An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid ${ }^{\#}$

Biswajit K. Singh, Surendra .S. Bisht and Rama P. Tripathi*

Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow226001

Experimental

Commercially available reagent grade chemicals were used as received. All reactions were followed by TLC on Merck Kieselgel $60 \mathrm{~F}_{254}$, with detection by UV light and/or spraying 20% KMnO_{4} agueous solution. Column chromatography was performed on Silica Gel (230-400 mesh, Merck). IR spectra were recorded as thin films or neat chloroform solution with a Perkin-Elmer Spectrum RX-1 (4000-450 cm^{-1}) spectrophotometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX -300 in (D) chloroform, shift values in ppm relative to SiMe_{4} as internal reference, unless otherwise stated; signals are reported as s (singlet), d (doublet), t (triplet), m (multiplet); J in Hz. Fast atom bombardment mass spectra (FABMS) were performed by the Mass Spectrometer Jeol SX-102(FAB). Elemental analyses were performed on a Perkin-Elmer 2400 II elemental analyzer. The optical rotations were measured in a 1.0 dm tube with a Rudolf Autopol III polarimeter in chloroform. Solvents were dried and stored over activated $4 \AA$ molecular sieve.

5,6-O-isopropylidene-L-Ascorbic acid (2):

To a magnetically stirred solution of ascorbic acid ($30 \mathrm{~g}, 170.4 \mathrm{mmol}$) in acetone (120 mL), acetyl chloride ($3 \mathrm{~mL}, 42.6 \mathrm{mmol}$) was added and reaction mixture stirred for 2-3 hrs at ambient temperature and kept in cold for 7-8 h . The reaction mixture was filtered and washed with cooled acetone. The crude solid thus obtained was dried (27 g, 73.7%); m.p. $195-198^{\circ} \mathrm{C}$. The crude was recrystalised by acetone and hexane, the m.p.
of recrystalised product was around $206-208^{\circ} \mathrm{C}$; IR (neat): $3021,1754,1658,1217 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}^{-} \mathrm{d}^{6}\right) \delta=1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.20$ (bs, $1 \mathrm{H}, \mathrm{OH}$), $3.98-4.26\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \& \mathrm{OCH}\right), 4.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 8.30(\mathrm{bs}$, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}^{6} \mathrm{~d}^{6}$) $\delta=30.8,31.2,70.4,76.3,76.7,114.7$, 124.1, 156.3, 175.4; MS (ESI) $217(\mathrm{M}+\mathrm{H})^{+}$.

2,3-Dimethoxy-5,6-O-isopropylidene-L-Ascorbic acid (3): To a magnetically stirred solution of compound $2(25 \mathrm{~g}, 115.7 \mathrm{mmol})$ in acetone and DMSO (4:1), $\mathrm{K}_{2} \mathrm{CO}_{3}(32 \mathrm{~g}$, 231.4 mmol) methyl iodide ($14.9 \mathrm{~mL}, 231.4 \mathrm{mmol}$) was added drop wise. Tetrabutyl ammonium bromide $(2.0 \mathrm{~g})$ was added to the stirring reaction mixture and stirring continued for 12 hr . The reaction mixture was portioned between ethyl acetate (150 mL) and water $(100 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a crude mass, which was chromatographed over silica gel (230-400 mesh) using a gradient of hexane-EtOAc (17:3) as eluent to give $\mathbf{3}$ as colourless solid (22 g, 78%); IR (neat): $1762,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.0-4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.25-4.52 (m, 2H, OCH \& CH); $\left.{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right) \delta=25.9,26.2,59.8,60.7$, 65.6, 74.2, 74.8, 110.7, 123.5, 157.1, 169.3; MS (ESI) $245(\mathrm{M}+\mathrm{H})^{+}$.

2,3-Dibenzyloxy-5,6-O-isopropylidene-L-Ascorbic acid (4): It was obtained by the reaction of $2(25 \mathrm{~g}, 115.7 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(32 \mathrm{~g}, 231.4 \mathrm{mmol})$ and benzyl bromide (27.4 $\mathrm{mL}, 231.4 \mathrm{mmol}$) using the above procedure. Colourless powder ($33 \mathrm{~g}, 72 \%$); IR (neat): $1764,1679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.96-4.12 (m, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.21-4.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH} \& \mathrm{CH}), 5.03-5.21(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{x}$ $\mathrm{OCH}_{2} \mathrm{Ph}$), 7.18-7.38 (m, 10H, ArH); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=26.0,26.3,65.6$, $73.9,74.2,74.3,75.0,109.9,110.7,121.5,128.2$ (3C), 129.0 (4C), 129.5 (3C), 135.7, 136.3, 157.0, 169.5; MS (ESI) $397.1(\mathrm{M}+\mathrm{H})^{+}$.
(Z) - 3,4-Dimethoxy-5-(2-hydroxyethylidene)-5H-furan-2-one(5): General Procedure

To a magnetically stirred solution of compound 320 g (81.96 mmol) in THF (80 $\mathrm{mL}), \mathrm{DBU}(6.2 \mathrm{~mL}, 50 \mathrm{~mol} \%)$ was slowly added and the reaction mixture was stirred for 18 h at room temperature. The solvent was evaporated under reduced pressure and the residue, thus obtained, was dissolved in ethyl acetate $(100 \mathrm{~mL})$, washed with water (25 $\mathrm{mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford a crude mass, which was chromatographed over silica gel (230-400 mesh) using a gradient of hexane-EtOAc $(9: 1 \rightarrow 3: 1)$ as eluent to give the above compounds as colourless solid ($10 \mathrm{~g}, 65.7 \%$), m.p $60{ }^{\circ} \mathrm{C}$, IR (Neat): 3391, $1688 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.39(\mathrm{bs}, 1 \mathrm{H}), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.41(\mathrm{~d}, J=7.0$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.50(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=56.6,59.9$, $60.6,108.1,125.0,142.3,149.1,164.7$; MS (FAB) $187(\mathrm{M}+\mathrm{H})^{+}$.

(Z) 3,4-Dibenzyloxy-5-(2-hydroxyethylidene)-5H-furan-2-one (6):.

It was obtained by reaction of $420 \mathrm{~g}(50.5 \mathrm{mmol})$ and DBU $3.9 \mathrm{~mL}(50 \mathrm{~mol} \%)$ as described above. Colourless oil, yield ($11 \mathrm{~g}, 64.7 \%$); IR (neat): $3389,1676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.42(\mathrm{bs}, 1 \mathrm{H}), 4.40\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.16(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}$), $5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.51(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.21-7.37(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=56.9,73.6,74.4,108.0,124.1,128.0$ (2C), 129.0 (2C), 129.1 (3C), 129.3 (3C), 135.8, 136.1, 142.7, 148.7, 167.5; MS (FAB) $339(\mathrm{M}+\mathrm{H})^{+}$.

(Z) (3, 4-Dimethoxy-5-oxo-5H-furan-2-ylidene)-acetaldehyde (7): General Procedure

To a magnetically stirred mixture of powdered dried molecular sieve $(4 \AA, 10 \mathrm{~g})$ and PCC $(11.6 \mathrm{~g}, 51.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$, a solution of the above allyl alcohol 5 $(8.00 \mathrm{~g}, 43.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added drop wise at $0{ }^{\circ} \mathrm{C}$ and stirring continued for half an hour. The reaction mixture was filtered over a pad of celite and celite cake was washed with more dichloromethane. The filtrate was evaporated to yield a crude mass which was purified by flash chromatography using a gradient of hexaneEtOAc $(9: 1 \rightarrow 4: 1)$ to give compound 2 a as a light yellow solid, m.p $61-63{ }^{\circ} \mathrm{C}$; Yield (4.20 g, 53\%); IR (neat) $1788,1656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.05(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{OCH}_{3}\right), 4.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.65(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz},=\mathrm{CH}), 10.08(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{O})$;
${ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=60.2,60.5,105.0,126.5,147.2,155.9,162.4,188.1$; MS (ESI) $207(\mathrm{M}+\mathrm{Na})^{+}$.

(Z)-(3, 4-Dibenzyloxy-5-oxo-5H-furan-2-ylidene)-acetaldehyde (8)

It was obtained from compound $6(9.00 \mathrm{~g}, 26.6 \mathrm{mmol})$ as above with a mixture of powdered dried molecular sieve $(4 \AA, 11 \mathrm{~g})$ and PCC ($6.3 \mathrm{~g}, 31.9 \mathrm{mmol}$) and in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ as a light yellow solid ($5.9 \mathrm{~g}, 54 \%$); IR (neat): $1790,1656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.67(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz},=\mathrm{CH}), 7.21-7.37(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 10.06(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{O}) ; \mathrm{MS}(\mathrm{ESI}): 337$ $(\mathrm{M}+\mathrm{H})^{+}$.

4-(3, 4-Dimethoxy-5-oxo-5H-furan-2-ylidene)-but-2-enoic acid ethyl ester (9 and

9a): General Procedure:

A mixture of the above aldehyde $7(4.0 \mathrm{~g}, 21.73 \mathrm{mmol})$ and carbethoxymethylenetriphenyl phosphorane ($8.3 \mathrm{~g}, 23.9 \mathrm{mmol}$) in anh. THF (25 mL) was magnetically stirred for 1.5 h . The solvent was evaporated and the residue was dissolved in ethyl acetate (100 mL) and washed with water ($2 \times 25 \mathrm{~mL}$), organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a crude mass. The latter on column chromatography over silica gel (60-120 mess) using a gradient of hexane: EtOAc $(19: 1 \rightarrow 7: 1)$ as eluent gave the above compound as a $(Z, Z) \mathbf{9}$ and $(Z, E) 9$ a isomers in the ratio of 17:3;
Z,Z-isomer (9): IR (neat): 1780, $1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.31(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and $4.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, OCH_{2}), $5.91(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.96(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.57(\mathrm{dd}, J=$ 11.9 Hz each, $1 \mathrm{H}, \mathrm{H}-7$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.6,59.8,60.6,61.0,105.3$, 124.4, 126.2, 135.4, 146.0, 148.2, 163.6, 166.6; MS (FAB): $255(\mathrm{M}+\mathrm{H})^{+}$.

Z,E-isomer (9a): Colourless solid, m.p. $65{ }^{\circ} \mathrm{C}$; IR (neat): 1777, 1707, $1602 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.16(\mathrm{~s}$,
$\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.22\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.82(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.0(\mathrm{dd}, J=$ $11.4 \mathrm{~Hz}, 11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.27(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=14.6,59.6,60.4,73.0,73.2,103.4,120.4,126.2,132.4,134.7,146.3,148.5,163.3$, 166.3; MS (FAB): $255(\mathrm{M}+\mathrm{H})^{+}$.

4-(3, 4-Dibenzyloxy-5-oxo-5H-furan-2-ylidene)-but-2-enoic acid ethyl ester (10 and 10a):

It was obtained by reaction of vinylic aldehyde $8(4.5 \mathrm{~g}, 13.4 \mathrm{mmol})$ and carbethoxymethylene triphenyl phosphorane $(5.1 \mathrm{~g}, 23.9 \mathrm{mmol})$ as above and purified by column chromatography over silica gel (60-120 mess) using a gradient of hexane:EtOAc $(19: 1 \rightarrow 7: 1)$ as eluent to give the above compounds as a (Z, Z) and (Z, E) isomer in the ratio of $9: 1$;
$\boldsymbol{Z}, \boldsymbol{Z}$-isomer (10) : IR (neat) $1778,1711,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.30$ $\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.22\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.23\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{XOCH}_{2}\right), 5.89(\mathrm{~d}, J$ $=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.99(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.20-7.36(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{dd}$, $J=11.9 \mathrm{~Hz}$ each, $1 \mathrm{H}, 7-\mathrm{H})$; MS (ESI$): 429(\mathrm{M}+\mathrm{Na})^{+} ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $14.6,61.1,73.8,74.4,105.5,124.5,127.4,128.2$ (2C), 128.7, 129.1 (3C), 129.3 (3C); MS (ESI): 429 ($\mathrm{M}+\mathrm{Na})^{+}$.
$\boldsymbol{Z}, \boldsymbol{E}$-isomer (10a): solid, m.p. $55^{\circ} \mathrm{C}$; IR (neat): $1775,1710,1648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.27\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.12\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.19(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.03(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7$), 7.22-7.37 (m, 11H, H-8, ArH); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.6,60.5,73.5$, 74.2, 103.7, 120.6, 124.8, 127.9(2C), 128.1, 129.0, 129.1 (3C), 129.2 (3C), 134.7, 135.8, 136.0, 146.6, 148.2, 163.6, 166.3; MS (ESI): $429.1(\mathrm{M}+\mathrm{Na})^{+}$.

(Z) 4-(2-Hydroxy-3,4-dimethoxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-enoic acid ethyl ester (11): General Procedure:

A solution of the above compound $\mathbf{9}(1 \mathrm{~g}, 3.93 \mathrm{mmol})$ in ethanolic ammonia $(15 \mathrm{~mL})$ was magnetically stirred for 15 min . in a sealed vessel. The excess of ammonia and solvent were evaporated under reduced pressure to give a residual mass. The latter was
chromatographed over silica gel (60-120 mess) column using a gradient of hexane:EtoAc (2:3) to give 11 as, colourless foam ($1 \mathrm{~g}, 98 \%$); IR (neat): 3431 , $1684,1564 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.27\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.60-2.77(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.15\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $5.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \&-\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 14.5, 39.4, 59.4, 60.7, 61.3, 83.3, 96.5, 125.6, 141.8, 155.0, 166.5, 170.2; MS (ESI): $294.1(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, 53.13; H, 6.32; N, 5.16, Found: C, 53.15; H, 6.35; N, 5.14

(Z) 4-(1-Benzyl-2-hydroxy-3,4-dimethoxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-

 enoic acid ethyl ester (12): A solution of compound $9(0.8 \mathrm{~g}, 3.14 \mathrm{mmol})$ in ethanol and benzyl amine ($0.35 \mathrm{~mL}, 3.14 \mathrm{mmol}$) was magnetically stirred for 2.5 hrs . Solvent was evaporated under reduced pressure and the residue, thus obtained was dissolved in ethyl acetate $(25 \mathrm{~mL})$ and washed with water $(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ evaporated under reduced pressure to give crude mass which was purified by column chromatography over silica gel (60-120 mess) using a gradient of hexane:EtoAc (1:4) to give $\mathbf{1 2}$ as light brown solid, ($0.82 \mathrm{~g}, 72.5 \%$); m. p. $82-84^{\circ} \mathrm{C}$; IR (neat): $3387,1674,1598$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.24\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 2.52 (m, 2H, H-6), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.28\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{\mathrm{A}} \mathrm{Ph}\right), 4.65\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{\mathrm{B}} \mathrm{Ph}\right), 5.32$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.15-6.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 7.25-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.6,37.3,41.3,59.4,60.4,60.9,61.1,86.8,125.11,127.8,128.3$, 128.4, 129.0, 138.7, 140.6, 153.0, 166.0, 168.5; MS (ESI): $384.1(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{6}$: C, 63.15; H, 6.41; N, 3.88, Found: C, 63.12; H, 6.40; N, 3.90.(Z) 4-(1-Butyl-2-hydroxy-3,4-dimethoxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2enoic acid ethyl ester (13): It was obtained by the reaction of compound 9 ($0.9 \mathrm{~g}, 3.54$ $\mathrm{mmol})$ and butyl amine ($0.26 \mathrm{~mL}, 3.54 \mathrm{mmol}$) using the above procedure as an oil (0.92 g, 79.8\%); IR (neat): 3333, $1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.93(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.72-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$,
3.01-3.40 (m, 2H, NCH $)$, $3.40(\mathrm{~s}, 1 \mathrm{H}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.18(\mathrm{q}, J$ $\left.=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.82(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.49-6.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.1,14.6,20.9,32.0,37.2,38.2,59.3,60.6,60.9,86.3,108.2$, 125.3, 125.9, 141.1, 152.2, 166.0, 168.0; MS (ESI): $350.1(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{6}: \mathrm{C}, 58.70 ; \mathrm{H}, 7.70 ; \mathrm{N}, 4.28$, Found: C, 58.67 ; H, 7.72; N, 4.26.

(Z) 4-(1-Cyclopropyl-2-hydroxy-3,4-dimethoxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-

 but-2-enoic acid ethyl ester (14): It was obtained by the reaction of $9(0.5 \mathrm{~g}, 1.96 \mathrm{mmol})$ and cyclopropyl amine $(0.2 \mathrm{~mL}, 1.96 \mathrm{mmol})$ as an oil ($0.43 \mathrm{~g}, 79.8 \%$); IR (neat): 3419 , $1688,1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.65-0.88(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.31-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.18$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 6.51-6.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.7,6.0,14.6,21.1,30.0,37.0,59.4,60.7,61.0,87.1,125.3,125.9,141.3,152.4$, 166.0, 169.0; MS (ESI): $334.0(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{6}$: C, 57.87; H, 6.80; N, 4.50, Found: C, 57.90 ; H, 6.81; N, 4.52.(Z) 4-(1-Isobutyl-2-hydroxy-3,4-dimethoxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-enoic acid ethyl ester (15): It was obtained by the reaction of $9(0.6 \mathrm{~g}, 2.36 \mathrm{mmol})$ and isobutyl amine ($0.24 \mathrm{~mL}, 2.36 \mathrm{mmol}$) as above. Colourless oil, yield ($0.43 \mathrm{~g}, 65 \%$); IR (neat): $3385,1683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{bs}, 1 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.95(\mathrm{~m}, 3 \mathrm{H}), 3.17-3.27(\mathrm{~m}, 1 \mathrm{H})$, 3.78 (s, 3H), $4.07(\mathrm{~s}, 3 \mathrm{H}), 4.17$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.56$ ($(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.5,20.9,28.8,37.2,45.9,59.4,60.6,60.9$, 86.4, 125.3, 126.1, 141.1, 152.0, 166.0, 168.3; MS (FAB): $328(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{6}: \mathrm{C}, 58.70 ; \mathrm{H}, 7.70$; N, 4.28, Found: C, 58.72; H, 7.71; N, 4.29

(Z) 4-(1-Hexyl-2-hydroxy-3,4-dimethoxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-

 enoic acid ethyl ester (16): It was obtained by the reaction of $9(1.1 \mathrm{~g}, 4.33 \mathrm{mmol})$ andhexyl amine ($0.57 \mathrm{~mL}, 4.33 \mathrm{mmol}$) as above. Colourless oil ($1.2 \mathrm{~g}, 77 \%$); IR (neat): $3353,1682,1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-$ $1.30(\mathrm{~m}, 7 \mathrm{H}), 1.46-1.57(\mathrm{~m}, 3 \mathrm{H}), 2.71-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.30(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $4.06(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.4,14.5,22.9,27.3,29.7,29.9,31.8,38.5,59.3,60.6,60.9$, 86.1, 125.3, 126.1, 141.1, 152.1, 167.1, 169.7; MS (ESI): 356 (M+H) ${ }^{+}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{6}$: C, 60.83; H, 8.22; N, 3.94, Found: C, 60.85; H, 8.23; N, 3.94.

(Z) 4-(1-Octyl-2-hydroxy-3,4-dimethoxy-5-ox0-2,5-dihydro-1H-pyrrol-2-yl)-but-2-

 enoic acid ethyl ester (17): It was obtained by the reaction of $9(0.8 \mathrm{~g}, 3.14 \mathrm{mmol})$ and octyl amine ($0.24 \mathrm{~mL}, 3.14 \mathrm{mmol}$) and purified as above. Colourless oil ($0.88 \mathrm{~g}, 73 \%$); IR (neat): $3366,2930,1686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20-1.30(\mathrm{~m}, 11 \mathrm{H}), 1.35-1.60(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.93-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.79$ (s, 3H), 4.06 (s, 3H), 4.14 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=15.6,1 \mathrm{H}), 6.37-6.62(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.4,14.5,22.9,27.7,29.6,30.0,32.1,37.2,38.6,59.4$, 60.7, 61.0, 86.3, 125.4, 126.1, 141.0, 152.1, 166.2, 170.1; MS (ESI): $406(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{6}$: C, 62.64; H, 8.67; N, 3.65, Found: C, 62.66; H, 8.68; N, 3.64.
(Z) 4-(1-Propyl-2-hydroxy-3,4-dimethoxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-

 enoic acid ethyl ester (18): It was obtained by the reaction of $9(0.7 \mathrm{~g}, 2.75 \mathrm{mmol})$ and propylamine ($0.23 \mathrm{~mL}, 2.75 \mathrm{mmol}$). Colorless oil ($0.7 \mathrm{~g}, 81 \%$); IR (neat): 3329, 2974, $1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=093(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.57-1.73(\mathrm{~m}, 3 \mathrm{H}) 2.75-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.59(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.0,15.5,23.0,39.4,40.5,59.4,60.9,61.9,85.1,125.5$, 126.2, 141.0, 153.5, 166.2, 167.8; MS (ESI): $336(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{6}$: C, 57.50; H, 7.40; N, 4.47, Found: C, 57.49; H, 7.43; N, 4.49.(Z) 4-(2-hydroxy-3,4-dibenzyloxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-enoic acid ethyl ester (19): It was obtained by the reaction of $10(0.65 \mathrm{~g}, 1.6 \mathrm{mmol})$ and
ethanolic ammonia (10 mL) as colourless gum, yield ($0.58 \mathrm{~g}, 86 \%$). IR (neat): 3310, $1709,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.54-2.74(\mathrm{~m}$, $2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.84$ $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.86(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.32(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=14.6,30.0,37.0,39.5,60.7,73.2,74.9,93.6,123.5,125.9,127.9,128.5,128.8,128.9$, 129.4, 136.5, 136.7, 141.7, 154.8, 166.4, 170.3; MS (ESI): $446(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 68.07; H, 5.95; N, 3.31, Found: C, 68.09 ; H, 5.96; N, 3.33.
(Z) 4-(1-Butyl-2-hydroxy-3,4-dibenzyloxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2enoic acid ethyl ester (20): It was obtained by the reaction of $10(0.5 \mathrm{~g}, 1.24 \mathrm{mmol})$ and butyl amine ($0.12 \mathrm{~mL}, 1.24 \mathrm{mmol}$) as colourless granules, yield ($0.43 \mathrm{~g}, 73.5 \%$); m.p. 50$52{ }^{\circ} \mathrm{C}$; IR (neat): $3277,1723,1675,1598 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.94(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.56-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H})$, $3.15-3.38(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.80-5.15(\mathrm{~m}, 4 \mathrm{H}), 5.77(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.40-6.67 (m, 1H), 7.15-7.33 (m, 10H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(50} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.1,14.7$, 20.9, 32.1, 37.3, 38.4, 60.7, 73.2, 74.9, 86.6, 124.0, 125.5, 127.9 128.6, 128.8, 128.9, $129.5,136.5,136.6,141.2,152.2,166.0,168.2$; MS (ESI): $502(\mathrm{M}+\mathrm{Na})^{+}, 480(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{6}$: C, 70.13; H, 6.94; N, 2.93, Found: C, 70.14; H, 6.96; N, 2.94 .
(Z) 4-(1-Hexyl-2-hydroxy-3,4-dibenzyloxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-
enoic acid ethyl ester (21): It was obtained by the reaction of $10(0.5 \mathrm{~g}, 1.24 \mathrm{mmol})$ and hexylamine ($0.16 \mathrm{~mL}, 1.24 \mathrm{mmol}$) as colourless solid, yield ($0.45 \mathrm{~g}, 72.5 \%$); m.p. $54-55$ ${ }^{\circ} \mathrm{C}$; IR (neat): $3270,1670,1596 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.13-1.28(\mathrm{~m}, 9 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.76(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.32(\mathrm{~m}, 2 \mathrm{H}), 4.16$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.79-5.15(\mathrm{~m}, 4 \mathrm{H}), 5.77(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.70(\mathrm{~m}, 1 \mathrm{H}), 7.15-$ $7.33(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.4,14.6,23.0,25.1,27.4,30.0,31.8$, 37.3, 136.5, 136.6, 141.1, 152.1, 166.0, 168.1; MS (ESI): $530(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6}$: C, 70.97 ; H, 7.35; N, 2.76, Found: C, 70.99; H, 7.38; N, 2.75.
(Z) 4-(1-Benzyl-2-hydroxy-3,4-dibenzyloxy-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)-but-2-enoic acid ethyl ester (22):: It was obtained by the reaction of $\mathbf{1 0}$ ($0.78 \mathrm{~g}, 1.93 \mathrm{mmol}$) and benzylamine ($0.21 \mathrm{~mL}, 1.93 \mathrm{mmol}$) as an off-white solid ($0.8 \mathrm{~g}, 81.6 \%$); m.p. 66-68 ${ }^{\circ} \mathrm{C}$; IR (neat): $3423,1680,1592 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.50-2.65 (m, 3H, $\left.-\mathrm{CH}_{2}, \mathrm{OH}\right), 4.09(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}) 4.28-4.39(\mathrm{~m}, 2 \mathrm{H})$, 5.03-5.23 (m, 4H), 5.33 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.31(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.34(\mathrm{~m}, 15 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}) $\delta=14.7,37.5,41.5,60.4,73.5,75.1,87.1,123.9,125.2,127.2$, $127.5,127.9,128.2,128.6,128.8,129.0,129.3,129.6,136.4,136.5,138.8,140.7,153.1$, 175.9, 168.7; MS (ESI): $536(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{6}$: C, $72.50 ; \mathrm{H}, 6.08$; N, 2.73, Found: C, 72.52; H, 6.11; N, 2.76.

4-(3,4-Dimethoxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester

 (23): General Procedure: A solution of the above compound $11(0.7 \mathrm{~g}, 2.58 \mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and p-toluene sulphonic acid ($p \mathrm{TSA}, 0.49 \mathrm{~g}, 2.58 \mathrm{mmol}$) was stirred magnetically for 30 min . at $30^{\circ} \mathrm{C}$ till the disappearance of the starting material (TLC). The reaction mixture was neutralized (pH 7.0) with solid NaHCO_{3}, filtered and filtrate was concentrated to give a crude mass. The latter was dissolved in ethyl acetate (100 mL), washed with water ($2 \times 25 \mathrm{~mL}$), the organic layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a gummy mass. The latter was chromatographed over silica gel (60-120 mess) using a gradient of $(1: 19 \rightarrow 1: 4)$ as eluent to give compound 23 as colourless solid. Yield ($0.450 \mathrm{~g}, 68.9 \%$), m.p. $167-169^{\circ} \mathrm{C}$; IR (neat): $1719,1607 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.32\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.00\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.02$ $\left(s, 3 H, \mathrm{OCH}_{3}\right), 4.10\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.93(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.96(\mathrm{~d}, J$ $=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.75(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 9.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.6,59.7,60.8,61.2,105.1,122.4,123.3,129.5,136.9$, 137.9, 144.6, 167.2, 167.7; MS (ESI): $254(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 56.91 ; H, 5.97; N, 5.53, Found: C, 56.92; H, 5.99; N, 5.54.4-(1-Benzyl-3,4-dimethoxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester (24): It was obtained by the reaction of the above compound $\mathbf{1 2}(0.65 \mathrm{~g}, 1.8$ $\mathrm{mmol})$ and p-TSA ($0.34 \mathrm{~g}, 1.8 \mathrm{mmol}$) as above. Colourless foam $(0.4 \mathrm{~g}, 65.5 \%)$, IR
(neat): 1704, $1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.02(\mathrm{~s}$, $3 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4,79(\mathrm{~s}, 2 \mathrm{H}), 5.80(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.36(\mathrm{~m}, 5 \mathrm{H}), 8.06(\mathrm{dd}, \mathrm{J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.7,42.4,60.0,60.5,60.8,109.5,110.2,110.6,123.7,127.0(2 \mathrm{C}), 127.8$, 29.1 (2C), 136.9, 139.5, 145.3, 165.1, 167.0; MS(ESI): $344.1(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5}$: C, 66.46; H, 6.16; N, 4.08, Found: C, 66.47; H, 6.19; N, 4.10.

4-(1-Butyl-3,4-dimethoxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl

 ester (25): It was obtained by the reaction of $13(0.6 \mathrm{~g}, 1.83 \mathrm{mmol})$ and $p-\mathrm{TSA}(0.34 \mathrm{~g}$, 1.83 mmol) as an oil ($0.4 \mathrm{~g}, 71 \%$). IR (neat): $1700,1620,1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.56(\mathrm{~m}$, $4 \mathrm{H}), 3.53(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) 5.89(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, \mathrm{J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=14.1,14.7,20.4,30.0,31.1,38.5,40.7,59.9,60.5,60.6,104.3,108.8,123.1$, 129.9, 137.3, 139.8, 144.8, 164.9, 167.1; MS (ESI): $310(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5}: \mathrm{C}, 62.12 ; \mathrm{H}, 7.49 ; \mathrm{N}, 4.53$, Found: C, $62.15 ; \mathrm{H}, 7.46 ; \mathrm{N}, 4.54$.
4-(1-Cyclopropyl-3,4-dimethoxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic

acid ethyl ester (26): It was obtained by the reaction of the above compound 14 (0.54 g , 1.73 mmol) and p-TSA ($0.32 \mathrm{~g}, 1.73 \mathrm{mmol}$) as colourless solid. Yield ($0.31 \mathrm{~g}, 62 \%$); m.p. $62-64{ }^{\circ} \mathrm{C}$; IR (neat): $1700,1620,1354 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.87-0.99$ $(\mathrm{m}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=12.3 \mathrm{~Hz}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}$,); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.7,14.6,21.1,60.0,60.6,60.8,110.1$, 123.4, 129.4, 138.5, 139.8, 144.8, 165.6, 167.3; MS (ESI): $294(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, $61.42 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.78$, Found: C, $61.44 ; \mathrm{H}, 6.56 ; \mathrm{N}, 4.76$.

4-(1-Isobutyl-3,4-dimethoxy-5-ox0-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester (27): It was obtained by the reaction of the above compound $15(0.55 \mathrm{~g}, 1.68$ $\mathrm{mmol})$ and p-TSA $(0.31 \mathrm{~g}, 1.68 \mathrm{mmol})$ as colourless granules. Yield ($0.3 \mathrm{~g}, 58 \%)$, m.p: $56-58{ }^{\circ} \mathrm{C}$; IR (neat): $1680,1619 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}$,
$6 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-2.1(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, $4.14(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.16(\mathrm{dd}, J=12 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.7,20.4,28.3,46.1,59.9$, $60.5,60.6,109.1,123.1,129.7,137.7,139.7,144.8,165.1,167.0$; MS (ESI): 310 $(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5}: \mathrm{C}, 62.12 ; \mathrm{H}, 7.49$; N, 4.53, Found: C, 62.13; H, 7.52; N, 4.55.

4-(1-Hexyl-3,4-dimethoxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid

 ethyl ester (28): It was obtained by the reaction of compound $16(0.4 \mathrm{~g}, 1.12 \mathrm{mmol})$ and p-TSA ($0.21 \mathrm{~g}, 1.12 \mathrm{mmol}$) as colourless oil, yield ($0.19 \mathrm{~g}, 55 \%$); IR (neat): 1700, 1620 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 7 \mathrm{H}), 1.52-1.63$ $(\mathrm{m}, 4 \mathrm{H}), 3.41-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.3,14.6,22.9,26.8,28.9,31.8,38.8,60.0,60.7,60.9,109.0,123.2$, 130.0, 137.3, 139.8, 145.0, 165.1, 167.4; MS (ESI): $338.2(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5}$: C, 64.07 ; H, 8.07; N, 4.15, Found: C, $64.09 ; \mathrm{H}, 8.10 ; \mathrm{N}, 4.16$.4-(1-Octyl-3,4-dimethoxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester (29): It was obtained by the reaction of the above compound $\mathbf{1 7}(0.4 \mathrm{~g}, 1.04 \mathrm{mmol})$ and p-TSA $(0.19 \mathrm{~g}, 1.04 \mathrm{mmol})$ as above. Colourless oil, yield ($0.23 \mathrm{~g}, 60.5 \%$); IR (neat): $1705,1618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.55(\mathrm{~m}$, $15 \mathrm{H}), 3.46-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=$ $12 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 12.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.4,14.7,22.9,27.1,29.0,29.5,32.1,38.7,59.9,60.5,60.6,108.8$, 123.1, 129.9, 137.3, 139.8, 144.8, 164.8, 167.1. MS (ESI): 366.2 (M+H) ${ }^{+}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{5}$: C, 65.73; H, 8.55; N, 3.83, Found: C, $65.71 ; \mathrm{H}, 8.59 ; \mathrm{N}, 3.86$.

4-(1-Propyl-3,4-dimethoxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester (30): It was obtained by the reaction of compound $18(0.31 \mathrm{~g}, 0.99 \mathrm{mmol})$ and p-TSA ($0.18 \mathrm{~g}, 0.99 \mathrm{mmol}$) as described above for compound 17. Colourless oil, yield $(0.18 \mathrm{~g}, 62 \%)$; IR (neat): $1702,1620,1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.91(\mathrm{t}$,
$J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.66(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.5,14.5$, $22.2,40.3,60.0,60.7,60.9,109.2,123.3,137.3,139.8,165.2,167.4 ; \mathrm{MS}$ (ESI): 296 $(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{5}: \mathrm{C}, 61.00 ; \mathrm{H}, 7.17$; N, 4.74, Found: C, 72.84; H, 7.20; N, 4.76.

4-(3, 4-Dibenzyloxy-5-ox0-1, 5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester (31): It was obtained by the reaction of the above compound $19(0.6 \mathrm{~g}, 1.41 \mathrm{mmol})$ and p toluene sulphonic acid ($0.26 \mathrm{~g}, 1.41 \mathrm{mmol}$) as usual. White granules, yield (0.36 g , 63.1\%); m.p: $101-103{ }^{\circ} \mathrm{C}$; IR (neat): $3427,2364,1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J$ $=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 10 \mathrm{H}), 7.79(\mathrm{dd}, J=13.6 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.29(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.6,61.2,73.5,74.4,105.2,122.6,128.1$ (3C), 128.9 (3C), 129.2 (3C), 136.7, 137.0, 137.7, 144.2, 167.2, 167.7; MS (ESI): $406(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{5}$: C, 71.10; H, 5.72; N, 3.45, Found: C, 71.12; H, 5.73; N, 3.48.

4-(1-Butyl-3,4-dibenzyloxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid

 ethyl ester (32): It was obtained by the reaction of compound $20(0.7 \mathrm{~g}, 1.46 \mathrm{mmol})$ and p-TSA ($0.27 \mathrm{~g}, 1.46 \mathrm{mmol}$) as colourless oil, yield ($0.37 \mathrm{~g}, 55.2 \%$). IR (neat): 2960 , $2362,1599 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$,), 1.23-1.38 (m, 2H), 1.47-1.57 (m, 2H), $3.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 4 \mathrm{H}), 5.85(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=$ $12.0 \mathrm{~Hz}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.7,14.3,20.0,30.7,38.1$, 60.1, 73.6, 73.9, 108.8, 123.1, 127.6, 128.2, 128.5, 128.5, 128.7, $136.1136 .4,136.9$, 139.2, 143.8, 164.6, 166.5; MS (ESI): $462(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{5}$: C, 72.86; H, 6.77; N, 3.03, Found: C, 72.84; H, 6.80; N, 3.05.4-(1-Hexyl-3,4-dibenzyloxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester (33): It was obtained by the reaction of the above compound $21(0.31 \mathrm{~g}, 0.61$ mmol) and p-TSA ($0.11 \mathrm{~g}, 0.61 \mathrm{mmol}$) as colourless foam ($0.18 \mathrm{~g}, 62 \%$); IR (neat): 1699,
$1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.92(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{Hz}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.27-1.58(\mathrm{~m}, 8 \mathrm{H}), 3.57(\mathrm{t}, \mathrm{Hz}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.29(\mathrm{~s}, 4 \mathrm{H})$, $5.86(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.41(\mathrm{~m}, 10 \mathrm{H}), 8.19(\mathrm{dd}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.4,14.7,22.9,26.8,29.0,31.8,38.8,60.4$, $74.0,74.3,109.1,123.5,128.0,128.6,128.9,129.1,136.5,136.8,137.3,139.7,144.2$, 164.9, 166.8; MS (ESI): $490(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{5}: \mathrm{C}, 73.59 ; \mathrm{H}, 7.21$; N, 2.86, Found: C, 73.62; H, 7.24; N, 2.88.

4-(1-Benzyl-3,4-dibenzyloxy-5-oxo-1,5-dihydro-pyrrol-2-ylidene)-but-2-enoic acid ethyl ester (34): It was obtained by the reaction of the above compound $22(0.44 \mathrm{~g}, 0.85$ $\mathrm{mmol})$ and p-TSA $(0.16 \mathrm{~g}, 0.85 \mathrm{mmol})$ as colourless granules ($0.22 \mathrm{~g}, 55 \%$); IR (neat): $2370,1700,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.14(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-5.37(\mathrm{~m}, 6 \mathrm{H}), 5.75(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.46 (m, 15H), $8.12(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.6$, $42.5,60.5,74.1,74.5,110.5,124.0,127.0,127.9,128.1,128.7,129.0,129.2,136.4$, 136.9, 139.3, 144.8, 165.3, 166.9; MS (ESI): $496(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 75.13; H, 5.90; N, 2.83, Found: C, 75.16; H, 5.92; N, 2.82.

