

Supporting Information

for

Organic thermally activated delayed fluorescence material with strained benzoguanidine donor

Alexander C. Brannan, Elvie F. P. Beaumont, Nguyen Le Phuoc, George F. S. Whitehead, Mikko Linnolahti and Alexander S. Romanov

Beilstein J. Org. Chem. 2023, 19, 1289–1298. doi:10.3762/bjoc.19.95

Additional experimental data

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

¹ H and ¹³ C NMR, HRMS spectra for 4BGIPN	S 2–S4
Figure S1. Thermogravimetric analysis (top) and differential scanning colourimetry for 4BGIPN	S 5
Figure S2. An overlay of the X-ray crystal structure and optimised S_0 geometry of comp 4BGIPN	oound S 6
Figure S3. The deconvolution and estimation of the experimental value for the oscillator strength coefficients associated with the 4BGIPN .	r S6
Figure S4. Excitation and emission spectra for 4BGIPN in frozen MCH glass at 77 K	S7
Photophysical characterisation	S 8
Table S1. HOMO and LUMO molecular orbitals	S 8
Table S2. Dipole moments in S0 and S1 states in S0 geometry	S9
Table S3. Vertical excitations $S_0 \rightarrow S_1$ and $S_0 \rightarrow T_n$, character and oscillator strength coefficients for $S_0 \rightarrow S_1$.	S 9
Table S4. HONTO andd LUNTO molecular orbitals of the excited states.	S10
Coordinates for compound 4BGIPN	S12

Varied temperature ¹H NMR (700 MHz, DMSO- d_6) spectra of **4BGIPN** between 20 and 120 °C.

 13 C NMR (DCM- d_2) spectrum of **4BGIPN**

Full High-Resolution Mass Spectrometry (HRMS).

HRMS Thermo Executive Plus EMR Orbitrab HESI POS and NEG.

Figure S1. Thermogravimetric analysis (top) and differential scanning colourimetry (bottom, glass transition temperature is in the range 237–260 °C) for isomer mixture of compound **4BGIPN**.

Figure S2. An overlay of the X-ray crystal structure and optimised S₀ geometry of compound

 $f1 = 4,32 \cdot 10^{-9} \int \varepsilon(\bar{v}) d(\bar{v}) = 4,32 \cdot 10^{-9} \cdot 2.1 \cdot 10^7 (Peak8) = 0.091$ while f2 = 0.034 based on peak 9. The values are close similar with the theoretically calculated values f1 = 0.091 while f2 = 0.019.

Figure S4. Excitation and emission spectra for **4BGIPN** in frozen MCH glass at 77 K (top); Zeonex 0.1 wt % films at 295 K (middle) and 77 K (bottom) with emission and excitation wavelengths in legend.

Photophysical characterisation.

UV-visible absorption spectra were recorded using a Varian Cary 5000 UV-Vis-NIR spectrometer. Photoluminescence measurements were recorded on an Edinburgh Instruments FLS-1000 spectrometer with a solids mount attachment where appropriate. Absolute photoluminescence quantum yields were recorded using Hamamatsu Quantaurus-QY C11347-11. Quantum yields have been measured in air for solid samples and under nitrogen for solutions. Time resolved luminescence data were collected on a time-correlated single photon counting (TCSPC) Edinburgh Instruments FLS-1000 spectrometer using F-900 software. A xenon flash lamp and EPL pulsed diode lasers were used as excitation sources. The collected data were analysed using F-900 software.

Computational details.

	НОМО	LUMO
(crystal) Overlap integral: 0.27		
(opt) Overlap integral: 0.29		

Table S1. HOMO and LUMO molecular orbitals in crystal and optimized S₀ geometry.

	S_0	S_1
(crystal)		
(opt)		
	6.4D	7.2D

Tables S2. Dipole moments in S_0 and S_1 states in crystal and optimized S_0 geometry.

Table S3. Vertical excitations $S_0 \rightarrow S_n$ and $S_0 \rightarrow T_n$, character and oscillator strength coefficients for $S_0 \rightarrow S_n$ in crystal and optimized S_0 geometry.

