Supporting Information

for

CO_{2} complexation with cyclodextrins

Cecilie Høgfeldt Jessen, Jesper Bendix, Theis Brock Nannestad, Heloisa Bordallo, Martin Jæger Pedersen, Christian Marcus Pedersen and Mikael Bols

Beilstein J. Org. Chem. 2023, 19, 1021-1027. doi:10.3762/bjoc.19.78

Experimental and analytical data

Contents

Procedure and reaction scheme for synthesis of 5 S1
Procedure and reaction scheme for synthesis of 6 S3
Plots of Complex formation vs CO_{2} pressure (Figures S1-S3) S5
Specification of pressure cell S7
References S7
800 MHz NMR spectra of 5-6 S8-19

Experimental

General. NMR assignment of 5 and $\mathbf{6}$ were done based on elucidation of HSQC, ROESY, COSY and TOCSY spectra carried out on an 800 MHz spectrometer at the cOpenNMR, an infrastructure facility funded by the Novo Nordisk Foundation (\#NNF18OC0032996). In case of 5 only partial elucidation was possible and a number of signals are assigned to number of possible residues i.e. if a signal could be assigned to the D or E ring is marked D / E. In assigning the glucose residues the chemically different or altered residues are labelled A (and/or D) and the other residues labelled from that residue in opposite direction of glycosylation i.e. B is the residue that is glycosylated on 4-O of residue A and so on. All chemicals used were bought at chemical suppliers in reagent purity ($98 \%>$) and used as such.

Synthesis of $3^{A}, 6^{A}$-anhydro- α-cyclodextrin (5). A solution of $2^{A-F}, 3^{A-F}, 6^{B-F}$-heptadecakis- O-benzyl- α cyclodextrin [1] ($0.650 \mathrm{~g}, 0.269 \mathrm{mmol}$) and p-toluenesulfonyl chloride ($0.497 \mathrm{~g}, 2.61 \mathrm{mmol}$) in dry pyridine (9 mL) was stirred for 20 h under nitrogen atmosphere at room temperature. The reaction was quenched with water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic phase was washed with water ($2 \times 10 \mathrm{~mL}$), dried using MgSO_{4} and filtered. Evaporation in vacuo removed the solvents and resulted in a yellow brown syrup as the crude product. The crude product was purified with flash column chromatography (heptane/EtOAc, $0 \rightarrow 100 \%$ EtOAc) yielding the desired product as a yellow-brown syrup ($239 \mathrm{mg}, 89.9 \mu \mathrm{~mol}, 33 \%$). R_{f} (heptane/EtOAc $3: 1)=0.29$.

