Supporting Information

for

Palladium-catalyzed enantioselective three-component synthesis of α-arylglycine derivatives from glyoxylic acid, sulfonamides and aryltrifluoroborates

Bastian Jakob, Nico Schneider, Luca Gengenbach and Georg Manolikakes

Beilstein J. Org. Chem. 2023, 19, 719-726. doi:10.3762/bjoc.19.52

Experimental section and characterization data

Table of contents

1 General information S2
1.1 Experimental S2
1.2 Materials S2
1.3 Analytical data and instrumentation S2
2 Preparation and analytical data S4
2.1 General procedures (GP) S4
2.2 Synthesis α-arylglycines S6
3 HPLC data S16
4 NMR data S24
5 References S34

General information

1.1 Experimental

Thin layer chromatography (TLC) was performed on precoated aluminum sheets (TLC silica gel $60 \mathrm{~F}_{254}$). The spots were visualized by ultraviolet light, iodine or cerium(IV) ammonium molybdate. Flash column chromatography was performed using a puriflash XS 420+ flash purifier machine from Interchim with prepacked flash columns (Puriflash_Silica HP_15 $\mu \mathrm{m} _$F0040, Puriflash PF C18HP $30 \mu \mathrm{~m}$ F0012) and the respective solvent mixture. All yields refer to the isolated yields of compounds estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

1.2 Materials

Unless noted, all starting materials were purchased from different commercial sources and used without further purification. Sulfonamide $\mathbf{1 0}$ and ligand $\mathbf{L} 1$ were synthesized according to known literature procedures. ${ }^{1,2}$ Racemic products for chiral HPLC analysis were prepared according to the same typical procedures reported for the enantioselective three-component reactions by utilizing the corresponding sulfonamide (0.5 mmol), glyoxylic acid (0.65 mmol) and arylboronic acids (1.0 mmol) in nitromethane $(2.0 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 24 h .

1.3 Analytical data and instrumentation

NMR spectroscopy - Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) and carbon spectra (${ }^{13} \mathrm{C}$ NMR) were recorded at a frequency of $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $101 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively. Chemical shifts are expressed as parts of million downfield shift on the δ-scale and are referenced to the solvent peak (chloroform- $d_{1}: \delta=7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$; DMSO- $d_{6}: \delta=2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=$ 39.52 ppm for $\left.{ }^{13} \mathrm{C}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded proton decoupled at a frequency of 282 MHz . Chemical shifts are quoted in parts per million and are not referenced. Coupling constants (J) are quoted in Hz and the observed signal multiplicities are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet.

Mass spectrometry - Mass spectra (MS) were measured using ESI (electrospray ionization) techniques. High resolution mass spectra (HRMS) were acquired on a Waters GCT Premium using electron ionization mass spectroscopy (EI-MS-TOF).

Infrared spectroscopy - Infrared spectra (IR) were recorded on an FTIR (Fourier transform infrared spectroscopy) spectrometer including a diamond universal ATR sampling technique (attenuated total reflectance) from $4000-400 \mathrm{~cm}^{-1}$. The absorption bands were reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$.

Optical rotations - Rotation values (α) were measured with an analog-type 243 B polarimeter from Perkin Elmer, equipped with a sodium lamp source (589 nm), at $20^{\circ} \mathrm{C}$ in a 10 cm cell and the indicated solvent. The specific rotation values are reported as $[\alpha]_{\lambda}{ }^{T}$ (mass concentration (c) in $\mathrm{g} \cdot 100 \mathrm{~mL}^{-1}$, solvent) and are quoted in deg $\cdot \mathrm{mL} \cdot \mathrm{dm}^{-1} \cdot \mathrm{~g}^{-1}$.

Analytical chiral HPLC - Enantiomeric ratios (er) and accordingly enantiomeric excesses (ee) were determined by normal phase high performance liquid chromatographic (HPLC) analysis with a Hewlett Packard ${ }^{\mathrm{TM}}$ system (G1322A degasser, G1311 quadruple pump, G1316A diode array detector with visualization at 254 nm) and the use of a Chiralpak ${ }^{\circledR}$ IA, Chiralcel ${ }^{\circledR}$ OD-H or OJ-H as chiral column $(4.6 \mathrm{~mm} \times 25 \mathrm{~cm})$ obtained from Daicel Chemical Industries, Ltd. Elution conditions are reported at specific compounds.