	Excitation energy	Character	Oscillator strength
	$S_1: 3.11 eV = 399 nm$	HOMO – LUMO (92%)	0.0773
(crystal)	$S_2: 3.28 eV = 378 nm$	HOMO-1 – LUMO (83%)	0.0341
	$S_3: 3.42eV = 363nm$	HOMO-2 – LUMO (59%)	0.0131
	$T_1: 2.94 eV = 422 nm$	HOMO – LUMO (71%)	
	$T_2: 3.09 eV = 402 nm$	HOMO-2 – LUMO (19%)	
		HOMO-1 – LUMO (19%)	
	$T_3: 3.13 eV = 396 nm$	HOMO-2 – LUMO (47%)	
(opt)	$S_1: 3.19eV = 388nm$	HOMO – LUMO (78%)	0.0906
	$S_2: 3.28 eV = 378 nm$	HOMO-1 – LUMO (78%)	0.0190
	$S_3: 3.42eV = 363nm$	HOMO-2 – LUMO (81%)	0.0408
	$T_1: 2.99eV = 415nm$	HOMO – LUMO (46%)	
		HOMO-1 – LUMO (18%)	
	$T_2: 3.05 eV = 406 nm$	HOMO – LUMO (35%)	
		HOMO-3 – LUMO (19%)	
		HOMO – LUMO+1 (16%)	
	$T_3: 3.18 eV = 389 nm$	HOMO-1 – LUMO (50%)	
		HOMO – LUMO+1 (31%)	

Table S4. HONTO and LUNTO molecular orbitals of the excited states in crystal and optimized S_0 geometry.

		HONTO	LUNTO
(crystal)	S ₁		
	S ₂		
	S ₃		
	T ₁		

	T ₂	
	T3	
(opt)	S 1	
	S ₂	
	S ₃	

Coordinates for compound 4BGIPN in the ground state S_0 geometry (crystal geometry).

14.31500000	9.19000000	7.14100000
10.55200000	13.38100000	7.44200000
9.72700000	10.69700000	6.79700000
7.74300000	9.98600000	7.53600000
9.48500000	9.18400000	8.75300000
8.82600000	12.44200000	8.95700000
13.24800000	13.72600000	8.36300000
8.97500000	14.65100000	8.38400000
11.54000000	14.19500000	10.08800000
15.93700000	10.16600000	5.55500000
16.09200000	8.04800000	6.42700000
13.14800000	15.68000000	9.45200000
12.01500000	10.00100000	6.90600000
9.07200000	9.90900000	7.74300000
11.49300000	12.32100000	7.39700000
16.02600000	11.63900000	8.94600000
7.15400000	9.27800000	8.56500000
	$\begin{array}{c} 14.31500000\\ 10.55200000\\ 9.72700000\\ 7.74300000\\ 9.48500000\\ 8.82600000\\ 13.24800000\\ 8.97500000\\ 11.54000000\\ 15.93700000\\ 16.09200000\\ 13.14800000\\ 12.01500000\\ 9.07200000\\ 11.49300000\\ 16.02600000\\ 7.15400000\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C	11 09200000	11 02100000	7.01200000
C	11.08200000	11.03100000	7.01200000
C	12.82500000	12.50/00000	/.81300000
C	8.74500000	11.32800000	6.02600000
N	11.31800000	7.70900000	5.92100000
C	9.45200000	13.37800000	8.28800000
С	12.56200000	14.45100000	9.32700000
С	13.35100000	10.20600000	7.26800000
С	15.01900000	11.56300000	8.37900000
С	8.24900000	8.78500000	9.30700000
С	13.73100000	11.46500000	7.76200000
С	11.60400000	8.73400000	6.34900000
С	15.43700000	9.28700000	6.34200000
С	7.49200000	10.84800000	6.48100000
С	14.26900000	14.57500000	7.86000000
С	10.76800000	14.72000000	7.04200000
С	7.82000000	13.17900000	9.59500000
С	14.28400000	7.90200000	7.71400000
С	9.81600000	15.52700000	7.66900000
C	6.83300000	12.72200000	10.44800000
H	6.75900000	11.80200000	10.67300000
С	8.02300000	7.99700000	10.42100000
H	8.74900000	7.65100000	10.92700000
C	7.89100000	14.55400000	9.26500000
C	8 84000000	12 17900000	4 93900000
н	9 67800000	12.51600000	4 64300000
C	11 70800000	15 27000000	6 19400000
е н	12 34200000	14 72800000	5 73800000
C	15 37400000	7 20800000	7 27000000
C	5 66100000	8 20200000	10.03500000
е н	4 77700000	7 98400000	10.30800000
C	11 39700000	15 40800000	10.79100000
C	14 21200000	15 80400000	8 52200000
C	6 33500000	11 19100000	5 82400000
н	5 48900000	10.86900000	6 11500000
C C	17 0/200000	9.45900000	5.01/00000
C	6 4 4 3 0 0 0 0	12 0300000	<i>J</i> .01400000
ч	5 65700000	12.05000000	4.71300000
II C	15 1800000	1/ 3600000	6.82800000
С ц	15.18900000	13 5/100000	6.36600000
II C	5.04800000	13.54100000	10.06200000
	5.94600000	12.00/00000	11.56600000
П	3.27300000	15.38000000	0.77600000
	7.05500000	15.49100000	9.77000000
П	7.11900000	10.4100000	9.57500000
C II	5.84200000	8.98400000	8.91200000
П	5.10/00000	9.30400000	δ.40300000 10 77700000
U U	0./3000000	7.72600000	10.///00000
H	6.56100000	/.20000000	11.55000000
C	1/.1500000	8.16300000	5.53400000
C	6.01300000	14.99400000	10.62700000
Н	5.36300000	15.59400000	10.97400000

С	9.78200000	16.87200000	7.50600000
Н	9.12600000	17.40500000	7.93900000
С	7.64200000	12.52100000	4.29800000
Н	7.66800000	13.11100000	3.55400000
С	10.46100000	15.76700000	11.74600000
Н	9.78000000	15.16100000	12.01200000
С	15.63300000	5.86600000	7.66900000
Н	16.37400000	5.36100000	7.35600000
С	12.39600000	16.34100000	10.41600000
С	11.68500000	16.64200000	6.03800000
Н	12.33000000	17.05600000	5.47800000
С	10.74100000	17.43200000	6.68300000
Н	10.75400000	18.37400000	6.55700000
С	17.97100000	9.91300000	4.07800000
Н	17.93800000	10.79500000	3.72300000
С	10.54300000	17.01500000	12.29700000
Н	9.91800000	17.26000000	12.96700000
С	11.50000000	17.93100000	11.91500000
Н	11.50000000	18.79900000	12.29800000
С	16.00200000	15.45300000	6.52400000
Н	16.62900000	15.35800000	5.81600000
С	13.38000000	7.35200000	8.59900000
Н	12.61700000	7.83300000	8.89900000
С	15.05200000	16.84200000	8.24400000
Н	15.03200000	17.65400000	8.73600000
С	12.48100000	17.58700000	10.95800000
Н	13.16600000	18.19500000	10.70600000
С	19.02100000	7.69900000	4.24000000
Н	19.71000000	7.11400000	3.94400000
С	18.14500000	7.25200000	5.17000000
Н	18.20300000	6.38300000	5.54700000
С	13.64700000	6.03800000	9.03500000
Н	13.07500000	5.62500000	9.66900000
С	18.95600000	8.99100000	3.69600000
Н	19.60000000	9.24900000	3.04600000
С	15.95000000	16.63600000	7.18100000
Н	16.53200000	17.34100000	6.91800000
С	14.69900000	5.37300000	8.56000000
Н	14.81900000	4.48000000	8.86200000

Coordinates for compound 4BGIPN in the ground state \mathbf{S}_0 geometry (optimized geometry).

<u> </u>	•			
Ν		3.83442600	0.90870300	-0.29780500
Ν		-1.50230400	-0.52172100	0.65031500
Ν		-0.54057900	2.03640200	1.38865100
Ν		-2.02326100	3.70084800	1.16456000
Ν		-0.36054800	3.76416300	-0.37286600
Ν		-2.68040900	1.27132700	-0.57465100
Ν		0.28696900	-2.33182700	-0.65743800
Ν		-3.70099500	-0.56708400	0.26534200