$\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}$

$6^{\mathrm{A}}-\mathrm{O}-\left(\mathrm{p}\right.$-Toluenesulfonyl)-2 $2^{\mathrm{A}-\mathrm{F}}, 3^{\mathrm{A-F}}, 6^{\mathrm{B-F}}$-heptadecakis-O-benzyl- α-cyclodextrin ($239 \mathrm{mg}, 89.9 \mu \mathrm{~mol}$) was mixed with $\mathrm{MeOH}(15 \mathrm{~mL})$ and EtOAc (15 mL) together with 1 M HCl (1 drop). Pearlman's catalyst, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(73$ $\mathrm{mg}, 0.520 \mathrm{mmol}$) was added to the reaction mixture. The reaction was stirred under hydrogen atmosphere for 2.5 h after which water (3 mL) was added to prevent precipitation of the product and the reaction was stirred for another 17.5 h . Filtration of the reaction mixture through a pad of celite yielded the $6^{\mathrm{A}}-0-(\mathrm{p}-$ toluenesulfonyl)- α-cyclodextrin. After removing the solvents in vacuo, the compound was dissolved in 1 M $\mathrm{NaOH}(2 \mathrm{~mL})$ and stirred for 18 h at $40^{\circ} \mathrm{C}$. The solution was neutralized with addition of 1 M HCl , followed by filtration and removal of solvent in vacuo to yield the crude product. The crude product was purified by mixed bed ion chromatography, Dowex Marathon MR-3 ($3 \mathrm{~mL}, \mathrm{H}_{2} \mathrm{O}$) to afford the desired product 5 as a white foam ($53 \mathrm{mg}, 55.5 \mu \mathrm{~mol}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 5.18\left(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}}\right.$), $5.16(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ $\left.{ }^{\mathrm{D} / \mathrm{F}}\right), 5.10\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{D} / \mathrm{E}}\right), 5.09\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{B}}\right), 5.06\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right), 5.05(\mathrm{~d}, J=3.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right), 4.61\left(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{~h}, \mathrm{H}-5^{\mathrm{A}}\right), 4.53\left(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}}\right), 4.28\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\mathrm{A}}\right), 4.18$ (dd, J = 5.4, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{A}}$), 4.09-3.84 (m, 23H, H-6b $, ~ H-3^{B-F}, H-4^{B, D}, \mathrm{H}-5^{B-F}, \mathrm{H}-6 \mathrm{ab}^{B-F}$), 3.70-3.57(m,8H, H$\left.4^{C, E, F}, H-2^{B-F}\right) p p m$.
${ }^{13} \mathrm{C}$ NMR (201 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 101.9\left(\mathrm{C}-1^{\mathrm{D} / \mathrm{F}}\right)$, $101.6\left(\mathrm{C}-1^{\mathrm{D} / \mathrm{F}}\right), 101.2\left(\mathrm{C}-1^{\mathrm{B}}\right), 100.3\left(\mathrm{C}-1^{\mathrm{A}}\right), 100.2\left(\mathrm{C}-1^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right), 100.1(\mathrm{C}-$ $\left.1^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right), 80.9\left(\mathrm{C}-4^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right)$, $80.7\left(\mathrm{C}-4^{\mathrm{D} / \mathrm{F}}\right)$, $80.7\left(\mathrm{C}-4^{\mathrm{D} / \mathrm{E}}\right)$, $80.6\left(\mathrm{C}-4^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right), 80.4\left(\mathrm{C}-4^{\mathrm{B}}\right), 79.6\left(\mathrm{C}-4^{\mathrm{A}}\right), 74.3\left(\mathrm{C}-5^{\mathrm{A}}\right), 73.1(\mathrm{C}-$

(C-2 ${ }^{\mathrm{C} / \mathrm{E} / \mathrm{F}}$), $71.7\left(\mathrm{C}-3^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right)$, $71.4\left(2 \mathrm{C}, \mathrm{C}-3^{\mathrm{C} / \mathrm{D} / \mathrm{E} / \mathrm{F}}\right)$, $71.4\left(\mathrm{C}-2^{\mathrm{B}}\right)$, $71.3\left(\mathrm{C}-3^{\mathrm{A}}\right)$, $71.3\left(\mathrm{C}-3^{\mathrm{B}}\right)$, $71.3\left(\mathrm{C}-3^{\mathrm{D} / \mathrm{F}}\right), 70.9\left(\mathrm{C}-2^{\mathrm{D} / \mathrm{F}}\right)$, $69.0\left(\mathrm{C}-6^{\mathrm{A}}\right), 68.7\left(\mathrm{C}-2^{\mathrm{A}}\right), 60.8\left(\mathrm{C}-6^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right), 60.8\left(\mathrm{C}-6^{\mathrm{D} / \mathrm{E}}\right), 60.3\left(\mathrm{C}-6^{\mathrm{C} / \mathrm{E} / \mathrm{F}}\right), 60.2\left(\mathrm{C}-6^{\mathrm{D} / \mathrm{F}}\right), 60.1\left(\mathrm{C}-6^{\mathrm{B}}\right) \mathrm{ppm}$.

Synthesis of $3^{A}, 6^{A} ; 3^{D}, 6^{D}$-dianhydro- α-cyclodextrin (6). $2^{A-F}, 3^{A-F}, 6^{C-D, E-F}$-hexadeca-O-benzyl- α-cyclodextrin[1,2] $(4.58 \mathrm{~g}, 1.90 \mathrm{mmol})$ was dissolved dry pyridine $(70 \mathrm{~mL})$ followed by addition of p-toluenesulfonyl chloride ($3.66 \mathrm{~g}, 19.2 \mathrm{mmol}$). The reaction mixture was stirred at room temperature under a nitrogen atmosphere. The reaction was run for 3 days until full conversion of starting material, as indicated by TLC (2:1 Heptane/EtOAc). The reaction was quenched with water $(70 \mathrm{~mL})$ and DCM $(70 \mathrm{~mL})$. The aqueous phase was extracted with DCM ($2 \times 100 \mathrm{~mL}$) and the combined organic phases were washed with water (200 ml), 6 M $\mathrm{HCl}(200 \mathrm{~mL}), 1 \mathrm{M}(100 \mathrm{~mL})$ and finally with $\mathrm{NaHCO}_{3}(2 \times 250 \mathrm{~mL})$. Evaporation of the solvent in vacuo resulted in a yellow-brownish foam. The crude product was purified by automated flash column chromatography (heptane/EtOAc, 0-100\% EtOAc) to yield in fractions 13-15 the 6^{A}-chlorodeoxy-6 ${ }^{\mathrm{D}}$-O-tosylate (670 mg) and in fractions $18-20$ the ditosylate ($950 \mathrm{mg}, 0.349 \mathrm{mmol}, 18 \%$).

The ditosylate ($2^{A-F}, 3^{A-F}, 6^{B-C, E-F}$-hexadeca-O-benzyl- $6^{A, D}$-di- $O-(p$-toluenesulfonyl)- α-cyclodextrin, 950 mg , $0.349 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{MeOH}(50 \mathrm{~mL})$ and EtOAc) $(50 \mathrm{~mL})$. After 5 h 1 M HCl (1 drop) was added to the reaction mixture. The reaction mixture was left to stir under a hydrogen atmosphere in the presence of Pearlman's catalyst/Pd(OH) $/ \mathrm{C}$ ($101 \mathrm{mg}, 0.719 \mathrm{mmol} / 719 \mu \mathrm{~mol}$). After 16 h TLC analysis showed almost full conversion of starting material and water (10 mL) was added to prevent precipitation of the product. After 5 h another charge of Pearlman's catalyst ($42 \mathrm{mg}, 0.302 \mathrm{mmol}$) was added and the reaction
was stirred for another 20 h . Filtration of the reaction mixture through a pad of celite and removal of solvents in vacuo resulted in a white powder that was purified by automated flash column chromatography ($\mathrm{MeCN} / \mathrm{MeOH}, 0-100 \% \mathrm{MeOH}$) to yield the desired $6^{\mathrm{A}}, 6^{\mathrm{D}}$-di-O-tosyl- α-cyclodextrin (0.2 g). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) $\delta \mathrm{H}: 7.79$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHTs}$), 7.44 (d, J= $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHTs}$), $4.97-4.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-1), 4.40(\mathrm{dd}, \mathrm{J}=$ $10.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{A}}$), 4.27 (dd, $J=10.9,5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{A}}$), 4.03 (ddd, $J=10.1,5.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5 \mathrm{Ts}$), 3.97 - 3.73 (m, 14 H, H-3, H-5, H-6), 3.71-3.64 (m, 4H, H-6), $3.58-3.45(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2), 3.41-3.36(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ 2, H-4) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 146.6,134.3$ (i-CTs), 131.1, 129.1 (CHTs), 103.8, 103.6, 103.1 (C-1), 83.2, 83.1, 82.8, 75.1, 75.0, 75.0, 73.8, 73.7, 73.6, 73.5 (C-2, C-3, C-4, C-5), 71.1 (C-5Ts), 70.6 (C-6Ts), 61.7, 61.5 (C-6), $21.6\left(\mathrm{CH}_{3}\right.$ Ts) ppm.
$6^{\mathrm{A}}, 6^{\mathrm{D}}$-Di-O-(p-toluenesulfonyl)- α-cyclodextrin ($199 \mathrm{mg}, 155 \mu \mathrm{~mol}$) was dissolved in $1 \mathrm{M} \mathrm{NaOH}(2.3 \mathrm{~mL}$) and stirred at $40^{\circ} \mathrm{C}$ for 23 h . The solution was neutralized with the addition of 1 M HCl followed by filtration and evaporation of solvent in vacuo to yield the crude product as a white powder. The crude product was purified by mixed bead ion chromatography, Dowex Marathon MR-3 ($12 \mathrm{~mL}, \mathrm{H}_{2} \mathrm{O}$) to yield the desired product $3^{\mathrm{A}}, 6^{\mathrm{A}} ; 3^{\mathrm{D}}, 6^{\mathrm{D}}$-dianhydro- α-cyclodextrin (6) as a white foam ($135 \mathrm{mg}, 144.0 \mu \mathrm{~mol}, 93 \%$).

HRMS (MALDI+): Calculated for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{28} \mathrm{Na}^{+}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z}$: 959.28503, found: 959.28351. NMR was assigned using COSY, Roesy, Tocsy and HSQC:
${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta \mathrm{H}: 5.18\left(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}\right), 5.12\left(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}^{\mathrm{C}, \mathrm{F}}\right), 5.07(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}$), 4.64 (app. t, $J=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}$), $4.53\left(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}\right.$), $4.31\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{A}, \mathrm{D}}\right.$), 4.24 (dt, J = 10.1, $2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}$), $4.16\left(\mathrm{dd}, \mathrm{J}=5.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\mathrm{A}, \mathrm{D}}\right), 4.05(\mathrm{dd}, \mathrm{J}=11.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ $\left.6 \mathrm{~b}^{\mathrm{A}, \mathrm{D}}\right), 4.03-3.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}, \mathrm{H}-6 \mathrm{a}^{\mathrm{B}, \mathrm{E}}\right), 3.96-3.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}, \mathrm{H}-6 \mathrm{a}^{\mathrm{C}, F}\right.$) , $3.85(\mathrm{dd}, \mathrm{J}=12.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ $\left.6 b^{B, E}\right), 3.83-3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5^{\mathrm{C}, F}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{C}, \mathrm{F}}\right), 3.76\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\mathrm{C}, \mathrm{F}}\right), 3.72\left(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\mathrm{B}, \mathrm{F}}\right), 3.68(\mathrm{t}, \mathrm{J}$ $=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}$), $3.66\left(\mathrm{dd}, \mathrm{J}=10.2,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 3.61\left(\mathrm{dd}, \mathrm{J}=9.8,3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $8 \mathrm{C}: 102.2\left(\mathrm{C}-1^{\mathrm{C}, \mathrm{F}}\right), 100.9\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 100.8\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{E}}\right)$, $81.1,81.0\left(\mathrm{C}-4^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right)$, $79.2\left(\mathrm{C}-4^{\mathrm{A}, \mathrm{D}}\right)$, $74.0\left(\mathrm{C}-5^{\mathrm{A}, \mathrm{D}}\right), 72.7\left(\mathrm{C}-3^{\mathrm{B}, \mathrm{E}}\right), 72.6\left(\mathrm{C}-3^{\mathrm{C}, \mathrm{F}}\right), 72.5\left(\mathrm{C}-2^{\mathrm{C}, \mathrm{F}}\right), 71.8\left(\mathrm{C}-3^{\mathrm{A}, \mathrm{D}}\right), 71.5\left(\mathrm{C}-5^{\mathrm{C}, \mathrm{F}}\right), 71.3\left(\mathrm{C}-5^{\mathrm{B}, \mathrm{E}}\right), 70.9\left(\mathrm{C}-2^{\mathrm{B}, \mathrm{F}}\right), 69.2$ $\left(C-6^{\mathrm{A}, \mathrm{D}}\right), 68.8\left(\mathrm{C}-2^{\mathrm{A}, \mathrm{D}}\right), 59.9\left(\mathrm{C}-6^{\mathrm{C}, \mathrm{F}}\right), 59.7\left(\mathrm{C}-6^{\mathrm{B}, \mathrm{E}}\right) \mathrm{ppm}$.

Figure S1. Plot of $\mathbf{4}\left(\mathrm{CO}_{2}\right)$ complex formation as a result of increasing pressure of CO_{2}.

Figure S2. Plot of $\mathbf{5}\left(\mathrm{CO}_{2}\right)$ complex formation as a result of increasing pressure of CO_{2}.

Figure S3. Plot of $6\left(\mathrm{CO}_{2}\right)$ complex formation as a result of increasing pressure of CO_{2}.

Design of pressure cell

The pressure cell was build by the Niels Bohr Institute Technical Support group according to the following scheme:

References

(1) Lecourt, T.; Herault, A.; Pearce, A. J.; Sollogoub, M.; Sinay, Pierre. Chemistry - A European Journal 2004, 10, 2960-2971. doi:10.1002/chem. 200305683
(2) Pearce, A. J.; Sinay, Pierre. Angewandte Chemie, International Edition 2000, 39, 3610-3612
${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 5

Cecilie anhydro.11.fid CEHJ-15.2 proton

${ }^{13} \mathrm{C}$ NMR (201 MHz; D2O) of 5

Cosy ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 5

HSQC ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 5

HSQC-Tocsy ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 5

Roesy ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 5

${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 6

${ }^{13} \mathrm{C}$ NMR (201 MHz; $\left.\mathrm{D}_{2} \mathrm{O}\right)$ of 6

Cosy ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 6

HSQC ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 6

HSQC-Tocsy ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 6

Roesy ($800 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) of 6

