 6.78 (m, 2H), 5.39 (br.s, 1H), 2.16 (s, 3H), 1.79 (s, 6H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 188.1, 166.2, 165.0, 153.9, 137.2, 135.7, 134.9, 134.8 (2C), 133.7, 132.7, 131.7, 128.8 (2C),

128.1 (2C), 128.1 (2C), 126.6, 125.5, 123.1, 118.4, 118.1, 81.3, 20.3, 17.2 (2C) ppm.

IR (mineral oil): 3325, 3181, 1731, 1666, 1645 cm⁻¹.

EA: Found: C, 69.04; H, 4.88; N, 6.00. Calc. for C₂₇H₂₂N₂O₄S: C, 68.92; H, 4.71; N, 5.95.

2-Hydroxy-*N*-mesityl-3-(4-methylbenzoyl)-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12bb)

Yellow solid; yield (70 mg, 32%); mp 201–203 °C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.61 (s, 1H), 7.77 (m, 2H), 7.53 (m, 1H), 7.42 (m, 1H), 7.33 (m, 2H), 7.26–7.19 (m, 2H), 6.77 (m, 2H), 5.92 (br.s, 1H), 2.40 (s, 3H), 2.16 (s, 3H), 1.78 (s, 6H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.7, 166.3, 165.0, 153.2, 143.2, 135.7, 135.0, 134.8 (2C), 134.6, 133.7, 131.7, 129.1 (2C), 128.6 (2C), 128.1 (2C), 126.6, 125.5, 123.1, 118.6, 118.1, 81.3, 21.1, 20.3, 17.2 (2C) ppm. IR (mineral oil): 3331, 3181, 1728, 1665, 1645 cm⁻¹. EA: Found: C, 69.51; H, 5.07; N, 5.83. Calc. for C₂₈H₂₄N₂O₄S: C, 69.40; H, 4.99; N, 5.78.

2-Hydroxy-*N*-mesityl-3-(4-methoxybenzoyl)-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12cb)

Yellow solid; yield (81 mg, 36%); mp 203–205 °C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.59 (s, 1H), 7.88 (m, 2H), 7.52 (m, 1H), 7.41 (m, 1H), 7.22 (m, 2H), 7.05 (m, 2H), 6.76 (m, 2H), 3.87 (s, 3H), 2.16 (s, 3H), 1.76 (s, 6H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.7, 166.6, 165.0, 163.3, 151.8, 135.8, 135.5, 134.9 (2C), 133.7, 131.8, 131.6 (2C), 129.7, 128.2 (2C), 126.7, 125.6, 123.2, 119.1, 118.3, 113.6 (2C), 81.5, 55.6, 20.4, 17.3 (2C) ppm. IR (mineral oil): 3323, 3169, 1725, 1665, 1641 cm⁻¹. EA: Found: C, 67.25; H, 4.93; N, 5.72. Calc. for C₂₈H₂₄N₂O₅S: C, 67.19; H, 4.83; N, 5.60.

3-(4-Fluorobenzoyl)-2-Hydroxy-*N***-mesityl-1-oxopyrrolo[2,1-***b***][1,3]benzothiazole-3a(1***H***)-carboxamide (12db) Yellow solid; yield (92 mg, 42%); mp 229–231 °C (toluene). ¹H NMR (400 MHz, DMSO-***d***₆): δ = 9.63 (s, 1H), 7.95 (m, 2H), 7.52 (m, 1H), 7.42 (m, 1H), 7.35 (m, 2H), 7.26–7.19 (m, 2H), 6.78 (m, 2H), 2.16 (s, 3H), 1.79 (s, 6H) ppm. ¹³C NMR (100 MHz, DMSO-***d***₆): δ = 186.5, 166.2, 165.9, 163.5, 165.1, 154.4, 135.7, 134.9, 134.8 (2C), 133.9, 133.7, 133.9, 131.8, 131.7 (2C), 128.1 (2C), 126.6, 125.5, 123.1, 118.1, 118.0, 115.2, 115.0, 81.3, 20.3, 17.2 (2C) ppm. IR (mineral oil): 3332, 3195, 1728, 1666, 1647 cm⁻¹. EA: Found: C, 66.47; H, 4.39; N, 5.78. Calc. for C₂₇H₂₁FN₂O₄S: C, 66.38; H, 4.33; N, 5.73.**

3-(4-Chlorobenzoyl)-2-Hydroxy-*N*-mesityl-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12eb) Yellow solid; yield (99 mg, 44%); mp 184–186 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): δ = 9.65 (s, 1H), 7.85 (m, 2H), 7.58 (m, 2H), 7.52 (m, 1H), 7.41 (m, 1H), 7.22 (m, 2H), 6.78 (m, 2H), 5.90 (br.s, 1H), 2.16 (s, 3H), 1.80 (s, 6H) ppm.

¹³C NMR (100 MHz, DMSO- d_6): δ = 186.5, 166.2, 165.3, 156.0, 137.2, 136.3, 135.7, 134.8 (2C), 134.6, 133.8, 131.7, 130.6 (2C),

128.1 (2C), 128.1 (2C), 126.6, 125.5, 123.0, 117.9, 81.2, 20.3, 17.2 (2C) ppm.

IR (mineral oil): 3255, 3065, 1744, 1683, 1646 cm⁻¹.

EA: Found: C, 64.35; H, 4.21; N, 5.60. Calc. for C₂₇H₂₁ClN₂O₄S: C, 64.22; H, 4.19; N, 5.55.