Melting points - Melting points are uncorrected.

2 Preparation and analytical data

2.1 General procedures (GP)

GP1 (initial experiments) - In a manner similar to [4] a 10 mL screw cap glass vial was charged with a magnetic stirring bar, sulfonamide $10(134.7 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), glyoxylic acid monohydrate ($59.8 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.3$ equiv), potassium (phenyl)trifluoroborate ($184.0 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0$ equiv), $\operatorname{Pd}(\mathrm{TFA})_{2}\left(16.6 \mathrm{mg}, 50 \mu \mathrm{~mol}, 0.10\right.$ equiv), $S, S^{\prime}-\mathrm{iPrBox}(\mathbf{L 1}, 16.8 \mathrm{mg}, 75.0 \mu \mathrm{~mol}, 0.15$ equiv) and nitromethane (0.25 M referring to sulfonamide, 2 mL) as solvent. Then, the vial was closed with a teflon lined screw cap and the resulting reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the reaction mixture was diluted with acetone and filtered through a short plug of celite and silica gel. The filter pad was rinsed with additional acetone and the combined filtrates were concentrated under reduced pressure. Purification of the crude residue by flash column chromatography afforded the analytically pure product.

GP2 (parameter optimization) - In a manner similar to [4] a 8 mL glass vial with a ground glass joint was charged with a magnetic stirring bar, sulfonamide 10 ($134.7 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), glyoxylic acid monohydrate ($59.8 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.3$ equiv), potassium phenyltrifluoroborate (184.0 mg , $1.00 \mathrm{mmol}, 2.0$ equiv), $\operatorname{Pd}(\mathrm{TFA})_{2}\left(16.6 \mathrm{mg}, 50 \mu \mathrm{~mol}, 0.10\right.$ equiv), $S, S^{\prime}-\mathrm{i} \operatorname{PrBox} \mathrm{L} 1(16.8 \mathrm{mg}, 75.0 \mu \mathrm{~mol}$, 0.15 equiv). The glass vial was closed with a rubber septum, evacuated, and backfilled with nitrogen twice before adding nitromethane (0.25 M referring to sulfonamide, 2 mL) as solvent. The resulting reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the reaction mixture was diluted with acetone and filtered through a short plug of celite and silica gel. The filter pad was rinsed with additional acetone and the combined filtrates were concentrated under reduced pressure. Purification of the crude residue by flash column chromatography afforded the analytically pure product.

GP3 (BF3K salt variation) - An 8 mL glass vial with a ground glass joint was charged with a magnetic stirring bar, sulfonamide $\mathbf{1 0}$ ($134.7 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), glyoxylic acid monohydrate (119.6 mg , $1.30 \mathrm{mmol}, 2.6$ equiv), potassium aryltrifluoroborate ($1.00 \mathrm{mmol}, 2.0$ equiv), $\operatorname{Pd}(\mathrm{TFA})_{2}(16.6 \mathrm{mg}$, $50 \mu \mathrm{~mol}, 0.10$ equiv), S, S^{\prime}-iPrBox L1 ($16.8 \mathrm{mg}, 75.0 \mu \mathrm{~mol}, 0.15$ equiv), $\mathrm{CaCO}_{3}(50.1 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv), tartaric acid ($150.9 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and molecular sieves $4 \AA(200 \mathrm{mg})$. The glass vial was closed with a rubber septum, evacuated and backfilled with nitrogen twice before adding nitromethane (0.25 M referring to sulfonamide, 2 mL) as solvent. The resulting reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the reaction mixture was diluted with
acetone and filtered through a short plug of celite and silica gel. The filter pad was rinsed with additional acetone and the combined filtrates were concentrated under reduced pressure. Purification of the crude residue by flash column chromatography afforded the analytically pure product.

