(\) BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Supporting Information
for

Computation-guided scaffold exploration of 2E,6E-1,10-frans/
cis-eunicellanes

Zining Li, Sana Jindani, Volga Kojasoy, Teresa Ortega, Erin M. Marshall,
Khalil A. Abboud, Sandra Loesgen, Dean J. Tantillo and Jeffrey D. Rudolf

Beilstein J. Org. Chem. 2024, 20, 1320—-1326. doi:10.3762/bjoc.20.115

Experimental methods, NMR and MS spectra, and
crystallographic information

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/
licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that
individual graphics may be subject to special legal provisions.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc/terms)



https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjoc/terms
https://doi.org/10.3762%2Fbjoc.20.115

Table of Contents

L3 100 OSSP PRSP S2
Figures S1-S2. *H NMR (600 MHz) and *3C NMR (151 MHz) spectroscopic data for 7........... S6
FIQUIE S3. EIMS OF 7 .. bbb S8
Figure S4. Alternative protonation-mediated cyclization of 1.........ccccccooveiiiiiiiiiice e S9
Figures S5-S10. 1D and 2D NMR spectra of 9 in chloroform-d .............ccocovviiiiiiiniie S9
Figure S11. Relative free energy profiles for the Cope rearrangement in cis-eunicellanes ....... S17
Figure S12. Relative free energy profiles for the oxy-Cope rearrangement in 11...................... S18
Figures S13-S17. 1D and 2D NMR spectra of 14 in chloroform-d ..........ccccccoovveveienvcincne, S19
Figures S18-S23. 1D and 2D NMR spectra of 15 in chloroform-d ............ccocoviiiiiiiinnne. S23
Figures S24-S29. 1D and 2D NMR spectra of 16 in chloroform-d .............ccccoovevviiiiiincne. S29
Figures S30-S36. 1D and 2D NMR spectra of 17 in chloroform-d ............cccccoeiiiiiiinnne S35
Table S1. Crystal data and structure refinement for 9 ..o S42

SUPPOITING RETEIENCES ...ttt b e S43



General experimental procedures. All *H, 3C, 1D selective TOCSY, 1D NOE, and 2D NMR
(*H-'H COSY, H-BC HSQC, H-*C HMBC, TOCSY and NOESY) experiments were run on a
Bruker Avance I11 HD (600 MHz for *H and 150 MHz for 13C nuclei). All NMR chemical shifts
were referenced to residual solvent peaks or to Si(CHz3)s as an internal standard: spectra recorded
in CDCls were referenced to residual CHCI3 at 7.26 ppm for H or 77.00 ppm for *C; spectra
recorded in CéDs Were referenced to residual C¢DsH at 7.16 ppm for *H or 128.06 ppm for 3C.
Chemical reactions were monitored by thin layer chromatography (TLC) and high-performance
liquid chromatography (HPLC). TLC was performed with 0.25 mm silica gel plates (60 F2s4) using
short-wave UV light to visualize, and I, or KMnO4 and heat as developing agents. HPLC was
performed on an Agilent 1260 Infinity LC equipped with an Agilent Zorbax SB-C18 column (150
mm x 4.6 mm, 5 um). Preparative HPLC was carried out on an Agilent 1260 Infinity LC equipped
with an Agilent Eclipse XDB-C18 column (250 mm x 21.2 mm, 7 pm). GC-MS analysis was
carried out using Thermo Scientific Trace GC ultra-1SQ spectrometer with a DB-5MS glass
capillary column (Agilent Technologies, 15 m x 0.25 mm i.d. and 1 um film). High-resolution MS
were recorded with Agilent 6546 QTOF mass spectrometer with an electrospray ionization (ESI)
source (Agilent Technologies). Optical rotations were measured using a JASCO P-2000
polarimeter. Melting points were measured using a DigiMelt Melting Point Apparatus (MPA) 160
(Stanford Research Systems).

Synthesis of 1, 2, 5, 6, and 8

The detailed procedures to produce 1, 2, 5, 6, and 8 were operated according to previously
reported literature [1,2].

