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Table S1. 1H and 13C NMR data for compound 6. The spectra were recorded in DMSO-

d6. The solvent peak was used as an internal standard (δC 39.51, δH 2.50). 

 

 

 

Position δC  δH (multi., J in Hz) 

1 126.8 − 

2 121.9 8.01 (s, 1H) 

3 125.1 − 

4 150.1 − 

5 115.8 6.84 (d, 8.7, 1H) 

6 125.4 7.25 (d, 8.7, 1H) 

7 144.2 7.41 (d, 15.6, 1H) 

8 115.8 6.17 (d, 15.6, 1H) 

9 167.8 − 

10 169.1 − 

11 23.7 2.06 (s, 3H) 
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Table S2. Amino acid identity between ACPs 

 

 AvaA2 AvaA3 CmaA2 CmaA3 

AvaA2 - 29.0% 50.5% 24.4% 

AvaA3 29.0% - 25.3 51.9% 

CmaA2 50.5% 25.3% - 22.9% 

CmaA3 24.4% 51.9% 22.9% - 

 

 

 

 

Table S3. Primers used for the construction of heterologous expression plasmids. 

 

name sequence description 

cmaI-D F 5'-AAGGGAGCGGACATATGGCTGACACCGGGAAAGCG-3' NdeI site is underlined 

cmaI-D R 5'-GGTCCTGCCCAAGCTTTCAGGTGCTGAGCCGGTACC-3' HindIII site is underlined 

cmaG F 5'-AAGGGAGCGGACATATGTCCTCAGATCGGAGAGG-3' NdeI site is underlined 

cmaG R 5'-GCAGGTCGACTCTAGATTACCGCGCGGGTGCCAGTGC-3' XbaI site is underlined 

 

 

 

 

Table S4. Primers used for the construction of recombinant protein production plasmids. 

 

name sequence description 

cmaA1 F 5'-TCGAAGGTAGGCATATGCGGCTGGTGGAGGACCT-3' NdeI site is underlined 

cmaA1 R 5'-ATTCGGATCCCTCGAGTCAACTGATCGCCGCGCGCA-3' XhoI site is underlined 

cmaA3 F 5'-TCGAAGGTAGGCATATGACCACCGAGCAGGTGCGC-3' NdeI site is underlined 

cmaA3 R 5'-ATTCGGATCCCTCGAGTCATCGCACCGCCCCGGAGT-3' XhoI site is underlined 

cmaA6 F 5'-TCGAAGGTAGGCATATGATCACCAAGGAAGAACGC-3' NdeI site is underlined 

cmaA6 R 5'-ATTCGGATCCCTCGAGTCACCCCTGGTCGGCGCGGG-3' XhoI site is underlined 

 

  



S4 

Supplementary figures 

 



S5 

 

 

 

Figure S1. The BiG-SCAPE analysis of ava-like clusters (Part 1). The clusters belong to FAM_00127, FAM_00108, 

and FAM_00132 are shown. avaI, H, A1, A2, A3, A4, A5, A6, B, and A7 homologs are highlighted in yellow. avaE 

and avaD homologs are highlighted in purple. avaF and avaA8 homologs are highlighted in red. The colors of Pfam 

domains are automatically generated by BiG-SCAPE. 
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Figure S2. The BiG-SCAPE analysis of ava-like clusters (Part 2). The clusters belong to FAM_00091, FAM_00111, 

FAM_00125, and FAM_00133 are shown. Most of these clusters do not have avaA8 and avaC homologs but have a 

cmaG-like gene encoding an FMN-dependent oxidoreductase and a cmaR-like gene encoding a LysR family 

transcriptional regulator. avaI, H, A1, A2, A3, A4, A5, A6, B, and A7 homologs are highlighted in yellow. avaE and 

avaD homologs are highlighted in purple. cmaG and cmaR homologs are highlighted in red. The colors of Pfam 

domains are automatically generated by BiG-SCAPE. 
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Figure S3. LC-MS analysis of the metabolites of S. albus-cma, which produces compounds 5 and 6 

and other 3,4-AHBA derivatives. (A) Comparison of compound 5 from the metabolites of S. albus-cma 

and authentic p-coumaric acid. UV chromatograms at 310 nm are shown. (B) Mass spectra of compound 