GP4 (BF3K salt synthesis) - A 100 mL round-bottomed flask was charged with a magnetic stirring bar, boronic acid ($8.2 \mathrm{mmol}, 1.0$ equiv) and 40 mL MeCN . Afterwards an aqueous KF solution (3.3 mL , $10 \mathrm{M}, 32.8 \mathrm{mmol}, 4.0$ equiv) was added and the mixture stirred at room temperature for 15 minutes. Then, tartaric acid solution ($33.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF, $33.6 \mathrm{mmol}, 2.05$ equiv) was slowly dropped into the reaction mixture and stirred for additional 30 minutes. The reaction mixture was filtered and washed three times with 15 mL MeCN each. The solution was concentrated to 20 mL in vacuo and $\mathrm{Et}_{2} \mathrm{O}$ was added until the product precipitated. The product was filtered again, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in an oil pump vacuum.

2.2 Synthesis α-arylglycines

(S)-2-((2,2,4,6,7-Pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)-2-phenylacetic acid (10a)

Prepared according to GP3 from potassium phenyltrifluoroborate ($184.0 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0$ equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1\right.$ vol \% TFA $\left.=9: 1 \rightarrow 2: 8\right)$ and freeze drying afterwards afforded product $\mathbf{1 0 a}$ as a colorless solid ($159 \mathrm{mg}, 79 \%$). Analytical data match those reported in the literature. ${ }^{[4]}$
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}=+91.8\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r $=96: 4$ [HPLC conditions: Chiralcel \circledR IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=0.7$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.3 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=23.1 \mathrm{~min}\right]$.
$\mathbf{R}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.31
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.26-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.88(\mathrm{t}, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=174.1,159.85,139.50,134.79,134.12,128.65,128.56,127.73$, $127.15,125.03,117.99,86.85,58.93,43.04,28.55,28.53,19.28,17.66,12.38 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S} 404.5[\mathrm{M}+\mathrm{H}]^{+}$, found $404.2[\mathrm{M}+\mathrm{H}]^{+}$

HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S} 403.1453\left[\mathrm{M}^{+}\right]$, found $403.1472\left[\mathrm{M}^{+}\right]$
(S)-2-(4-Methoxyphenyl)-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)acetic acid (10b)

Prepared according to GP3 from potassium 4-methoxyphenyltrifluorborate ($214.0 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2.0 equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1\right.$ vol $\%$ TFA $=$ $9: 1 \rightarrow 2: 8)$ and freeze drying afterwards afforded product $\mathbf{1 0 b}$ as a colorless solid ($121 \mathrm{mg}, 55 \%$). Analytical data match those reported in the literature. ${ }^{[4]}$
$[\alpha] \mathrm{D}^{\mathbf{2 0}}=+74.5\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r $=88: 12$ [HPLC conditions: Chiralcel ${ }^{\circledR}$ IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=$ $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=25.2 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=29.4 \mathrm{~min}\right]$.
$\mathbf{R}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.31
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.05(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.93(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=174.50,159.79,159.77,139.42,134.07,128.39,127.91,126.81$, $125.02,117.95,113.88,86.84,58.44,55.24,43.06,28.50,28.44,19.29,17.67,12.37 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{~S} 434.2[\mathrm{M}+\mathrm{H}]^{+}$, found $434.3[\mathrm{M}+\mathrm{H}]^{+}$

HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{~S} 433.1559\left[\mathrm{M}^{+}\right]$, found $433.1567\left[\mathrm{M}^{+}\right]$
(S)-2-(4-Fluorophenyl)-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)acetic acid (10c)

Prepared according to GP3 from (4-fluorophenyl)boronic acid (139.9 mg, $1.00 \mathrm{mmol}, 2.0$ equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1\right.$ vol $\%$ TFA $\left.=9: 1 \rightarrow 2: 8\right)$ and freeze drying afterwards afforded product $\mathbf{1 0 c}$ as a colorless solid ($155 \mathrm{mg}, 74 \%$). Analytical data match those reported in the literature. ${ }^{[4]}$
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}=+78.3\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r $=$ 88:12 [HPLC conditions: Chiralcel \circledR IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=$ $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.9 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=22.6 \mathrm{~min}\right]$.
$\mathbf{R}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.34
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.13(\mathrm{dd}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}) 5.68(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.79,162.72(\mathrm{~d}, J=247.5 \mathrm{~Hz}) 159.92,139.42,134.08,130.68(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}), 129.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 127.71,125.07,118.06,115.45(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 86.93,58.27$, 43.03, 28.52, 28.46, 19.26, 17.67, 12.39 ppm .
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-112.59 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{5} \mathrm{~S} 422.2[\mathrm{M}+\mathrm{H}]^{+}$, found $422.3[\mathrm{M}+\mathrm{H}]^{+}$

HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{5} \mathrm{~S} 421.1359\left[\mathrm{M}^{+}\right]$, found $421.1358\left[\mathrm{M}^{+}\right]$
(S)-2-(4-Chlorophenyl)-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)acetic acid (10d)

Prepared according to GP3 from (4-chlorophenyl)boronic acid ($156.4 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0$ equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1\right.$ vol $\%$ TFA $\left.=9: 1 \rightarrow 2: 8\right)$ and freeze drying afterwards afforded product $\mathbf{1 0 d}$ as a colorless solid ($145 \mathrm{mg}, 66 \%$). Analytical data match those reported in the literature. ${ }^{[4]}$
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}=+81.7\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r $=$ 87:13 [HPLC conditions: Chiralcel \circledR IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=$ $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.4 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=23.8 \mathrm{~min}\right]$.
$\mathbf{R f}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.36
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.16(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.78,159.98,139.43,134.65,134.08,133.33,128.60,127.60$, $125.11,118.10,86.98,58.40,43.01,28.51,28.47,19.25,17.67,12.38 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{5} \mathrm{~S} 438.1[\mathrm{M}+\mathrm{H}]^{+}$, found $438.3[\mathrm{M}+\mathrm{H}]^{+}$

HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{5} \mathrm{~S}\left[{ }^{35} \mathrm{Cl}\right] 437.1064\left[\mathrm{M}^{+}\right]$, found $437.1062\left[\mathrm{M}^{+}\right] ;\left[{ }^{37} \mathrm{Cl}\right]$ $439.1034\left[\mathrm{M}^{+}\right]$, found $439.1053\left[\mathrm{M}^{+}\right]$
(S)-2-((2,2,4,6,7-Pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)-2-(p-tolyl)acetic acid (10e)

Prepared according to GP3 from potassium p-tolyltrifluoroborate ($136.0 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0$ equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1\right.$ vol $\%$ TFA $\left.=9: 1 \rightarrow 2: 8\right)$ and freeze drying afterwards afforded product $\mathbf{1 0 e}$ as a colorless solid ($117 \mathrm{mg}, 56 \%$). Analytical data match those reported in the literature. ${ }^{[4]}$
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}=+89.8\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r $=96: 4$ [HPLC conditions: Chiralcel ${ }^{\circledR}$ IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=0.7$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.4 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=24.8 \mathrm{~min}\right]$.
$\mathbf{R}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.36
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.04-6.99(\mathrm{~m}, 4 \mathrm{fH}), 5.59(\mathrm{~d}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}$, $2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=174.53,159.81,139.50,138.63,134.12,131.84,129.23,127.79$, $127.01,125.02,117.96,86.81,58.71,43.08,28.49,21.12,19.29,17.67,12.35 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S} 418.2[\mathrm{M}+\mathrm{H}]^{+}$, found $418.3[\mathrm{M}+\mathrm{H}]^{+}$
HRMS (TOF MS EI+) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S} 417.1610\left[\mathrm{M}^{+}\right]$, found $417.1605\left[\mathrm{M}^{+}\right]$
(S)-2-((2,2,4,6,7-Pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)-2-(4(trifluoromethyl)phenyl)acetic acid (10f)

Prepared according to GP3 from potassium (p-trifluoromethylphenyl)trifluoroborate (252.0 mg , $1.00 \mathrm{mmol}, 2.0$ equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+\right.$ $0.1 \mathrm{vol} \% \mathrm{TFA}=9: 1 \rightarrow 2: 8$) and freeze drying afterwards afforded product $\mathbf{1 0 f}$ as a colorless solid ($32 \mathrm{mg}, 14 \%$).
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}=+120.4\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r. $=$ 99:1 HPLC conditions: Chiralcel ${ }^{\circledR}$ IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=$ $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.5 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=21.3 \mathrm{~min}\right]$.
$\mathbf{R}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.36
m.p. $161-163{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=4 \mathrm{~Hz}$, 6H) ppm.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.30,160.05,139.54,138.95,134.13,130.74(\mathrm{q}, J=33.3 \mathrm{~Hz})$, $127.72,127.25,125.28(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.14,123.73(\mathrm{q}, J=272.7 \mathrm{~Hz}), 118.12,87.00,58.69,42.95$, $28.43,28.39,19.21,17.63,12.28 \mathrm{ppm}$.
${ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-62.67 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S} 472.2[\mathrm{M}+\mathrm{H}]^{+}$, found $472.3[\mathrm{M}+\mathrm{H}]^{+}$

HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S} 471.1327$ [M^{+}], found 471.1337 [M^{+}]

IR (v in cm${ }^{-1}$): $3375,2970,2929,1728,1694,1577,1455,1368,1142,1091,989,888,850,782$, 636, 617, 562, 537.
(S)-2-(3-Chlorophenyl)-2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)acetic acid (10g)

Prepared according to GP3 from potassium (3-chlorophenyl)trifluoroborate ($218.5 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2.0 equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1\right.$ vol $\% \mathrm{TFA}=$ $9: 1 \rightarrow 2: 8$) and freeze drying afterwards afforded product 10 g as a colorless solid ($28 \mathrm{mg}, 13 \%$). Analytical data match those reported in the literature. ${ }^{[4]}$
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+86.4\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r $=97: 3$ [HPLC conditions: Chiralcel ${ }^{\circledR}$ IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=0.7$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.8 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=21.1 \mathrm{~min}\right]$.
$\mathbf{R}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.42
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.18-7.05(\mathrm{~m}, 4 \mathrm{H}), 5.73(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz})$, $2.87(\mathrm{q}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.78,159.92,139.33,136.66,134.39,133.97,129.61,128.65$, $127.65,127.36,125.55,125.07,118.16,86.88,58.50,43.00,28.60,28.57,19.24,17.66,12.40 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{5} \mathrm{~S} 438.1[\mathrm{M}+\mathrm{H}]^{+}$, found $438.3[\mathrm{M}+\mathrm{H}]^{+}$
HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{5} \mathrm{~S}\left[{ }^{37} \mathrm{Cl}\right] 439.1034\left[\mathrm{M}^{+}\right]$, found $439.1052\left[\mathrm{M}^{+}\right]$
(S)-2-((2,2,4,6,7-Pentamethyl-2,3-dihydrobenzofuran)-5-sulfonamido)-2-(o-tolyl)acetic acid (10h)

Prepared according to GP3 from potassium (2-methylphenyl)trifluoroborate ($198.0 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2.0 equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1 \mathrm{vol} \% \mathrm{TFA}=\right.$ $9: 1 \rightarrow 2: 8)$ and freeze drying afterwards afforded product $\mathbf{1 0 h}$ as a colorless solid ($63 \mathrm{mg}, 30 \%$). Analytical data match those reported in the literature. ${ }^{[4]}$
$[\alpha] D^{20}=+0.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r $=50: 50$ [HPLC conditions: Chiralcel \circledR IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=$ $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.6 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=23.4 \mathrm{~min}\right]$.
$\mathbf{R}_{\mathbf{f}}$ (n-hexane/acetone/AcOH $=2: 1: 0.1$) 0.29
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.14-6.98 \mathrm{f}(\mathrm{m}, 4 \mathrm{H}), 5.60(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=174.42,159.76,139.53,136.37,134.07,133.39,130.72,128.54$, $127.80,126.91,126.11,124.99,117.95,86.81,55.52,43.02,28.50,19.20,19.07,17.65,12.35 \mathrm{ppm}$.

MS (APCI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S} 418.2[\mathrm{M}+\mathrm{H}]^{+}$, found $418.3[\mathrm{M}+\mathrm{H}]^{+}$
HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S} 417.1610\left[\mathrm{M}^{+}\right]$, found $417.1622\left[\mathrm{M}^{+}\right]$
(S)-2-(4-(Benzyloxy)phenyl)-2-((2,2,4,7-tetramethyl-2,3-dihydrobenzofuran)-5-sulfonamido)acetic acid (10k)