Ν	-1.85021900	-1.91604700	-1.84132600
Ν	5.04490800	-1.00589500	0.69914400
Ν	6.05642500	0.74200300	-0.32996600
Ν	-1.16351300	-3.95898100	-1.15101700
С	1.64414000	1.43409500	0.60414200
С	-0.85532500	3.18418900	0.66862000
С	-0.15923300	-0.18673000	0.43780100
Ν	3.43521500	-2.11770300	-2.11996000
С	-2.37082900	4.72234800	0.29119800
С	0.30649200	1.07789400	0.81955000
С	0.71112600	-1.06550000	-0.22705000
С	-1.57814100	1.84042000	2.32279800
Ν	2.58001900	3.58120700	1.69188600
С	-2.55406200	0.15899500	0.06996500
С	-0.92244800	-2.61304700	-1.26797800
С	2.50160100	0.56563000	-0.07060500
С	2.82188800	-1.48119100	-1.38120600
С	-1.31154600	4.74904300	-0.64703000
С	2.02334500	-0.67187100	-0.51165900
С	2.15008200	2.64010800	1.18556800
С	4.90542300	0.11638500	0.06799500
С	-2.51542900	2.87437400	2.16721500
С	0.80584600	-3.55752900	-0.17141500
С	-2.02293100	-1.69785500	1.21251600
С	-4.04594900	1.30792700	-0.85426900
С	4.34873700	2.05799600	-0.93584100
С	-3.40397500	-1.74127100	0.94481300
С	-4.77766300	2.28639400	-1.51968800
Н	-4.28099200	3.17104000	-1.90090000
С	-1.34667300	5.67694200	-1.68227800
Н	-0.54657300	5.71179100	-2.40976500
С	-4.70974200	0.16327100	-0.35022500
С	-1.74900400	0.85408600	3.27227000
Н	-1.01696600	0.06545600	3.39977800
С	-1.40068900	-2.69523800	1.93595500
Н	-0.34290100	-2.64702800	2.16784500
С	5.74846200	1.94854800	-0.95596100
С	-3.47440100	6.48812100	-0.82268200
Н	-4.30699700	7.17295000	-0.91827500
С	-2.84145800	-2.86517100	-2.08329300
С	-0.11428400	-4.57284400	-0.47623800
С	-3.66516200	2.91903100	2.93185000
Н	-4.39282100	3.70876500	2.80375000
С	6.43197700	-1.16250600	0.72938900
С	-3.85405200	1.90316500	3.86694300
Н	-4.74852100	1.90559800	4.47556700
С	1.95256600	-3.81980800	0.55299200
Н	2.67051400	-3.04482900	0.79758900
С	-6.14178500	2.08549400	-1.67675300
Н	-6.73092100	2.83081900	-2.19587400

С	-6.07028900	-0.04579400	-0.50869200
Н	-6.56019900	-0.93267600	-0.12739000
С	-3.45718800	5.57950900	0.22685500
Н	-4.26026700	5.53953400	0.95123300
С	-2.43441000	6.53496500	-1.75811600
Н	-2.48306900	7.25915300	-2.56143500
С	7.09092800	-0.08123700	0.09661200
С	-6.77779200	0.93882000	-1.18598800
Н	-7.84292200	0.81759900	-1.33548100
С	-4.17442200	-2.81904800	1.33460000
Н	-5.22947300	-2.86684900	1.09996900
С	-2.91152700	0.89301700	4.03943300
Н	-3.08093500	0.12361300	4.78091700
С	-4.11925600	-2.68100800	-2.60269000
Н	-4.44071300	-1.69712200	-2.92147900
С	6.53472100	2.92316200	-1.53872500
Н	7.61283300	2.83884500	-1.55598600
С	-2.44164700	-4.15365800	-1.65636700
С	-2.17937600	-3.78294600	2.33178700
Н	-1.71384700	-4.59044600	2.88183600
С	-3.53571800	-3.84841000	2.02545300
Н	-4.11048100	-4.71085200	2.33595600
С	7.19040400	-2.19087900	1.27865100
Н	6.70389500	-3.02672900	1.76386700
С	-4.95699500	-3.78448400	-2.67744200
Н	-5.95695300	-3.66472400	-3.07483800
С	-4.54038000	-5.05383700	-2.25640400
Н	-5.22366100	-5.88954300	-2.33481300
С	2.16204900	-5.13799500	0.95563800
Н	3.05622300	-5.37780900	1.51509700
С	3.69794300	3.13349400	-1.50719300
Н	2.61715600	3.22133900	-1.49168400
С	0.09538300	-5.87842000	-0.07758800
Н	-0.61696000	-6.65751600	-0.31310600
С	-3.26855500	-5.26245400	-1.74058700
Н	-2.94901700	-6.24152600	-1.40817600
С	9.20359900	-1.03078100	0.55713800
Н	10.28418500	-1.00477400	0.50420000
С	8.47016500	0.00708900	-0.00022300
Н	8.95627400	0.84241300	-0.48709400
С	4.49353900	4.11538500	-2.09254100
Н	4.01753300	4.97679600	-2.54113600
С	8.57162100	-2.11033500	1.18471300
Н	9.17877200	-2.90136800	1.60619100
С	1.25534200	-6.14726000	0.64499200
Н	1.45441100	-7.16028200	0.96864400
С	5.88207800	4.01458000	-2.10595700
Н	6.46771600	4.79837700	-2.56766800