3-(4-Bromobenzoyl)-2-Hydroxy-N-mesityl-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (12fb)

Yellow solid; yield (101 mg, 41%); mp 156–158 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.67 (s, 1H), 7.76 (m, 2H), 7.70 (m, 2H), 7.51 (m, 1H), 7.40 (m, 1H), 7.24–7.17 (m, 2H), 6.78 (m, 2H), 5.80 (br.s, 1H), 2.17 (s, 3H), 1.82 (s, 6H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.0, 166.3, 165.2, 155.6, 136.6, 135.8, 134.9 (2C), 133.8, 131.8, 131.2 (2C), 130.9 (2C), 128.2 (2C), 126.8, 126.6, 125.6, 123.2, 118.1, 117.5, 81.3, 20.4, 17.3 (2C) ppm.

IR (mineral oil): 3251, 3083, 1744, 1683, 1645 cm⁻¹.

EA: Found: C, 59.15; H, 3.70; N, 5.14. Calc. for C₂₇H₂₁BrN₂O₄S: C, 59.02; H, 3.85; N, 5.10.

3-(4-Furan-2-carbonyl)-2-Hydroxy-*N*-mesityl-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12gb)

Greenish yellow solid; yield (66 mg, 32%); mp 184–186 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): δ = 9.66 (s, 1H), 8.01 (m, 1H), 7.95 (m, 1H), 7.50 (m, 1H), 7.39 (m, 1H), 7.24–7.16 (m, 2H), 6.97 (br.s, 1H), 6.77 (m, 2H), 6.75 (m, 1H), 2.16 (s, 3H), 1.80 (s, 6H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 173.1, 166.3, 165.3, 154.2, 151.3, 148.1, 135.7, 134.9 (2C), 134.7, 133.9, 131.8, 128.2 (2C),

126.6, 125.6, 123.2, 120.3, 118.0, 117.8, 112.4, 81.2, 20.4, 17.2 (2C) ppm.

IR (mineral oil): 3326, 3148, 1744, 1731, 1661 cm⁻¹.

EA: Found: C, 65.33; H, 4.47; N, 6.16. Calc. for C₂₅H₂₀N₂O₅S: C, 65.21; H, 4.38; N, 6.08.

2-Hydroxy-*N*-mesityl-1-oxo-3-(thiophene-2-carbonyl)pyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12hb)

Greenish yellow solid; yield (64 mg, 30%); mp 230–232 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): δ = 9.68 (s, 1H), 8.54 (m, 1H), 7.96 (m, 1H), 7.51 (m, 1H), 7.38 (m, 1H), 7.25 (m, 1H), 7.21–7.15 (m, 2H), 6.77 (m, 2H), 5.47 (br.s, 1H), 2.16 (s, 3H), 1.81 (s, 6H) ppm.

¹³C NMR (100 MHz, DMSO- d_6): δ = 178.6, 166.4, 165.4, 154.5, 143.8, 135.7, 135.2, 134.8 (2C), 134.8, 134.0, 133.9, 131.8, 128.5, 128.2 (2C), 126.6, 125.6, 123.2, 118.0, 117.6, 81.3, 20.4, 17.2 (2C) ppm.

IR (mineral oil): 3331, 3168, 1740, 1653 cm⁻¹.

EA: Found: C, 63.14; H, 4.29; N, 5.97. Calc. for C₂₅H₂₀N₂O₄S₂: C, 63.01; H, 4.23; N, 5.88.

3-Benzoyl-2-hydroxy-N-(4-nitrophenyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (12ac)

Yellow solid; yield (96 mg, 45%); mp 220–222 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.87 (s, 1H), 8.17 (m, 2H), 7.81 (m, 4H), 7.57 (m, 2H), 7.47 (m, 2H), 7.40 (m, 1H), 7.26–7.12 (m, 3H), 6.67 (br.s, 1H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.7, 166.8, 166.3, 157.5, 144.4, 142.8, 137.6, 134.0, 132.3, 128.8 (2C), 128.1, 127.9 (2C),

126.7, 125.6, 124.6 (2C), 123.0, 120.0 (2C), 118.2, 115.5, 81.8 ppm.

IR (mineral oil): 3302, 3081, 1737, 1715, 1687 cm⁻¹.

EA: Found: C, 61.90; H, 3.42; N, 8.64. Calc. for 6C₂₄H₁₅N₃O₆S · C₇H₈: C, 61.84; H, 3.37; N, 8.60.

2-Hydroxy-3-(4-methylbenzoyl)-*N*-(4-nitrophenyl)-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12bc) Yellow solid; yield (83 mg, 38%); mp 210–212 °C (toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.79 (s, 1H), 8.17 (m, 2H), 7.77 (m, 4H), 7.53 (m, 1H), 7.39 (m, 1H), 7.28 (m, 2H), 7.21 (m, 2H), 2.37 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.5, 167.0, 166.2, 156.1, 144.3, 143.0, 142.8, 134.8, 134.3 133.9, 129.0 (2C), 128.6 (2C), 126.7, 125.5, 124.6 (2C), 123.0, 120.0 (2C), 118.3, 116.2, 82.0, 21.1 ppm.

IR (mineral oil): 3221, 3081, 1711, 1694, 1663 cm⁻¹.

EA: Found: C, 61.78; H, 3.63; N, 8.71. Calc. for C₂₅H₁₇N₃O₆S: C, 61.60; H, 3.52; N, 8.62.