Prepared according to GP3 from potassium (4-benzyloxyphenyl)trifluoro borate (290.1 mg , $1.00 \mathrm{mmol}, 2.0$ equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+\right.$ $0.1 \mathrm{vol} \% \mathrm{TFA}=9: 1 \rightarrow 2: 8)$ and freeze drying afterwards afforded product 10 k as a colorless solid ($96 \mathrm{mg}, 38 \%$).
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}=+64.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r. $=88: 12$ [HPLC conditions: Chiralcel \circledR^{\circledR} IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=$ $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=28.3 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=29.7 \mathrm{~min}\right]$.
$\mathbf{R f}_{\mathbf{f}}(n-$ Hexan $/$ Aceton $/ \mathrm{AcOH}=2: 1: 0.1) 0.31$
m.p. $158-161^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$ $5.60(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.46,159.81,159.06,139.48,136.57,134.11,128.64,128.44$, $127.87,127.46,127.13,125.06,117.97,114.77,86.86,70.04,58.43,43.08,28.51,19.30,17.68$, 12.41 ppm .

MS (APCI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S} 510.6[\mathrm{M}+\mathrm{H}]^{+}$, found $510.4[\mathrm{M}+\mathrm{H}]^{+}$

HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S} 509.1872\left[\mathrm{M}^{+}\right]$, found $509.1883\left[\mathrm{M}^{+}\right]$

IR (v in cm${ }^{-1}$): 2970, 1738, 1575, 1511, 1371, 1304, 1231, 1218, 1136, 1088, 780, 732, 638, 615, 529.
(R)-2-(4-(Benzyloxy)phenyl)-2-((2,2,4,7-tetramethyl-2,3-dihydrobenzofuran)-5-sulfonamido)acetic acid (101)

Prepared according to GP3 from potassium (4-benzyloxyphenyl)trifluoroborate ($290.1 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2.0 equiv). Purification by reversed phase column chromatography $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}+0.1\right.$ vol $\% \mathrm{TFA}=$ 9:1 $\rightarrow 2: 8$) and freeze drying afterwards afforded product $\mathbf{1 0 1}$ as a colorless solid ($67 \mathrm{mg}, \mathbf{2 6 \%}$).
$[\alpha] \mathbf{D}^{\mathbf{2 0}}=-74.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$
e.r. $=$ 87:13 [HPLC conditions: Chiralcel ${ }^{\circledR}$ IA column, n-hexane/ethanol/TFA $=9: 1: 0.1$, flow rate $=$ $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=39.0 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ major $\left.)=36.2 \mathrm{~min}\right]$.
$\mathbf{R f}_{\mathbf{f}}(n$-Hexan/Aceton/AcOH $=2: 1: 0.1) 0.31$
m.p. $159-162{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.05(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, 6H) ppm.

MS (APCI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S} 510.6[\mathrm{M}+\mathrm{H}]^{+}$, found $510.4[\mathrm{M}+\mathrm{H}]^{+}$

HRMS (TOF MS EI+) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S} 509.1872\left[\mathrm{M}^{+}\right]$, found $509.1887\left[\mathrm{M}^{+}\right]$

IR (v in cm ${ }^{-1}$): 2970, 1738, 1575, 1511, 1371, 1304, 1231, 1218, 1136, 1088, 780, 732, 638, 615, 529.

3 HPLC data

Signal 2: DAD1 B, Sig=254,16 Ref=380,100					Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$	3	17.655	BB	0.3266	87.18548	3.73143	0.5285
					4	18.959	BB	0.3481	50.30979	1.83377	0.3050
					5	19.907	BB	0.3805	96.15298	3.52167	0.5828
					6	22.613	BB	0.3465	54.84767	1.93602	0.3325
14.636 VB	0.1183	53.06461	6.85620	0.3217	7	25.172	BB	0.5533	2058.32520	55.16533	12.4765
26.285 BB	0.1288	153.99100	17.48238	0.9334	8	29.401		0.7693	1.39437 e 4	265.26846	84.5197

