

Supporting Information

for

Unravelling a trichloroacetic acid-catalyzed cascade access to benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrins

Chandra Sekhar Tekuri, Pargat Singh and Mahendra Nath

Beilstein J. Org. Chem. 2023, 19, 1216–1224. doi:10.3762/bjoc.19.89

Characterization data, ¹H and ¹³C NMR spectra of newly prepared porphyrin products

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

CONTENTS

PAGE

Characterization data of copper(II) benzo[f]chromeno[2,3-h]quinoxalino- porphyrins 3–8	S2
Characterization data of free-base benzo[f]chromeno[2,3-h]quinoxalino- porphyrins 9–13	S 3
Characterization data of zinc(II) benzo[f]chromeno[2,3-h]quinoxalino- porphyrins 14–16	S5
Characterization data of copper(II) benzo[f]quinoxalinoporphyrin 17	S7
¹ H and ¹³ C NMR spectra of free-base and zinc(II) porphyrins 9–16	S8

Characterization data of copper(II) benzo[f]chromeno[2,3-h]quinoxalinoporphyrins 3–8

Copper(II) benzo[*f*]**chromeno**[2,3-*h*]**quinoxalinoporphyrin 3, Ar** = 4-CH₃C₆H₄, **R** = C₆H₅ Purple solid; yield: 65%; mp >300°C; IR (CHCl₃) ν_{max} : 755, 796, 1003, 1039, 1179, 1210, 1344, 1450, 1507, 1597, 1659, 2872, 2957, 3021 cm⁻¹; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 408 (21.6), 445 (25.6), 562 (3.7), 604 (1.6) nm; ESI-HRMS (m/z) calcd for C₇₃H₅₅N₆O₂Cu: 1110.3677 [M + H]⁺; found 1110.3607.

Copper(II) benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrin 4, Ar = 4-CH₃C₆H₄, R = 4-OCH₃C₆H₄

Purple solid; yield: 67%; mp >300°C; IR (CHCl₃) ν_{max} : 758, 797, 1004, 1039, 1112, 1179, 1211, 1244, 1345, 1456, 1509, 1606, 1660, 2857, 2923, 3020 cm⁻¹; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 409 (23.2), 445 (27.6), 562 (4.4), 602 (2.2) nm; ESI-HRMS (m/z) calcd for C₇₄H₅₇N₆O₃Cu: 1140.3783 [M + H]⁺; found 1140.3784.

Copper(II) benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrin 5, Ar = 4-CH₃C₆H₄, R = 4-NO₂C₆H₄

Purple solid; yield: 65%; mp >300°C; IR (CHCl₃) ν_{max} : 763, 798, 1004, 1181, 1213, 1345, 1458, 1518, 1661, 1744, 2323, 2365, 2854, 2923, 3021 cm⁻¹; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 410 (24.6), 447 (23.3), 564 (4.4), 603 (2.4) nm; ESI-HRMS (m/z) calcd for C₇₃H₅₄N₇O₄Cu: 1155.3528 [M + H]⁺; found 1155.3525.

Copper(II) benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrin 6, Ar = 4-CH₃C₆H₄, R = 4-BrC₆H₄

Purple solid; yield: 61%; mp >300°C; IR (CHCl₃) ν_{max} : 753, 796, 1004, 1178, 1211, 1259, 1344, 1455, 1511, 1656, 2858, 2921, 2958, 3018 cm⁻¹; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 418 (19.3), 444 (13.3), 564 (2.0), 602 (0.6) nm; ESI-HRMS (m/z) calcd for C₇₃H₅₄BrN₆O₂Cu: 1188.2782 [M + H]⁺; found 1188.2777.