6 from the metabolites of S. albus-cma. (C) UV spectrum of the compound 6. (D) Comparison of the 

UV spectra of compound 5 from the metabolites of S. albus-cma and authentic p-coumaric acid. (E) 

Mass spectra of compound 9 from the metabolites of S. albus-cma. [M + H]+ ion at m/z = 196 

corresponds to that of N-acetyl-3,4-AHBA. (F) UV spectrum of compound 9. 
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Figure S4. SDS-PAGE analysis of the recombinant proteins used in this study. All recombinant proteins 

were produced by E. coli BL21(DE3). The theoretical molecular mass values (kDa) of recombinant 

proteins are CmaA1, 50.6; CmaA3, 10.5; and CmaA6, 62.0. 
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Figure S5. In vitro analysis of CmaA1, holo-CmaA3, AvaA1, and holo-AvaA3. (A) 3,4-AHBA was loaded onto 

holo-CmaA3 by AvaA1. Extracted ion chromatograms of m/z = 1087.9, which corresponds to [M + 10H]10+ of 3,4-

AHBA-CmaA3 under positive ion mode, are shown. (B) 3,4-AHBA was loaded onto holo-AvaA3 by CmaA1. 

Extracted ion chromatograms of m/z = 1287.0, which corresponds to [M + 10H]10+ of 3,4-AHBA-AvaA3 under 

positive ion mode, are shown. (C-F) The mass spectra shift of holo-CmaA3 (C), 3,4-AHBA-CmaA3 synthesized by 

CmaA1 (D), 3,4-AHBA-CmaA3 synthesized by AvaA1 (E), and 3,4-AHBA-AvaA3 synthesized by CmaA1 (F). 
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Figure S6. Kinetic analysis of AvaA7, fitted with the Michaelis-Menten equation. The error bars 

represent the standard error (n = 3). (A) Kinetic analysis for NADPH. (B) Kinetic analysis for NADH, 

which could not be fitted by the Michaelis-Menten equation probably because of the high Km value. (C) 

Kinetic analysis for 3-DAA (8) when NADPH was used as a cofactor. (D) The schematic representation 

of the reaction focused on this experiment. 
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Figure S7. Insights into the mechanism of partner ACP (CmaA3) recognition mechanism by CmaA1. 

(A) Amino acid alignment of AvaA2, AvaA3, CmaA2, and CmaA3. The Ser residues to which the 

phosphopantetheinyl arm binds are labeled with a red box. Residues labeled with blue boxes are 

predicted to be important for the partner ACP recognition by AvaA1 and CmaA1. (B) The structure 

model of CmaA1-CmaA3 complex predicted by AlphaFold2 [1]. CmaA1, green; CmaA3, cyan. (C) 

Enlarged view of the interface between CmaA1 and CmaA3. Met34, Trp38, and His41 in CmaA3 seem 

to be important for the interaction. Trp38 and His41 are conserved between AvaA3 and CmaA3. 
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Figure S8. Phylogenetic analysis of CLFs encoded by the by ava-related BGCs in the database. These 

enzymes are divided into three large clades. AvaA5 and CmaA5 are marked with arrows. The distance 

between each enzyme was determined by the global alignment using BLOSUM62.  
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Figure S9. 1H NMR spectrum of compound 6. 

 

Figure S10. 13C NMR spectrum of compound 6. 
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Figure S11. 1H,1H COSY spectrum of compound 6. 

 

Figure S12. 1H,13C HMQC spectrum of compound 6. 
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Figure S13. 1H,13C HMBC spectrum of compound 6. 
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