Signal 2: DAD1 B, $\operatorname{Sig}=254,16$ Ref $=380,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%							
1	4.168	BV	0.1132	82.02338	11.23207	0.0415	10	12.098	BB	0.2589	46.99249	2.60005	0.0238
2	4.349	VV	0.3077	305.31033	12.92062	0.1547	11	13.826	BV	0.3355	92.35009	3.80041	0.0468
3	5.424	VB	0.2885	992.92761	52.53289	0.5030	12	14.346	VB	0.4744	196.36867	5.75023	0.0995
4	6.066	BB	0.1972	55.68750	3.75167	0.0282	13	16.778	BV	0.3580	1479.89856	63.95156	0.7497
5	7.741	BB	0.1814	2395.23901	192.18964	1.2133	14	17.422	VB	0.6206	9127.63574	202.22566	4.6237
6	8.706	BV	0.2108	58.75045	3.92189	0.0298	15	20.795	BB	0.5354	270.13916	7.47817	0.1368
7	9.116	VV	0.2266	3200.89844	209.14458	1.6214	16	22.519	BV	0.5264	277.62607	6.32148	0.1406
8	9.673	VV	0.2479	232.84340	13.06846	0.1179	17	24.705		0.8434	9.15133 e 4	1599.83997	46.3570
9	10.370	VB	0.2382	3289.87109	201.78976	1.6665	18	28.948	VB	1.0315	8.37920 e 4	1175.74207	42.4457

Signal 2: DAD1 B, $\operatorname{Sig}=254,16 \operatorname{Ref}=380,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	4.231	BV	0.1172	79.68301	9.97425	0.2451
2	4.389	VV	0.1425	111.25517	11.14017	0.3422
3	4.519	VV	0.2307	172.14340	9.44154	0.5294
4	7.901	BV	0.2327	25.82013	1.61337	0.0794
5	10.611	BV	0.2170	19.46048	1.16426	0.0599
6	11.171		0.2349	19.71332	1.04123	0.0606
7	11.735	VB	0.2481	20.39672	1.02523	0.0627
8	20.352	BV	0.4181	74.25783	2.17641	0.2284
9	21.725	VB	0.5779	1354.17615	34.80343	4.1648
10	24.492	BV	0.4176	98.18373	2.78273	0.3020
11	26.242	VB	0.7664	3.05395 e 4	607.59558	93.9255

Signal 2: DAD1 B, Sig=254,16 Ref=380,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	4.311	BV	0.1077	69.33904	9.89981	0.3646
2	4.479	VV	0.1678	119.82873	10.60920	0.6301
3	4.621	VB	$0 . \mid 1634$	107.53255	8.74918	0.5654
4	21.334	BB	0.5805	9498.18066	240.64174	49.9418
5	26.074	BB	0.6964	9223.63574	197.66888	48.4982

Signal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=380,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	4.208	BV	0.1227	62.44593	7.85594	0.2750
2	4.359	VV	0.3127	203.58652	8.05958	0.8965
3	19.910	BB	0.5085	1320.59668	39.25277	5.8151
4	21.979	BB	0.4526	163.75943	4.86591	0.7211
5	24.469	BB	0.6823	2.09594 e 4	444.35391	92.2924

Siqnal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=380,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	4.309	BV	0.1083	68.42589	9.70096	0.3593
2	4.466	VB	0.2637	215.05797	10.29743	1.1294
3	21.648	BB	0.5898	9361.87988	235.47879	49.1641
4	23.922	BB	0.6231	633.47345	14.07428	3.3267
5	26.957	BB	0.7057	8763.26855	186.00394	46.0205

Signal 2: DAD1 B, Sig $=254,16$ Ref $=380,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	4.232	BV	0.1646	118.84599	10.14943	0.4887
2	4.403	VV	0.1452	113.20203	10.89388	0.4655
3	4.532	VV	0.2362	165.12392	8.99320	0.6790
4	14.791	BB	0.2280	17.13867	1.06362	0.0705
5	20.199	BB	0.4332	199.94890	6.64255	0.8221
6	22.405	BB	0.5502	965.18524	26.54658	3.9686
7	24.798	MM	0.8031	2.27409 e 4	471.92319	93.5057

Signal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=380,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} U^{\star}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	4.900	BB	0.1789	44.67887	3.40936	3.4088
2	20.192	BV	0.6723	633.50110	11.36460	48.3327
3	22.197	VB	0.7197	632.53033	10.63719	48.2586