2-Hydroxy-3-(4-methoxylbenzoyl)-*N***-(4-nitrophenyl)-1-oxopyrrolo[2,1-***b***][1,3]benzothiazole-3a(1***H***)-carboxamide (12cc) Yellow solid; yield (75 mg, 33%); mp 224–226 °C (toluene). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 10.71 (s, 1H), 8.17 (m, 2H), 7.87 (m, 2H), 7.79 (m, 2H), 7.53 (m, 1H), 7.39 (m, 1H), 7.21 (m, 2H), 7.02 (m, 2H), 3.84 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 186.5, 167.1, 166.1, 163.1, 154.3, 144.3, 142.9, 134.6, 133.8, 131.4 (2C), 129.8, 126.7, 125.5, 124.6 (2C), 123.0, 120.1 (2C), 118.4, 117.0, 113.5 (2C), 82.2, 55.5 ppm. IR (mineral oil): 3306, 3145, 1732, 1715, 1697 cm⁻¹. EA: Found: C, 59.79; H, 3.51; N, 8.42. Calc. for C₂₅H₁₇N₃O₇S: C, 59.64; H, 3.40; N, 8.35.**

3-(4-Fluorobenzoyl)-2-hydroxy-*N***-(4-nitrophenyl)-1-oxopyrrolo**[**2**,**1**-*b*][**1**,**3**]benzothiazole-3a(1*H*)-carboxamide (**12dc**) Yellow solid; yield (66 mg, 30%); mp 224–226 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.03 (s, 1H), 8.17 (m, 2H), 7.92 (m, 2H), 7.76 (m, 2H), 7.54 (m, 1H), 7.38 (m, 1H), 7.27 (m, 2H), 7.25–7.16 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 185.7, 166.7, 166.6, 165.5, 163.0, 144.5, 142.7, 134.5, 134.2, 133.4, 131.6, 131.5, 126.5, 125.5, 124.7 (2C), 123.0, 119.7 (2C), 117.9, 114.8, 114.6, 113.6, 81.5 ppm.

IR (mineral oil): 3347, 3156, 1737, 1713, 1684 cm⁻¹.

EA: Found: C, 58.72; H, 2.92; N, 8.60. Calc. for C₂₄H₁₄FN₃O₆S: C, 58.66; H, 2.87; N, 8.55.

3-(4-Chlorobenzoyl)-2-hydroxy-*N***-(4-nitrophenyl)-1-oxopyrrolo**[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12ec) Yellow solid; yield (78 mg, 34%); mp 221–223 °C (toluene).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.00 (s, 1H), 8.59 (br.s, 1H), 8.17 (m, 2H), 7.83 (m, 2H), 7.76 (m, 2H), 7.53 (m, 3H), 7.38 (m, 1H), 7.24–7.16 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.0, 166.6, 166.5, 160.3, 144.5, 142.7, 136.8, 136.6, 134.2, 133.4, 130.6 (2C), 127.9 (2C),

126.6, 125.5, 124.7 (2C), 123.0, 119.8 (2C), 118.0, 113.7, 81.4 ppm.

IR (mineral oil): 3349, 3085, 1730, 1715, 1692 cm⁻¹.

EA: Found: C, 56.83; H, 2.91; N, 8.32. Calc. for C₂₄H₁₄ClN₃O₆S: C, 56.76; H, 2.78; N, 8.27.

3-(4-Bromobenzoyl)-2-hydroxy-N-(4-nitrophenyl)-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (12fc)

Yellow solid; yield (80 mg, 32%); mp 214–216 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.02 (s, 1H), 9.84 (br.s, 1H), 8.17 (m, 2H), 7.76 (m, 4H), 7.66 (m, 2H), 7.55 (m, 1H), 7.38 (m, 1H), 7.24–7.16 (m, 2H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 186.6, 167.2, 167.1, 161.1, 145.0, 143.3, 137.7, 134.8, 133.9, 131.4 (2C), 131.3 (2C), 127.1,

126.17, 126.1, 125.3 (2C), 123.6, 120.4 (2C), 118.5, 114.2, 82.0 ppm.

IR (mineral oil): 3300, 3171, 1730, 1714, 1677 cm⁻¹.

EA: Found: C, 52.31; H, 2.63; N, 7.74. Calc. for C₂₄H₁₄BrN₃O₆S: C, 52.19; H, 2.55; N, 7.61.

2-Hydroxy-*N*-(4-nitrophenyl)-1-oxo-3-(thiophene-2-carbonyl)pyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12hc)

Yellow solid; yield (65 mg, 30%); mp 216–218 °C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.04 (s, 1H), 9.55 (br.s, 1H), 8.65 (m, 1H), 8.17 (m, 2H), 7.92 (m, 1H), 7.75 (m, 2H), 7.54 (m, 1H), 7.36 (m, 1H), 7.25 (m, 2H), 7.17 (m, 1H) ppm.

 13 C NMR (100 MHz, DMSO- d_6): $\delta = 177.5$, 167.0, 166.4, 160.0, 144.5 (2C), 142.6, 134.3, 133.9, 133.2, 133.0, 128.1, 126.4, 125.5,

124.7 (2C), 123.0, 119.7 (2C), 117.7, 113.5, 81.3 ppm.

IR (mineral oil): 3307, 3154, 1745, 1720, 1653 cm⁻¹.

EA: Found: C, 55.43; H, 2.75; N, 8.81. Calc. for C₂₂H₁₃N₃O₆S₂: C, 55.11; H, 2.73; N, 8.76.

N-(2-Acetamidophenyl)-3-benzoyl- 2-hydroxy-1-oxopyrrolo[2,1-b][1,3]benzothiazole-3a(1H)-carboxamide (12ad)

Beige solid; yield (140 mg, 64%); mp 176–178°C (toluene). ¹H NMR (400 MHz, DMSO- d_6): δ = 9.92 (s, 1H), 9.71 (s, 1H), 9.10 (br.s, 1H), 7.82 (m, 2H), 7.62 (m, 1H), 7.55–7.48 (m, 5H), 7.25 (m, 2H), 7.15 (m, 3H), 2.01 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 188.1, 169.3, 166.3, 165.5, 154.6, 137.3, 133.7, 133.6, 132.6, 131.2, 130.2, 128.8 (2C), 128.1 (2C), 126.7, 125.8, 125.6, 125.5, 124.9, 124.5, 123.3, 118.2, 117.9, 80.6, 22.8 ppm. IR (mineral oil): 3288, 3132, 1733, 1673, 1648, 1638 cm⁻¹.