Copper(II) benzo[f]chromeno[2,3-h]quinoxalinoporphyrin 7, $Ar = C_6H_5$, $R = C_6H_5$

Purple solid; yield: 68%; mp >300°C; IR (CHCl₃) ν_{max} : 700, 750, 796, 1003, 1071, 1212, 1344, 1448, 1514, 1596, 1656, 2957, 3020 cm⁻¹; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 422 (29.9), 443 (19.9) 561 (3.4), 601 (1.7) nm; ESI-HRMS (m/z) calcd for C₆₉H₄₇N₆O₂Cu: 1054.3051 [M + H]⁺; found 1054.3062.

Copper(II) benzo[*f*]**chromeno**[2,3-*h*]**quinoxalinoporphyrin 8, Ar** = C₆H₅, **R** = 4-BrC₆H₄ Purple solid; yield: 66%; mp >300°C; IR (CHCl₃) ν_{max} : 759, 797, 1005, 1179, 1211, 1344, 1453, 1510, 1659, 2852, 2921, 3021 cm⁻¹; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 421 (18.0), 445 (17.6), 562 (2.8), 600 (1.5) nm; ESI-HRMS (m/z) calcd for C₆₉H₄₆N₆O₂BrCu: 1132.2156 [M + H]⁺; found 1132.2150.

Characterization data of free-base benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrins 9–13

Free-base benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrin 9, Ar = 4-CH₃C₆H₄, R = C₆H₅ Purple solid; yield: 80%; mp >300°C; IR (CHCl₃) v_{max}: 669, 751, 795, 970, 1031, 1154, 1209, 1301, 1347, 1460, 1509, 1598, 1656, 2850, 2917, 3018, 3346 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ_{H} : -2.56 (s, 2H, internal NH), 1.17(s, 3H, CH₃), 1.57 (s, 3H, CH₃), 2.47(dd, J = 16.02 Hz, 2H, CH₂), 2.71-2.72 (m, 6H, CH₃), 2.82 (s, 2H, CH₂), 2.86 (s, 3H, CH₃), 2.94 (s, 3H, CH₃), 5.79 (s, 1H, CH), 6.82 (t, J = 7.63 Hz, 1H, ArH), 6.93 (t, J = 7.63 Hz, 2H, ArH), 7.16 (d, J = 7.63 Hz, 2H, ArH), 7.54-7.84 (m, 11H, meso-ArH, ArH), 8.00-8.22 (m, 7H, meso-ArH), 8.40 (d, J = 7.63 Hz, 1H, ArH), 8.63 (d, J = 7.63 Hz, 1H, ArH), 8.75 (s, 2H, β -pyrrolic H), 8.91-8.98 (m, 4H, β -pyrrolic H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 14.13, 21.53, 21.74, 21.90, 27.25, 32.16, 32.37, 41.41, 51.28, 115.48, 117.08, 117.98, 118.17, 121.23, 121.47, 125.73, 125.76, 127.41, 127.49, 127.53, 127.75, 127.88, 128.10, 128.14, 128.36, 128.58, 128.76, 131.56, 133.90, 134.12, 134.18, 134.40, 134.48, 134.57, 137.24, 137.28, 137.45, 137.48, 138.10, 138.20, 138.36, 138.61, 138.75, 138.87, 139.05, 139.48, 139.63, 140.33, 144.79, 145.51, 146.71, 149.98, 151.76, 154.89, 155.11, 164.12, 196.25 ppm; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 441 (28.9), 529 (2.7), 568 (0.3), 600 (1.3), 642 (0.1) nm; λ_{Em} (CHCl₃; λ_{Ex} 420 nm): 668, 730 nm; ESI-HRMS (m/z) calcd for C₇₃H₅₇N₆O₂: 1049.4538 [M + H]⁺; found 1049.4558.