Signal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=380,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	4.209	BV	0.1244	57.63720	7.27653	0.3117
2	4.374	VV	01421	81.93240	8.09693	0.4431
3	4.523	VB	0.2099	103.18200	6.40591	0.5581
4	18.763	BB	0.4527	607.88788	19.66129	3.2878
5	21.149		0.6005	1.76387 e 4	435.54517	95.3993

Signal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=380,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area $\%$							
						-\|	\#	[min]		[min]	[mAU*S]	[mAU]	\%
1	4.718	BB	0.0927	9.25484	1.48470	0.0511		--------1	-		--------		
2	5.506	BB	0.2204	69.81905	4.10569	0.3853	4	20.526	BB	0.5071	1.33879 e 4	389.38815	73.8906
3	18.293	BB	0.4310	4589.45166	156.08591	25.3302	5	23.884	BB	0.3618	62.11916	2.07170	0.3428

Signal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=380,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
						-------1	3	18.587	BB	0.4087	161.91408	5.81760	1.0651
1	4.212		0.1383	74.45555	8.17406	0.4898	4	20.626	BB	0.5399	7134.26709	198.22079	46.9318
2	4.410	VB	0.2830	188.11340	8.09794	1.2375	5	23.375	BB	0.6177	7642.60449	184.32230	50.2758

Signal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=380,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	4.159	BV	0.1515	140.75821	13.74558	0.5310
2	4.354	VV	0.1154	101.30814	13.21413	0.3822
3	4.475	VV	0.2041	201.56927	14.32734	0.7604
4	4.881	VV	0.0858	9.75013	1.50088	0.0368
5	18.458	BV	0.5898	284.43170	5.68395	1.0730
6	21.286	VB	1.0267	2.57491 e 4	385.75967	97.1407
7	41.724	BB	0.2556	20.08384	1.06715	0.0758

Signal 2: DAD1 B, Sig=254,16 Ref=380,100

Signal 2: DAD1 B, Sig=254,16 Ref $=380,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$	3	6.459	BB	0.2743	72.27960	3.66121	0.1212
							4	14.291		0.4050	66.03365	2.01140	0.1108
1	4.760		0.1227	104.16186	12.31539	0.1747	5	26.556	BV	1.0474	2.64803 e 4	394.34619	44.4150
2	5.177	vV	0.3398	295.68472	98631	. 4959	6	28.200	vB	1.2837	3.26017 e 4	370.83386	54.6824

4 NMR data
${ }^{1} H$ NMR 10a

${ }^{13}$ C NMR 10a

${ }^{1} H$ NMR 10b

${ }^{13}$ C NMR 10b

[^0]
${ }^{1} H$ NMR 10c

${ }^{13}$ C NMR 10c

${ }^{19}$ F NMR 10c

${ }^{1}$ H NMR 10d

${ }^{13}$ C NMR 10d

${ }^{1} \mathrm{H}$ NMR 10e

${ }^{13}$ C NMR 10e

${ }^{1} H$ NMR $10 f$

${ }^{13}$ C NMR $10 f$

${ }^{19}$ F NMR $10 f$

[^1]
${ }^{1}$ H NMR 10 g

${ }^{13}$ C NMR 10g

${ }^{1}$ H NMR 10h

${ }^{13}$ C NMR 10h

${ }^{1} H$ NMR 10k

10k

${ }^{13}$ C NMR 10k

${ }^{1}$ H NMR 101

5 References

[1] Carpino, L. A., Shroff, H., Triolo, S. A., Mansour, E.-S. M. E., Wenschuh, H. and Albericio, F. Tetrahedron Letters, 1993, 34, 7829-7832. https://doi.org/10.1016/S0040-4039(00)61487-9
[2] Denmark, S. E., Stavenger, R. A., Faucher, A.-M., and Edwards, J. P. The Journal of Organic Chemistry, 1997, 62, 3375-3389. https://doi.org/10.1021/jo970044z
[3] Lennox, A. J. J. Organotrifluoroborate Preparation. In: Organotrifluoroborate Preparation, Coupling and Hydrolysis, 2013, Springer Theses, Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-01134-9_2
[4] Jakob, B., Diehl, A.M., Horst, K., Kelm, H. and Manolikakes, G. Frontiers in Chemistry, 2023, 11:1165618. https://doi.org/10.3389/fchem.2023.1165618

[^0]:

[^1]:

