Supporting Information

for

Metal catalyst-free N -allylation/alkylation of imidazole and benzimidazole with Morita-Baylis-Hillman (MBH) alcohols and acetates

Olfa Mhasni, Jalloul Bouajila and Farhat Rezgui

Beilstein J. Org. Chem. 2023, 19, 1251-1258. doi:10.3762/bjoc.19.93

Full experimental details and characterization data of all new compounds

Experimental section

All cyclic MBH alcohols 4 [1-3], acetates 5 [4], and acyclic MBH alcohols 1a,f [5-7] were obtained as previously described. IR spectra were recorded on a Bruker (IFS 66v/S) spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded either on a Bruker AC-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$) or an AC300 spectrometer (300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$) in CDCl_{3}, using TMS as an internal standard (chemical shifts in δ values, J in Hz). High resolution mass spectra (HRMS) were recorded as EI-HRMS on an Autospec Ultima/micromass mass spectrometer. Analytical thin layer chromatography (TLC) was performed using Fluka Kieselgel 60 F254 pre-coated silica gel plates. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using Merck silica gel 60 and a gradient solvent system ether/acetone as eluent.

Typical procedure for the α-substitution of cyclic MBH adducts with imidazoles

A mixture of allyl acetate 5 a ($2 \mathrm{mmol}, 0.33 \mathrm{~g}$) or allyl alcohol 4 a ($2 \mathrm{mmol}, 0.25 \mathrm{~g}$) and imidazole ($2 \mathrm{a}, 4 \mathrm{mmol}, 0.27 \mathrm{~g}$) in toluene (25 mL) was heated under reflux (for 5a) or in a Dean stark apparatus (for 4a). After completion (TLC), the reaction mixture was cooled, washed with brine, and dried. The toluene was removed and the residue was purified by column chromatography on silica gel (acetone/ether 8:2) to give the pure N -substituted imidazole 6a.

2-((1H-Imidazol-1-yl)methyl)cyclohex-2-enone (6a) [8]

Yield: 82%; yellow oil; $v\left(\mathrm{CHCl}_{3}\right) 2932,1666,1503,1380,1227,1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}} 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{t}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 2.47-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta_{\mathrm{C}} 197.6,147.7,137.6,135.2,129.3,119.4,45.5,37.9,25.8$, 22.6; HRMS (EI): MH^{+}, found 177.1022. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$ requires 177.1028.

2-((1H-Imidazol-1-yl)methyl)cyclopent-2-enone (6b)

Yield: 65%; yellow oil; $v\left(\mathrm{CHCl}_{3}\right) 2924,1693,1504,1388,1227,1073 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}} 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta_{\mathrm{C}} 207.2,160.2,142.1,137.4,129.5,119.3,41.7,34.6,26.7$; HRMS (EI): MH^{+}, found 163.0866. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}$ requires 163.0871.

2-((1H-Imidazol-1-yl)ethyl)cyclohex-2-enone (6c)

Yield: 75%; yellow oil; $v\left(\mathrm{CHCl}_{3}\right) 2935,1665,1497,1381,1226,1077 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}} 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (q, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.62$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta_{\mathrm{c}} 197.3,145.4,140.4,136.2$, 128.9, 117.8, 50.4, 38.4, 25.7, 22.4, 19.8; MS (m/z): 191 (13), 190 (M+, 100), 189 (8), 175 (15), 162 (16), 149 (7), 134 (7), 123 (62), 107 (10), 95 (48), 81 (27), 79 (38), 69 (50), 67 (75), 55 (50); HRMS (EI): MH^{+}, found 191.1188. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ requires 191.1184.

2-((1H-Imidazol-1-yl)ethyl)cyclopent-2-enone (6d)

Yield: 69\%; yellow oil; v (CHCl_{3}) 2926, 1695, 1496, 1395, 1227, $1077 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{H} 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $5.11(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $3,125 \mathrm{MHz}$): $\delta \mathrm{c} 207.2,159.1,146.6,136.0,129.0,117.8,49.1$, 35.2, 26.6, 19.5; MS (m/z): 177 (12), 176 ($\mathrm{M}+100$), 175 (7), 161 (1), 147 (9), 109 (43), 81 (54), 79 (74), 69 (33), 67 (13), 53 (31); HRMS (EI): MH^{+}, found 177.1031. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$ requires 177.1028.

2-((1H-Benzimidazol-1-yl)ethyl)cyclohex-2-enone (7a)

Yield: 87%; yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}} 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.71$ $(\mathrm{m}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.49(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38-2.34 (m, 2H), 2.25-2.19 (m, 2H), 1.89-1.83 (m, 2H), $1.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta_{\mathrm{C}} 197.5,146.0,143.7,141.3,133.9,133.2$, $122.8,122.1,120.1,110.4,49.1,38.1,25.6,22.3,19.4$; MS (m/z): 241 (17), 240 ($\mathrm{M}+, 100$), 239 (10), 226 (15), 225 (100), 211 (10), 197 (7), 183 (5), 169 (5), 145 (14), 119 (15), 118 (55), 91 (8), 77 (7), 67 (9), 55 (5); HRMS (EI): MH^{+}, found 241.1347. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$ requires 241.1341 .

2-((1H-Benzimidazol-1-yl)methyl)cyclohex-2-enone (7b)

Yield: 80\%; yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta_{\mathrm{H}} 7.85(\mathrm{~s}, 1 \mathrm{H})$, 7.68-7.62 (m, $1 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.49(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 2 \mathrm{H})$, 2.15-2.10 (m, 2H), 1.82-1.74 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta_{\mathrm{c}}$ 197.7, $147.8,143.6,143.3,133.8,133.3,122.6,121.7,119.9,109.6,43.2,37.6,25.3$, 22.2; MS (m/z): 227 (16), 226 ($\mathrm{M}+100$), 225 (33), 211 (5), 198 (28), 197 (19), 183 (7), 170 (30), 169 (24), 157 (7), 131 (22), 118 (15), 104 (4), 90 (5), 77 (7), 63 (3), 53 (6); HRMS (EI): MH^{+}, found 227.1189. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ requires 227.1184.

2-((1H-Benzimidazol-1-yl)methyl)cyclopent-2-enone (7c)

Yield: 72\%; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta_{H} 7.92$ (s, 1H), 7.75-7.74 (m, $1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 2.51-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta_{c} 207.6,160.6,143.6,143.4,140.9,133.4,123.1,122.2$, 120.3, 109.6, 39.7, 34.5, 26.7; MS (m/z): 213 (14), 212 (M+, 100), 211 (46), 197 (2), 184 (11), 183 (39), 169 (17), 156 (21), 131 (10), 118 (14), 104 (5), 90 (4), 77 (5), 63 (3), 53 (3); HRMS (EI): MH^{+}, found 213.1033. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$ requires 213.1028.

2-((1H-Benzimidazol-1-yl)ethyl)cyclopent-2-enone (7d)

Yield: 85%; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta_{H} 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}$, 1 H), $7.25-7.12(\mathrm{~m}, 4 \mathrm{H}), 5.25(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.30(\mathrm{~m}$, 2 H), 1.74 (d, J = 6.0 Hz, 3H) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta_{c} 207.1,159.3,145.1$, 143.4, 141.1, 132.9, 122.7, 122.1, 120.02, 110.2, 47.4, 34.8, 26.2, 18.6; MS (m/z): 227 (16), 226 ($\mathrm{M}+100$), 225 (8), 211 (38), 197 (14), 183 (13), 169 (4), 156 (1), 119 (12), 118 (74), 109 (8), 91 (9), 79 (14), 77 (7), 63 (5), 53 (7); HRMS (EI): MH^{+}, found 227.1190. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ requires 227.1184.

Typical procedure for the preparation of imidazole derivatives 8

A mixture of acyclic MBH alcohol $\mathbf{1}$ ($1 \mathbf{m m o l}$), imidazole ($\mathbf{2 a}, 2 \mathrm{mmol}$) and DABCO (1 mmol), was stirred at reflux temperature of methanol or toluene. After completion of the reaction, the solvent was removed by rotary evaporation and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. The mixture was washed with brine and dried. Finally, the solvent was removed and the residue was purified by a column chromatography on silica gel, using acetone/ether as eluent, to give the pure imidazole derivative 8 .

Ethyl 2-((1H-imidazol-1-yl)methyl)-3-hydroxypropanoate (8a)

Yield: 84%; yellow oil; $v\left(\mathrm{CHCl}_{3}\right) 3118,2982,2934,1723,1509,1451,1376$, 1282, 1225, 1181, $1071 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta_{\mathrm{H}} 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.99$ (s, 1H), $6.95(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.81-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta_{\mathrm{C}} 171.8,137.8,128.7,119.6,61.2,59.3,49.2,44.6$, 14.0; HRMS (EI): MH^{+}, found 199.1085. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 199.1083.

Ethyl 2-((1H-imidazol-1-yl)methyl)-3-hydroxy-3-phenylpropanoate (8b)

Overall yield: 75\%; yellow oil; $\mathrm{dr}=55: 45$. Major diastereomer ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta_{H} 7.41-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-$ $3.81(\mathrm{~m}, 4 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: $\delta_{c} 172.0,141.1,137.3,129.0,128.2,128.2,126.1,119.1,72.6,61.2,55.0,45.6$, 13.9. Minor diastereomer ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: $\delta_{\mathrm{H}} 7.41-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.83-$ $6.76(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 0.91$
 128.0, 126.3, 119.3, 72.6, 61.., 55.8, 45.3, 13.7; HRMS (EI): MH^{+}, found 275.1402. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 275.1396.

Methyl 2-((1H-imidazol-1-yl)methyl)-3-hydroxybutanoate (8c)

Overall yield: 70\%; yellow oil; $\mathrm{dr}=59: 41$. Major diastereomer ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta_{H} \delta_{H} 7.46(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.43-4.30$ (m, 2H), 4.05-3.99 (m, 1H), $3.62(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta_{c} 172.8,137.4,128.8,119.4,66.1,55.5,52.0$, 45.9, 21.9. Minor diastereomer ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: $\delta_{\mathrm{H}} 7.49(\mathrm{~s}, 1 \mathrm{H}), 6.99$ $(\mathrm{s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.43-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.67$ ($\mathrm{s}, 3 \mathrm{H}$), 2.92-2.87 (m, 1H), $1.25(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta \mathrm{c}$ 172.3, 137.5, 128.9, 119.4, 65.8, 54.3, 52.0, 45.0, 20.7; HRMS (EI): MH^{+}, found 199.1085. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 199.1083.

3-Hydroxy-2-((1H-imidazol-1-yl)methyl)-1-phenylpropan-1-one (8d)

Yield: 70%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta_{\mathrm{H}} 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.36(\mathrm{~m}$, $4 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.52-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.94$ $(\mathrm{m}, 1 \mathrm{H}), 3.88-3.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta_{\mathrm{C}} 199.8,137.6,136.1$,
133.6, 128.8, 128.7, 128.2, 119.7, 60.7, 51.5, 45.1; HRMS (EI): MH^{+}, found 231.1132. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 231.1134.

1-Hydroxy-2-((1H-imidazol-1-yl)methyl)hexan-3-one (8e)

Yield: 76%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: $\delta_{\mathrm{H}} 7.45(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, $1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.36-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 1 \mathrm{H})$, 2.56-2.26 (m, 2H), 1.56-1.49 (m, 2H), $0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $75 \mathrm{MHz}): \delta_{\mathrm{c}} 210.6,137.7,128.9,119.5,59.8,55.7,44.9,44.5,16.7,13.5$; HRMS (EI): MH^{+}, found 197.1293. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 197.1290.

1-Cyclohexyl-3-hydroxy-2-((1H-imidazol-1-yl)methyl)propan-1-one (8f)

Yield: 73%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta_{\mathrm{H}} 7.43$ (s, 1H), 6.96 (s, 1H), 6.88 (s , $1 \mathrm{H})$, 4.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 4.36-4.16 (m, 2H), 3.74-3.41 (m, 2H), 3.31-3.24 (m, 1H), $2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.15(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz): $\delta_{\mathrm{C}} 213.6,137.6,128.8,119.5,60.3,54.4,50.8,45.0,29.6,28.0,27.2,25.7$, 25.2; HRMS (EI): MH^{+}, found 237.1607. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 237.1603.

References

1. Rezgui, F.; El Gaïed, M. M. Tetrahedron Lett. 1998, 39, 5965.
2. Gatri, R.; El Gaied, M. M. Tetrahedron Lett. 2002, 43, 7835.
3. Luo, S.; Wang, P. G.; Cheng, J. P. J. Org. Chem. 2004, 69, 555.
4. Rezgui, F.; El Gaied, M. M. Tetrahedron 1997, 53, 15711.
5. Villieras, J.; Rambaud, M. Org. Synth. Coll. Vol. VIII, 1993, 265.
6. Yu, C.; Luo, B.; Hu, L. J. Org. Chem. 2001, 66, 5413.
7. Ben Kraïem, J.; Ben Ayed, T.; Amri, H. Tetrahedron Lett. 2006, 47, 7077.
8. Oueslati, Y.; Baioui, N.; Rezgui, F. Synth. Commun. 2017, 47, 892.