EA: Found: C 64.46; H 3.99; N 8.70. Calc. for C₂₆H₁₉N₃O₅S: C 64.32; H 3.94; N 8.65.

N-(2-Acetamidophenyl)-3-(4-methylbenzoyl)-2-hydroxy-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (12bd)

Beige solid; yield (157 mg, 70%); mp 197–199°C (toluene).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.88 (s, 1H), 9.71 (s, 1H), 7.74 (m, 2H), 7.54 (m, 1H), 7.44 (m, 2H), 7.32 (m, 2H), 7.24 (m, 2H), 7.15 (m, 3H), 2.39 (s, 3H), 2.02 (s, 3H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.4, 169.9, 166.9, 166.0, 154.1, 143.9, 135.2, 134.3, 134.3, 131.7, 130.8, 129.6 (2C), 129.3 (2C), 127.2, 126.4, 126.2, 126.1, 125.4, 125.1, 123.9, 119.2, 118.5, 81.2, 23.4, 21.7 ppm.

IR (mineral oil): 3288, 3188, 1717, 1673, 1651 cm⁻¹.

EA: Found: C, 65.15; H, 4.41; N, 8.50. Calc. for C₂₇H₂₁N₃O₅S: C, 64.92; H, 4.24; N, 8.41.

S122

S133

S134

S149

S151

S154

S157

N-MesityI-2,4-dioxo-3-(2-oxo-2H-1,4-benzothiazin-3(4H)-ylidene)-4-phenylbutanamide (14ab)

A mixture of compound **1a** (150 mg, 0.45 mmol), mesitylamine **11b** (90 μ L, 0.90 mmol), and anhydrous toluene (3 mL) is stirred in a closed microreaction V-vial at room temperature for 24 h. Then, the formed precipitate of compound **14ab** is filtered off and washed with toluene. According to NMR spectra of compound **14ab**, in a solution, it exists as a mixture of tautomers (Scheme 1) in a ratio of ~ 1:1, which is typical for similar compounds [4].

Scheme 1: Tautomers of compound 14ab.

N-MesityI-2,4-dioxo-3-(2-oxo-2H-1,4-benzothiazin-3(4H)-ylidene)-4-phenylbutanamide (14ab)

Orange solid; yield (30 mg, 14%); mp 177–178 °C (decomp.). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 14.45 (s, 1H), 9.95 (s, 1H), 7.82 (m, 3H), 7.78 (m, 2H), 7.62 (m, 2H), 7.51 (m, 5H), 7.39 (m, 2H), 7.34 (m, 1H), 6.98 (m, 1H), 6.85 (m, 2H), 6.74 (m, 2H), 6.59 (m, 1H), 6.48 (m, 1H), 2.22 (s, 3H), 2.15 (s, 3H), 2.04 (s, 12H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 190.8, 187.4, 170.1, 163.7, 138.2, 137.7, 137.4, 137.2, 136.8, 134.9, 132.2, 129.4, 128.9 (2C), 128.5, 128.2, 128.1, 127.8 (2C), 127.1, 124.8, 118.8, 114.9, 113.6, 79.6, 20.2, 17.9, 17.6 ppm. IR (mineral oil): 3255, 3054, 1785, 1728, 1683, 1645 cm⁻¹. EA: Found: C, 69.21; H, 4.81 N, 5.80. Calc. for C₂₇H₂₂N₂O₄S: C, 68.92; H, 4.71; N, 5.95.

S181

3-Benzoylpyrrolo[2,1-b][1,3]benzothiazole-1,2-dione (17a)

A mixture of APBTT **1a** (150 mg, 0.45 mmol), benzhydrol (83 mg, 0.45 mmol), and anhydrous toluene (3 mL) was stirred in a closed microreaction V-vial at 113 °C for 2 h. Then, the resulting solution is cooled to room temperature. In 24 h, the formed precipitate of compound **17a** is filtered off and washed with anhydrous toluene.

Red solid; yield (97 mg, 70%); mp 176–178 °C (decomp., toluene). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.07 (m, 1H), 7.98 (m, 1H), 7.94 (m, 1H), 7.61 (m, 2H), 7.57–7.40 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 185.1, 184.4, 171.7, 154.1, 136.7, 133.3, 132.8, 129.4 (2C), 129.3, 128.5, 128.2 (2C), 127.0, 123.6, 114.8, 107.2. IR (mineral oil): 1784, 1742, 1658 cm⁻¹.

EA: Found: C, 66.53; H, 2.99; N, 4.61. Calc. for C₁₇H₉NO₃S: C, 66.44; H, 2.95; N, 4.56.

Preparation of samples for HPLC-UV analyses for optimization. General procedure to compounds 4, 8, 13.

Reaction mixtures are obtained according scales and conditions from Tables 1-3 of the main manuscript. Then, solvents are removed from the reaction mixtures at room temperature. After that, anhydrous toluene (0.5 mL) and DCC (1.1 equiv) are added to the reaction mixtures. The obtained mixtures are stirred for 1 h at 113 °C. The resulting reaction mixtures are cooled to room temperature. Then, biphenyl (10 mg) (internal standard) and chloroform (0.5 mL) are added (dicyclohexylurea precipitate is observed). Next, aliquots (0.1 mL) of the obtained mixtures are diluted with acetonitrile (0.9 mL). The obtained solutions are used for HPLC-UV.

The treatment with DCC is necessary to derivatize compounds **3aa**, **7a**, **12aa** to corresponding compounds **4**, **8**, **13** by a protocol developed by us earlier [5] in order to obtain good HPLC-UV signals.

General procedure to compounds 4, 8, 13.

A mixture of compounds **3aa**, **7a** or **12aa** (0.54 mmol) and DCC (0.59 mmol) in toluene (3 mL) was stirred in an oven-dried closed microreaction V-vial at 113 °C for 1 h. Then, the resulting solution is cooled to room temperature. The formed precipitate of dicyclohexylurea is filtered off, washed with toluene. Then, the solvent is removed under vacuum from the obtained solution. The resulting reaction mixture is recrystallized from ethanol to afford compound **4**. Compounds **8**, **13** are purified with a column chromatography (toluene/ethyl acetate, 25:1) and should not be dried in an oven since they can decompose.

Methyl 3-benzoyl-2-[cyclohexyl(cyclohexylcarbamoyl)amino]-1-oxopyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxylate (4) Yellow solid; yield (307 mg, 99%); mp 184–186 °C (decomp., EtOH).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.94 (m, 2H), 7.72 (m, 1H), 7.53 (m, 2H), 7.45 (m, 2H), 7.28–7.17 (m, 2H), 6.50 (m, 1H), 3.55 (m, 4H), 3.35 (m, 1H), 3.26 (s, 1H), 1.72 (m, 3H), 1.60–1.43 (m, 4H), 1.35 (m, 2H), 1.26–1.18 (m, 4H), 1.16–1.03 (m, 5H), 0.89–0.79 (m, 1H) ppm.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 190.3, 168.4, 166.3, 154.0, 141.3, 137.8, 135.7, 135.2, 134.5, 134.3, 129.2 (2C), 128.6 (2C), 126.2, 126.0, 122.9, 118.1, 77.8, 58.3, 53.6, 49.6, 32.5, 32.4, 31.8, 30.1, 25.3, 25.2 (2C), 25.0, 25.0, 24.8 ppm.

IR (mineral oil): 3418, 1749, 1721, 1656, 1639 cm⁻¹.

EA: Found: C, 67.10; H, 6.20; N, 7.33. Calc. for C₃₂H₃₅N₃O₅S: C, 66.99; H, 6.15; N, 7.32.

3-Benzoyl-*N***-benzyl-2-[cyclohexyl(cyclohexylcarbamoyl)amino]-1-oxopyrrolo[2,1-***b***][1,3]benzothiazole-3a(1***H***)-carboxamide (8)** Yellow solid; yield (347 mg, 99%); mp 113–115 °C (decomp.). ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (m, 2H), 7.83 (m, 1H), 7.74 (m, 1H), 7.69 (m, 1H), 7.54 (m, 2H), 7.35 (m, 3H), 7.27 (m, 4H), 7.15 (m, 1H), 5.27 (m, 1H), 4.59–4.39 (m, 2H), 3.92 (m, 1H), 3.51 (m, 1H), 2.47 (m, 1H), 1.98 (m, 1H), 1.87 (m, 2H), 1.77 (m, 5H), 1.64 (m, 3H), 1.54 (m, 1H), 1.39 (m, 2H), 1.25 (m, 4H), 1.11–0.94 (m, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 190.6, 167.9, 166.1, 154.2, 142.6, 140.0, 136.8, 135.9, 134.7, 134.0, 132.8, 129.0, 128.6, 128.6 (2C), 128.2 (2C), 127.6, 127.2, 126.8, 126.6, 125.3, 123.2, 118.6, 81.3, 59.3, 50.0, 44.7, 33.2, 33.0, 31.3, 31.2, 26.2, 26.1, 25.6, 25.3, 24.9, 24.8 ppm.

IR (thin layer obtained from CHCl₃): 3380, 1732, 1677, 1639 cm⁻¹.

EA: Found: C, 71.35; H, 6.37; N, 8.33. Calc. for 3C₃₈H₄₀N₄O₄S · C₇H₈: C, 71.29; H, 6.33; N, 8.25.

3-Benzoyl- 2-[cyclohexyl(cyclohexylcarbamoyl)amino]-1-oxo-*N*-phenylpyrrolo[2,1-*b*][1,3]benzothiazole-3a(1*H*)-carboxamide (13)

Yellow solid; yield (339 mg, 88%, purity 90%); mp 116–118 °C (decomp.).

¹H NMR (400 MHz, CDCl₃): δ = 9.17 (s, 1H), 7.84 (m, 2H), 7.79 (m, 1H), 7.60 (m, 1H), 7.47 (m, 3H), 7.28 (m, 3H), 7.22 (m, 2H), 7.15–7.09 (m, 2H), 5.10 (m, 1H), 3.82 (m, 1H), 3.46 (m, 1H), 2.59 (m, 2H), 2.04 (m, 2H), 1.81 (m, 2H), 1.73 (m, 4H), 1.58 (m, 3H), 1.48 (m, 1H), 1.34 (m, 2H), 1.24–1.08 (m, 3H), 0.92 (m, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 190.6, 168.2, 164.0, 154.2, 142.5, 140.2, 136.7, 135.9, 134.7, 134.1, 132.4, 129.1, 129.0 (2C), 128.7, 128.3, 127.0, 126.8, 125.4, 123.3, 121.6, 120.2 (2C), 118.8, 81.8, 59.5, 50.0, 33.2, 33.0, 31.4, 31.2, 26.3, 26.1, 25.6, 25.3, 24.9, 24.8 ppm.

IR (thin layer obtained from CHCl₃): 3346, 1735, 1682, 1639 cm⁻¹.

EA: Found: C, 70.33; H, 6.25; N, 8.97. Calc. for C₃₇H₃₈N₄O₄S: C, 70.01; H, 6.03; N, 8.83.

S191

Crystal structure determination

The unit cell parameters and the X-ray diffraction intensities were measured on a Xcalibur Ruby diffractometer. The empirical absorption correction was introduced by multi-scan method using SCALE3 ABSPACK algorithm [6]. Using the Olex2 [7], the structures were solved with the SHELXS [8] or SUPERFLIP [9] or SHELXT [10] programs and refined by the full-matrix least-squares method in the anisotropic approximation for all non-hydrogen atoms with the SHELXL program [11]. Hydrogen atoms bound to carbon were positioned geometrically and refined using a riding model. The hydrogen atoms of NH and OH groups were refined independently with isotropic displacement parameters.

Figure S1. Molecular structure of compound 3bb showing 30% probability amplitude displacement ellipsoids (CCDC 2241415).

Table S1. Crystal data and str	ucture refinement for compound 3bb	(CCDC 2241415).

Empirical formula	C22	2H19NO5S	
Formula weight	409	9.44	

Temperature, K	295.15
Crystal system	triclinic
Space group	P-1
a, Å	9.537(2)
b, Å	10.544(2)
c, Å	11.320(2)
α, °	77.678(18)
β, °	77.451(18)
γ, °	64.45(2)
Volume, Å ³	993.2(4)
Z	2
Density (calculated), g/cm ³	1.369
Absorption coefficient, mm ⁻¹	0.197
F(000)	428.0
Crystal size, mm ³	0.45 × 0.22 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection, °	6.076 to 58.958
Index ranges	-11 ≤ h ≤ 12, -14 ≤ k ≤ 14, -15 ≤ l ≤ 12
Reflections collected	8137
Independent reflections	4635 [Rint = 0.0415, Rsigma = 0.0658]
Data/restraints/parameters	4635/0/269
Goodness-of-fit on F ²	1.031
Final R indexes [I>=2σ (I)]	R ₁ = 0.0567, wR ₂ = 0.1359
Final R indexes [all data]	$R_1 = 0.0871$, $wR_2 = 0.1668$
Largest diff. peak/hole, eÅ ⁻³	0.37/-0.43

Figure S2. Molecular structure of compound **4** showing 30% probability amplitude displacement ellipsoids (CCDC 2241420). Only one independent molecule is shown.

Table S2. Crystal data and structure refinement for compound 4 (CCDC 2241420).

	(002022)
Empirical formula	C32H35N3O5S
Formula weight	573.69
Temperature, K	295(2)
Crystal system	monoclinic
Space group	P21/c

a, Å	21.418(3)
b, Å	10.8298(12)
c, Å	26.026(4)
α, °	90
β, °	97.009(14)
γ, °	90
Volume, Å ³	5991.6(15)
Ζ	8
Density (calculated), g/cm ³	1.272
Absorption coefficient, mm ⁻¹	0.153
F(000)	2432.0
Crystal size, mm ³	0.48 × 0.26 × 0.03
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	3.884 to 59.078
Index ranges	-17 ≤ h ≤ 29, -11 ≤ k ≤ 14, -32 ≤ l ≤ 33
Reflections collected	37522
Independent reflections	14218 [$R_{int} = 0.0662$, $R_{sigma} = 0.0881$]
Data/restraints/parameters	14218/51/862
Goodness-of-fit on F ²	1.014
Final R indexes [I>=2σ (I)]	$R_1 = 0.0719$, $wR_2 = 0.1690$
Final R indexes [all data]	$R_1 = 0.1724$, $wR_2 = 0.2375$
Largest diff. peak/hole, eÅ ⁻³	0.27/-0.37

Figure S3. Molecular structure of compound *6b* showing 30% probability amplitude displacement ellipsoids (CCDC 2241419). Toluene solvate molecule is not shown.

Table S3. Crystal data and str	icture refinement for compo	und 6b ((CCDC 2241419).
-			

C45H34N2O10S2
826.86
295.15
monoclinic
P21/c
13.007(5)
7.100(3)
21.848(7)
90
103.36(4)
90
1963.1(14)
2

Density (calculated), g/cm ³	1.399
Absorption coefficient, mm ⁻¹	0.200
F(000)	860.0
Crystal size, mm ³	0.2 × 0.15 × 0.1
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	5.546 to 58.886
Index ranges	-16 ≤ h ≤ 15, -9 ≤ k ≤ 8, -20 ≤ l ≤ 29
Reflections collected	9806
Independent reflections	4671 [R _{int} = 0.0963, R _{sigma} = 0.1465]
Data/restraints/parameters	4671/62/290
Goodness-of-fit on F ²	1.018
Final R indexes [I>=2σ (I)]	$R_1 = 0.1048, wR_2 = 0.2618$
Final R indexes [all data]	R ₁ = 0.2127, wR ₂ = 0.3520
Largest diff. peak/hole, eÅ ⁻³	0.44/-0.36

Figure S4. Molecular structure of compound 6e showing 30% probability amplitude displacement ellipsoids (CCDC 2241423).

Empirical formula	C ₁₈ H ₁₀ CINO ₅ S
Formula weight	387.78
Temperature, K	295.15
Crystal system	monoclinic
Space group	Cc
a, Å	15.639(5)
b, Å	15.684(7)
c, Å	6.932(2)
α, °	90
β, °	101.27(3)
γ, °	90
Volume, Å ³	1667.4(10)
Z	4
Density (calculated), g/cm ³	1.545
Absorption coefficient, mm ⁻¹	0.385
F(000)	792.0
Crystal size, mm ³	0.5 × 0.04 × 0.03
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	6.596 to 58.576
Index ranges	-14 ≤ h ≤ 20, -21 ≤ k ≤ 19, -9 ≤ l ≤ 9
Reflections collected	3836
Independent reflections	2644 [R _{int} = 0.0403, R _{sigma} = 0.0668]
Data/restraints/parameters	2644/2/243
Goodness-of-fit on F ²	0.976
Final R indexes [I>=2σ (I)]	$R_1 = 0.0536$, $wR_2 = 0.1360$
Final R indexes [all data]	$R_1 = 0.0717$, $wR_2 = 0.1618$
Largest diff. peak/hole, eÅ ⁻³	0.26/-0.33

Table S4. Crystal data and structure refinement for compound 6e (CCDC 2241423).

Figure S5. Molecular structure of compound *7a* showing 30% probability amplitude displacement ellipsoids (CCDC 2241418). Only one independent molecule is shown.

Table S5. Crystal data and structure refinement for compound **7a** (CCDC 2241418).

Empirical formula	C ₂₅ H ₁₈ N ₂ O ₄ S
Formula weight	442.47
Temperature, K	295.15
Crystal system	monoclinic
Space group	P21/n
a, Å	25.308(6)

b, Å	20.678(4)
c, Å	8.2996(14)
α, °	90
β, °	90.66(2)
γ, °	90
Volume, Å ³	4343.1(16)
Z	8
Density (calculated), g/cm ³	1.353
Absorption coefficient, mm ⁻¹	0.184
F(000)	1840.0
Crystal size, mm ³	0.45 × 0.2 × 0.05
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	5.512 to 59.072
Index ranges	-32 ≤ h ≤ 23, -26 ≤ k ≤ 28, -11 ≤ l ≤ 11
Reflections collected	24909
Independent reflections	10334 [R _{int} = 0.0737, R _{sigma} = 0.1009]
Data/restraints/parameters	10334/0/593
Goodness-of-fit on F ²	1.044
Final R indexes [I>=2σ (I)]	$R_1 = 0.0936$, $wR_2 = 0.2133$
Final R indexes [all data]	$R_1 = 0.1866, wR_2 = 0.2756$
Largest diff. peak/hole, eÅ ⁻³	0.59/-0.36

Figure S6. Molecular structure of compound 10a showing 30% probability amplitude displacement ellipsoids (CCDC 2241424).

	Empirical formula	C22H18N2O5S
	Formula weight	422.44
	Temperature, K	295.15
	Crystal system	monoclinic
	Space group	P21/c

Table S6. Crystal data and str	ucture refinement for compound 1	0a (CCDC 2241424).
5		/

a, Å	10.138(6)
b, Å	19.732(10)
c, Å	10.477(6)
α, °	90
β, °	110.91(7)
γ, °	90
Volume, Å ³	1958(2)
Z	4
Density (calculated), g/cm ³	1.433
Absorption coefficient, mm ⁻¹	0.204
F(000)	880.0
Crystal size, mm ³	0.18 × 0.12 × 0.02
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	4.3 to 59.088
Index ranges	-13 ≤ h ≤ 7, -26 ≤ k ≤ 17, -9 ≤ l ≤ 14
Reflections collected	10529
Independent reflections	4689 [R _{int} = 0.1091, R _{sigma} = 0.2422]
Data/restraints/parameters	4689/0/274
Goodness-of-fit on F ²	1.003
Final R indexes [I>=2σ (I)]	$R_1 = 0.0938$, $wR_2 = 0.1588$
Final R indexes [all data]	$R_1 = 0.2970, wR_2 = 0.2309$
Largest diff. peak/hole, eÅ ⁻³	0.30/-0.29

Figure S7. Molecular structure of compound **12bd** *showing* 30% *probability amplitude displacement ellipsoids* (CCDC 2241422). *Toluene solvate molecule is not shown.*

Table S7. Crystal data and structure refinement for compound **12bd** (CCDC 2241422).

Empirical formula	C61H50N6O10S2
Formula weight	1091.19
Temperature, K	295.15
Crystal system	triclinic
Space group	P-1
a, Å	8.7224(14)
b, Å	12.811(2)

c, Å	13.709(2)
α, °	62.649(16)
β, °	80.597(13)
γ, °	77.287(14)
Volume, Å ³	1323.9(4)
Z	1
Density (calculated), g/cm ³	1.369
Absorption coefficient, mm ⁻¹	0.169
F(000)	570.0
Crystal size, mm ³	0.4 × 0.08 × 0.06
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	4.8 to 58.982
Index ranges	-11 ≤ h ≤ 11, -15 ≤ k ≤ 16, -18 ≤ l ≤ 18
Reflections collected	12095
Independent reflections	6193 [R _{int} = 0.0432, R _{sigma} = 0.0725]
Data/restraints/parameters	6193/71/402
Goodness-of-fit on F ²	1.061
Final R indexes [I>=2σ (I)]	$R_1 = 0.0661, wR_2 = 0.1525$
Final R indexes [all data]	$R_1 = 0.1112, wR_2 = 0.1859$
Largest diff. peak/hole, eÅ ⁻³	0.30/-0.43

Figure S8. Molecular structure of compound **14ab** showing 30% probability amplitude displacement ellipsoids (CCDC 2241416). Dichloromethane solvate molecule is not shown.

Table S8. Crystal data and str	ucture refinement for compound	14ab (CCDC 2241416).

Empirical formula	C28H24Cl2N2O4S
Formula weight	555.45
Temperature, K	295
Crystal system	triclinic
Space group	P-1
a, Å	10.927(2)
b, Å	10.962(2)
c, Å	12.606(2)

α, °	101.113(19)
β, °	95.903(16)
γ, °	115.32(2)
Volume, Å ³	1309.7(5)
Z	2
Density (calculated), g/cm ³	1.409
Absorption coefficient, mm ⁻¹	0.366
F(000)	576.0
Crystal size, mm ³	0.35 × 0.25 × 0.1
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	4.218 to 59.14
Index ranges	-14 ≤ h ≤ 15, -14 ≤ k ≤ 14, -16 ≤ l ≤ 16
Reflections collected	9308
Independent reflections	9308 [R _{sigma} = 0.1393]
Data/restraints/parameters	9308/0/346
Goodness-of-fit on F ²	0.836
Final R indexes [I>=2σ (I)]	$R_1 = 0.0619$, $wR_2 = 0.1364$
Final R indexes [all data]	$R_1 = 0.1564, wR_2 = 0.1550$
Largest diff. peak/hole, eÅ ⁻³	0.24/-0.29
Refined twin ratio	0.5771(12) : 0.4229(12)

Figure S9. Molecular structure of compound 17a showing 30% probability amplitude displacement ellipsoids (CCDC 2241421).

100002241421)
C17H9NO3S
307.31
295.15
monoclinic
I2/c
20.969(6)
5.1385(14)
25.282(6)
90
102.34(3)
90
2661.3(13)

Table S9. Crystal data and str	ructure refinement for compound 1	7a	(CCDC 2241421)).

Z	8
Density (calculated), g/cm ³	1.534
Absorption coefficient, mm ⁻¹	0.256
F(000)	1264.0
Crystal size, mm ³	0.5 × 0.14 × 0.03
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	5.684 to 58.546
Index ranges	-19 ≤ h ≤ 28, -7 ≤ k ≤ 6, -33 ≤ l ≤ 34
Reflections collected	7468
Independent reflections	$3158 [R_{int} = 0.0389, R_{sigma} = 0.0554]$
Data/restraints/parameters	3158/0/199
Goodness-of-fit on F ²	1.037
Final R indexes [I>=2σ (I)]	$R_1 = 0.0538$, $wR_2 = 0.1158$
Final R indexes [all data]	$R_1 = 0.0819$, $wR_2 = 0.1388$
Largest diff. peak/hole, eÅ ⁻³	0.24/-0.43

Figure S10. Molecular structure of compound 17a showing 30% probability amplitude displacement ellipsoids (CCDC 2241417).

Empirical formula	C17H9NO3S
Formula weight	307.31
Temperature, K	295.15
Crystal system	monoclinic
Space group	P21/c
a, Å	5.4696(15)
b, Å	26.985(8)
c, Å	9.099(3)
α, °	90
β, °	93.87(3)
γ, °	90
Volume, Å ³	1340.0(7)
Z	4
Density (calculated), g/cm ³	1.523
Absorption coefficient, mm ⁻¹	0.254
F(000)	632.0
Crystal size, mm ³	0.3 × 0.1 × 0.03
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection, °	6.04 to 58.478
Index ranges	-7 ≤ h ≤ 6, -36 ≤ k ≤ 20, -12 ≤ l ≤ 11
Reflections collected	6425
Independent reflections	$3152 [R_{int} = 0.0544, R_{sigma} = 0.0820]$
Data/restraints/parameters	3152/135/245
Goodness-of-fit on F ²	1.041
Final R indexes [I>=2σ (I)]	$R_1 = 0.0\overline{683}, wR_2 = 0.1592$
Final R indexes [all data]	$R_1 = 0.1262, wR_2 = 0.2119$
Largest diff. peak/hole, eÅ ⁻³	0.32/-0.35

Table S10. Crystal data and structure refinement for compound **17a** (CCDC 2241417).

References

1. Khramtsova, E. E.; Lystsova E. A.; Dmitriev, M. V.; Maslivets, A. N.; Jasinski, R. *ChemistrySelect*, **2021**, *6*, 6295–6301. doi:10.1002/slct.202101990.

 Stepanova, E. E.; Dmitriev, M. V., Maslivets, A. N. *Beilstein J. Org. Chem.*, **2020**, *16*, 2322–2331. doi:10.3762/bjoc.16.193.
Gumerova, D. F.; Mashevskaya, I. V.; Maslivets, A. N.; Kozlov, A. P. *Russ. J. Org. Chem.* **2003**, *39*, 995–997. doi:10.1023/B:RUJO.0000003192.96463.ca.

4. Mashevskaya, I. V.; Kol'tsova, S. V.; Maslivets, A. N. *Chem. Heterocycl. Compd.* **2000**, *36*, 1355–1356. doi:10.1023/A:1017500324352.

5. Khramtsova, E. E.; Lystsova, E. A.; Khokhlova, E. V.; Dmitriev, M. V.; Maslivets, A. N. *Molecules*, **2021**, *26*, 7179. doi:10.3390/molecules26237179.

6. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).

7. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Cryst.*, **2009**, *42*, 339–341. doi:10.1107/S0021889808042726.

8. Sheldrick, G. M. ActaCryst., 2008, A64, 112–122. doi:10.1107/S0108767307043930.

9. Palatinus, L.; Chapuis, G. J. Appl. Cryst., 2007, 40, 786–790. doi:10.1107/S0021889807029238.

10. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3–8. doi:10.1107/S2053273314026370.

11. Sheldrick, G. M. ActaCryst., **2015**, C71, 3–8. doi:10.1107/S2053229614024218.