Free-base benzo[f]chromeno[2,3-h]quinoxalinoporphyrin 10, Ar = 4-CH₃C₆H₄, R = 4-OCH₃C₆H₄

Purple solid; yield: 78%; mp >300°C; IR (CHCl₃) ν_{max} : 755 796, 972, 1039, 1170, 1210, 1302, 1372, 1463, 1509, 1606, 1658, 2592, 2679, 2858, 2922, 3018, 3348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ_{H} : -2.36 (s, 2H, internal NH), 1.33 (s, 3H, CH₃), 1.41 (s, 3H, CH₃), 2.63 (dd, *J* = 16.02, Hz, 2H, CH₂), 2.85-2.86 (m, 6H, CH₃), 2.97 (s, 2H, CH₂), 3.05 (s, 3H, CH₃), 3.08 (s, 3H, CH₃), 3.64 (s, 3H, OCH₃), 5.91 (s, 1H, CH), 6.65 (d, *J* = 9.16, Hz, 2H, ArH), 7.28 (s, 1H, ArH), 7.69-7.76 (m, 4H, *meso*-ArH, ArH), 7.83-7.96 (m, 6H, *meso*-ArH), 8.07-8.10 (m, 1H, *meso*-ArH), 8.20-8.39 (m, 8H, *meso*-ArH), 8.55 (d, *J* = 7.63 Hz, 1H, ArH), 8.78 (d, *J* = 8.39, Hz, 1H, ArH), 8.92 (s, 2H, β-pyrrolic H), 9.09-9.15 (m, 4H, β-pyrrolic H) ppm; ¹³C NMR (100 MHz, CDCl₃)

 $δ_{\rm C}$: 14.13, 21.51, 21.72, 21.93, 27.25, 31.44, 32.37, 41.38, 51.29, 54.83, 112.77, 115.58, 117.11, 118.16, 118.20, 121.21, 121.24, 121.48, 125.75, 125.77, 127.50, 127.52, 127.74, 127.90, 128.12, 128.16, 128.59, 128.74, 129.39, 131.52, 133.93, 134.13, 134.45, 134.56, 135.24, 137.23, 137.32, 137.44, 137.47, 138.11, 138.22, 138.42, 138.67, 138.75, 138.86, 139.00, 139.50, 139.62, 140.36, 144.80, 145.58, 146.52, 149.97, 151.76, 154.90, 155.13, 157.45, 163.85, 196.31 ppm; UV $λ_{max}$ ($ε × 10^{-4}$, M⁻¹ cm⁻¹): 441 (53.0), 529 (4.4), 570 (0.5), 600 (2.0), 640 (0.1) nm; $λ_{\rm Em}$ (CHCl₃; $λ_{\rm Ex}$ 440 nm): 672, 728 nm; ESI-HRMS (m/z) calcd for C₇₄H₅₉N₆O₃: 1079.4643 [M + H]⁺; found 1079.4649.

Free-base benzo[f]chromeno[2,3-h]quinoxalinoporphyrin 11, Ar = 4-CH₃C₆H₄, R = 4-NO₂C₆H₄

Purple solid; yield: 70%; mp >300°C; IR (CHCl₃) v_{max} : 722, 761, 797, 971, 1040, 1162, 1211, 1304, 1345, 1464, 1518, 1599, 1661, 2854, 2923, 3023, 3348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: -2.55 (s, 2H, internal NH), 1.14 (s, 3H, CH₃), 1.56 (s, 3H, CH₃), 2.48 (dd, *J* = 16.02, 2H, CH₂), 2.71-2.72 (m, 6H, CH₃), 2.85 (s, 2H, CH₂), 2.88 (s, 3H, CH₃), 2.93 (s, 3H, CH₃), 5.87 (s, 1H, CH), 7.29-7.31 (m, 2H, ArH), 7.57-7.92 (m, 14H, *meso*-ArH, ArH), 8.07-8.22 (m, 6H, *meso*-ArH), 8.42 (d, *J* = 7.63 Hz, 1H, ArH), 8.64 (d, *J* = 7.63 Hz, 1H, ArH), 8.74 (s, 2H, β -pyrrolic H), 8.89-8.95 (m, 4H, β -pyrrolic H) ppm; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 441 (21.8), 530 (3.8), 569 (0.4), 600 (2.6), 638 (0.1) nm; $\lambda_{\rm Em}$ (CHCl₃; $\lambda_{\rm Ex}$ 430 nm): 672, 730 nm; ESI-HRMS (m/z) calcd for C₇₃H₅₆N₇O₄: 1094.4388 [M + H]⁺; found 1094.4395.

Free-base benzo[f]chromeno[2,3-h]quinoxalinoporphyrin 12, Ar = 4-CH₃C₆H₄, R = 4-BrC₆H₄

Purple solid; yield: 77%; mp >300°C; IR (CHCl₃) v_{max} :755, 796, 971, 1041, 1156, 1209, 1302, 1368, 1472, 1510, 1600, 1659, 2860, 2920, 2956, 3020, 3345 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: -2.54 (s, 2H, internal NH), 1.16 (s, 3H, CH₃), 1.27 (s, 3H, CH₃), 2.48 (dd, *J* = 16.02, 2H, CH₂), 2.72 (s, 6H, CH₃), 2.83 (s, 2H, CH₂), 2.89 (s, 3H, CH₃), 2.94 (s, 3H, CH₃), 5.76 (s, 1H, CH), 7.02-7.07 (m, 4H, ArH), 7.58-7.88 (m, 10H, *meso*-ArH, ArH), 8.04-8.24 (m, 7H, *meso*-ArH), 8.35-8.41 (m, 2H, ArH), 8.64 (d, *J* = 8.39 Hz, 1H, ArH), 8.75-8.77 (m, 2H, β-pyrrolic H), 8.90-8.97 (m, 4H, β-pyrrolic H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 21.53. 21.74, 21.89, 27.21, 29.79, 31.97, 32.38, 41.37, 51.21, 114.95, 117.10, 117.33, 118.05, 119.65, 121.27, 121.56, 125.58, 125.81, 127.51, 127.54, 127.76, 127.94, 128.09, 128.21, 128.60, 128.85, 130.30, 130.46, 131.64, 133.95, 134.18, 134.54, 137.26, 137.29, 137.48, 137.51, 138.13, 138.26, 138.43, 138.46, 138.70, 138.83, 139.03, 139.48, 139.63, 140.34, 143.87, 144.61, 145.27, 146.60, 150.07, 151.68, 154.94, 155.19, 164.16, 196.22 ppm; UV λ_{max} (ε × 10⁻⁴, M⁻¹)

cm⁻¹): 441 (25.0), 529 (2.2), 568 (0.3), 600 (1.1), 639 (0.1) nm; λ_{Em} (CHCl₃; λ_{Ex} 440 nm): 671, 730 nm; ESI-HRMS (m/z) calcd for C₇₃H₅₆N₆O₂Br: 1127.3643 [M + H]⁺; found 1127.3647.

Free-base benzo[f]chromeno[2,3-h]quinoxalinoporphyrin 13, Ar = C_6H_5 , R = C_6H_5 Purple solid; yield: 76%; mp >300°C IR (CHCl₃) v_{max}: 750, 798, 968, 1158, 1207, 1347, 1440, 1596, 1657, 2882, 2960, 3022, 3058, 3344 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ_H: -2.56 (s, 2H, internal NH), 1.19 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 2.51 (dd, $J_1 = 16.78$ Hz and $J_2 = 16.02$ Hz, 2H, CH₂), 2.83 (s, 2H, CH₂), 5.77 (s, 1H, CH), 6.84-6.87 (m, 1H, meso-ArH), 6.96 (t, J = 7.63 Hz, 2H, ArH), 7.19 (d, J = 8.39 Hz, 2H, ArH), 7.74-7.94 (m, 11H, meso-ArH), 8.01-8.05 (m, 2H, ArH), 8.10-8.22 (m, 4H, meso-ArH), 8.29-8.34 (m, 4H, meso-ArH), 8.40 (d, J = 7.63 Hz, 1H, ArH), 8.47-8.49 (m, 1H, ArH), 8.58 (d, J = 8.39 Hz, 1H, ArH), 8.75 (s, 2H, β -pyrrolic H), 8.92-8.96 (m, 4H, β -pyrrolic H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 27.20, 29.90, 31.76, 32.41, 41.40, 51.30, 115.56, 117.13, 117.92, 118.24, 121.20, 121.28, 121.53, 125.71, 125.82, 125.87, 126.79, 127.12, 127.24, 127.39, 127.43, 127.56, 127.84, 127.97, 128.25, 128.65, 128.86, 129.29, 131.43, 134.04, 134.22, 134.45, 134.57, 134.92, 135.01, 137.24, 138.04, 138.09, 138.71, 139.52, 140.10, 141.76, 141.89, 142.52, 144.59, 144.78, 145.52, 147.03, 150.08, 151.85, 154.84, 155.03, 164.67, 196.76 ppm; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 439 (37.9), 527 (3.8), 567 (0.5), 597 (1.9), 637 (0.1) nm; λ_{Em} (CHCl₃; λ_{Ex} 435 nm): 668, 726 nm; ESI-HRMS (m/z) calcd for $C_{69}H_{49}N_6O_2$: 993.3912 [M + H]⁺; found 993.3905.

Characterization data of zinc(II) benzo[*f*]chromeno[2,3-*h*]quinoxalino-porphyrins 14–16

Zinc(II) benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrin 14, Ar = 4-CH₃C₆H₄, R = C₆H₅ Purple solid; yield: 78%; mp >300°C; IR (CHCl₃) v_{max}: 758, 796, 1000, 1039, 1175, 1212, 1303, 1340, 1371, 1406, 1450, 1505, 1605, 1653, 2859, 2922, 3021 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ_{H} : 1.18 (s, 6H, CH₃), 2.47(dd, *J* = 15.26 Hz, 2H, CH₂), 2.72 (s, 6H, CH₃), 2.83 (s, 2H, CH₂), 2.86 (s, 3H, CH₃), 2.94 (s, 3H, CH₃), 5.86 (s, 1H, CH), 6.84 (t, *J* = 6.87 Hz, 1H, ArH), 6.94 (d, *J* = 7.63 Hz, 2H, ArH), 7.16 (d, *J* = 7.63 Hz, 2H, ArH), 7.53-7.58 (m, 4H, *meso*-ArH), 7.64 (t, *J* = 6.10 Hz, 2H, ArH), 7.73-7.79 (m, 4H, *meso*-ArH), 7.99-8.09 (m, 4H, *meso*-ArH), 8.16 (t, *J* = 6.87 Hz, 3H, *meso*-ArH), 8.26 (d, *J* = 6.87 Hz, 1H, *meso*-ArH), 8.37 (d, *J* = 7.63 Hz, 1H, ArH), 8.63 (d, *J* = 7.63 Hz, 1H, ArH), 8.81 (d, *J* = 4.58 Hz, 1H, β-pyrrolic H), 8.88 (s, 2H, β-pyrrolic H), 8.92-8.97 (m, 3H, β-pyrrolic H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 21.53, 21.75, 21.94, 27.25, 29.83, 32.15, 32.37, 41.40, 51.28, 115.55, 117.56, 117.92, 118.79, 121.25, 122.99, 123.28, 125.78, 125.96, 127.33, 127.42, 127.62, 127.66, 127.83, 127.94, 128.39, 128.90, 131.33, 131.46, 131.54, 132.02, 132.17, 133.48, 133.76, 134.17, 134.29, 134.47, 136.89, 137.19, 137.21, 137.67, 138.24, 139.00, 139.11, 139.61, 139.63, 140.31, 140.61, 141.04, 144.75, 146.94, 147.81, 149.15, 149.20, 149.79, 149.86, 149.99, 152.36, 153.07, 164.20, 196.26 ppm; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 450 (19.0), 574 (2.8), 615 (1.2) nm; λ_{Em} (CHCl₃; λ_{Ex} 430 nm): 632, 675 nm; ESI-HRMS (m/z) calcd for C₇₃H₅₅N₆O₂Zn: 1111.3672 [M + H]⁺; found 1111.3694.

Zinc(II) benzo[f]chromeno[2,3-h]quinoxalinoporphyrin 15, Ar = 4-CH₃C₆H₄, R = 4-OCH₃C₆H₄

Purple solid; yield: 80%; mp >300°C; IR (CHCl₃) v_{max} : 759, 796, 1001, 1039, 1175, 1213, 1340, 1371, 1454, 1509, 1607, 1651, 2858, 2923, 3019 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 1.16 (s, 3H, CH₃), 1.25 (s, 3H, CH₃), 2.45 (dd, J = 15.26, 2H, CH₂), 2.71 (s, 6H, CH₃), 2.81 (s, 2H, CH₂), 2.86 (s, 3H, CH₃), 2.93 (s, 3H, CH₃), 3.46 (s, 3H, OCH₃), 5.77 (s, 1H, CH), 6.46 (d, J = 9.16 Hz, 2H, ArH), 7.07 (d, J = 8.39 Hz, 2H, ArH), 7.52-7.63 (m, 6H, meso-ArH, ArH), 7.73-7.82 (m, 3H, meso-ArH), 7.96-8.19 (m, 8H, meso-ArH), 8.28 (d, J = 8.39 Hz, 1H, ArH), 8.38 (d, J = 7.63 Hz, 1H, ArH), 8.65 (d, J = 8.39 Hz, 1H, ArH), 8.81 (d, J = 4.58 Hz, 1H, β pyrrolic H), 8.86 (s, 2H, β -pyrrolic H), 8.91-8.95 (m, 3H, β -pyrrolic H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C: 21.53, 21.73, 21.91, 27.24, 29.84, 31.39, 32.36, 41.36, 51.24, 54.82, 112.74, 115.63, 117.53, 118.11, 118.71, 121.15, 122.95, 123.22, 125.73, 125.88, 127.32, 127.49, 127.59, 127.63, 127.84, 127.88, 128.80, 129.37, 131.32, 131.34, 131.43, 131.52, 131.97, 132.15, 133.45, 133.78, 134.17, 134.23, 134.31, 134.56, 136.83, 137.15, 137.18, 137.23, 137.64, 138.25, 139.06, 139.08, 139.62, 140.30, 140.60, 141.00, 146.68, 147.78, 149.11, 149.17, 149.77, 149.82, 149.95, 152.34, 153.03, 157.40, 163.92, 196.33 ppm; UV λ_{max} ($\epsilon \times 10^{-10}$ ⁴, M⁻¹ cm⁻¹): 428 (18.5), 451 (19.0), 574 (2.8), 618 (1.2) nm; λ_{Em} (CHCl₃; λ_{Ex} 435 nm): 625, 677 nm; ESI-HRMS (m/z) calcd for $C_{74}H_{57}N_6O_3Zn$: 1141.3778 [M + H]⁺; found 1141.3775.

Zinc(II) benzo[*f*]chromeno[2,3-*h*]quinoxalinoporphyrin 16, $Ar = C_6H_5$, $R = C_6H_5$

Purple solid; yield: 80%; mp >300°C; IR (CHCl₃) v_{max}: 698, 750, 795, 831, 999, 1069, 1173, 1211, 1338, 1444, 1483, 1597, 1652, 2852, 2920, 2954, 3020, 3056 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 1.24 (s, 3H, methyl H), 1.19 (s, 3H, methyl H), 2.48 (dd, J = 16.78, 2H, CH₂), 2.84 (s, 2H, CH₂), 5.81(s, 1H, CH), 6.85 (t, J = 7.63 Hz, 1H, ArH), 6.96 (t, J = 7.63 Hz, 2H, ArH), 7.19 (d, J = 7.63 Hz, 2H, ArH), 7.73-7.84 (m, 10H, *meso*-ArH), 7.91-7.96 (m, 2H, *meso*-ArH), 8.01 (t, J = 7.63 Hz, 1H, ArH), 8.08-8.22 (m, 5H, *meso*-ArH), 8.26-8.30 (m, 3H, *meso*-ArH), 8.39 (d, J = 7.63 Hz, 2H, ArH), 8.61 (d, J = 7.63 Hz, 1H, ArH), 8.86-8.88 (m, 4H, β-pyrrolic H), 8.92-8.95 (m, 2H, β-pyrrolic H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 27.18, 31.75, 32.40,

41.38, 51.26, 115.61, 117.60, 117.84, 118.83, 121.21, 122.99, 123.26, 125.75, 125.89, 125.99, 126.58, 126.97, 127.01, 127.12, 127.28, 127.47, 127.55, 127.60, 128.28, 129.00, 131.32, 131.43, 131.54, 131.63, 132.06, 132.13, 132.24, 133.59, 133.88, 134.09, 134.21, 134.31, 134.47, 137.63, 139.06, 140.55, 141.02, 141.86, 142.54, 143.28, 144.54, 147.19, 147.87, 149.11, 149.77, 149.89, 152.37, 152.82, 164.70, 196.77 ppm; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 449 (15.4), 572 (2.4), 613 (1.0) nm; λ_{Em} (CHCl₃; λ_{Ex} 440 nm): 623, 678 nm; ESI-HRMS (m/z) calcd for C₆₉H₄₇N₆O₂Zn: 1055.3046 [M + H]⁺; found 1055.3046.

Characterization data of copper(II) benzo[*f*]quinoxalinoporphyrin 17, Ar = 4-CH₃C₆H₄ Purple solid; yield: 67%; mp >300°C; IR (CHCl₃) ν_{max} : 796, 1004, 1183, 1222, 1346, 1453, 1511, 1604, 1689, 2856, 2923, 3023 cm⁻¹; UV λ_{max} ($\epsilon \times 10^{-4}$, M⁻¹ cm⁻¹): 441 (13.8), 559 (3.0), 600 (1.4) nm; ESI-HRMS (m/z) calcd for C₅₈H₄₁CuN₆O: 900.2632 [M + H]⁺; found 900.2635.

¹H and ¹³C NMR spectra of free-base and zinc(II) porphyrins 9–16

Figure 1. ¹H NMR spectrum of porphyrin 9 in CDCl₃.

Figure 2. ¹³C NMR spectrum of porphyrin 9 in CDCl₃.

Figure 3. ¹H NMR spectrum of porphyrin 10 in CDCl₃.

Figure 4. ¹³C NMR spectrum of porphyrin 10 in CDCl₃.

Figure 5. ¹H NMR spectrum of porphyrin **11** in CDCl₃.

Figure 6. ¹H NMR spectrum of porphyrin **12** in CDCl₃.

Figure 7. ¹³C NMR spectrum of porphyrin 12 in CDCl₃.

Figure 8. ¹H NMR spectrum of porphyrin 13 in CDCl₃.

Figure 9. ¹³C NMR spectrum of porphyrin 13 in CDCl₃.

Figure 10. ¹H NMR spectrum of porphyrin 14 in CDCl₃.

Figure 11. ¹³C NMR spectrum of porphyrin 14 in CDCl₃.

Figure 12. ¹H NMR spectrum of porphyrin 15 in CDCl₃.

Figure 13. ¹³C NMR spectrum of porphyrin 15 in CDCl₃.

Figure 14. ¹H NMR spectrum of porphyrin 16 in CDCl₃.

Figure 15. ¹³C NMR spectrum of porphyrin 16 in CDCl₃.