Synthesis of gersemiene C (7)

To a solution of 1 (27 mg, 0.10 mmol) in CHsCI (5 mL), trifluoroacetic acid (TFA, 10 uL, 0.13
mmol) was added at 0 °C and the mixture was stirred at 0 °C for 30 min, then warmed up to
room temperature. A saturated Na,COz aqueous solution was added to quench the reaction after 1
was completely consumed as determined by TLC. The reaction mixture was concentrated in
vacuo. The concentrated extract was purified by silica gel chromatography with a gradient
elution of hexane/EtOAc (100:0, 95:5) to give the single isomer product 7 as a colorless oil (20.6
mg, 76%); Rs = 0.8 (hexanes); [«]3' = +64 (¢ = 0.10, CHCI3); *H NMR (600 MHz, CDCls) 6 4.91
(d,J=16Hz,1H),4.86(d,J=12.7Hz,2 H),4.32 (s, 1 H), 2.69 (d, J =5.0 Hz, 1 H), 2.31 (d, J
=12.0 Hz, 1 H), 2.28 (m, 1 H), 2.16 (m, 1 H), 2.00-1.92 (m, 1 H), 1.84-1.78 (m, 1 H), 1.74 (s, 3
H), 1.7-1.6 (m, 4 H), 1.57-1.47 (m, 3 H), 1.44-1.37 (m, 3 H), 1.36-1.30 (m, 1 H), 1.15 (dt, J =
13.1, 3.4 Hz, 1 H), 1.12-1.04(m, 1 H), 0.82 (s, 3 H), 0.82 (d, J = 6.5 Hz, 3 H); 3C NMR (151
MHz, CDCl3) 6 148.77, 148.04, 110.15, 106.86, 48.95, 42.71, 39.56, 39.24, 39.03, 37.74, 35.38,
33.93, 31.16, 28.41, 25.03, 23.83, 23.23, 22.84, 20.37, 17.94. GC-MS analysis see Fig. S3. All
spectroscopic data matches the literature [3,4].

Synthesis of 9

To a solution of 1 (27 mg, 0.10 mmol) and NaHCO3 (30 mg, 0.36 mmol) in CH2Cl, (10 mL),
MCPBA (75% wi/w, 28 mg, 0.16 mmol) was added at —40 °C and the mixture was stirred for 30
min. A saturated Na>SOz aqueous solution was added to quench the reaction after 1 was
completely consumed as determined by TLC. The reaction mixture was extracted with ethyl
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acetate and the combined organic extract was concentrated in vacuo. The concentrated extract
was purified by silica gel chromatography with a gradient elution of hexane/EtOAc (100:0, 95:5,
80:20) to give the major product 9 as a colorless oil (19.4 mg, 68%); Rt = 0.68 (hexanes:EtOAc =
4:1); [a]3! = +51 (c = 0.10, CHCl3); *H NMR (600 MHz, CDCl3) § 5.04 (dd, J=9.8, 1.6 Hz, 1
H), 4.68 (m, 1 H), 4.66 (m, 1 H), 2.62 (dd, J=9.3, 5.9 Hz, 1 H), 2.52 (ddd, J = 11.4, 9.7, 4.1 Hz,
1 H), 2.35-2.26 (m, 1 H), 2.21-2.12 (m, 3 H), 2.00 (td, J = 11.9, 3.7 Hz, 1 H), 1.70-1.64 (m, 2 H),
1.66 (d, J = 1.5 Hz, 3 H), 1.64-1.62 (m, 1 H), 1.61 (s, 3 H), 1.55-1.47 (m, 1 H), 1.44-1.38 (m, 1
H), 1.37-1.32 (m, 2 H), 1.30 (s, 3 H), 1.28-1.22 (m, 2 H), 1.08 (d, J = 7.1 Hz, 3 H), 0.91 (t, 1 H);
13C NMR (151 MHz, CDCI3) ¢ 149.28, 132.21, 131.35, 110.24, 61.87, 60.19, 47.93, 46.21,
42.15, 35.75, 34.99, 34.88, 26.89, 26.24, 25.93, 25.84, 18.91, 18.73, 16.69, 15.64. HRESIMS:
calcd for CooH3z30 [M + H]* m/z 289.2526; found m/z 289.2523.

Synthesis of 6-chlorogersemiene (14):

To a solution of 2 (27 mg, 0.10 mmol) in CH2Cl> (10 mL), NCS (16 mg, 0.12 mmol) was added
at —40 °C and the mixture was stirred overnight and warmed up to room temperature. A saturated
Na.SO3 aqueous solution was added to quench the reaction after 2 was detected to be completely
consumed by HPLC. The reaction mixture was extracted with ethyl acetate and the combined
organic extract was concentrated under reduced pressure. The concentrated extract was purified
by silica gel chromatography with a gradient elution of hexane/EtOAc (100:0, 95:5) to give the
major product 14 (23.5 mg, 78%) as a light yellow oil.

6-Chlorogersemiene (14): R = 0.88 (hexanes); [«]3! = +8.9 (¢ = 0.01, CHClI3); *H NMR (600
MHz, CDCl3) 6 4.96 (s, 1 H), 4.83 (s, 1 H), 4.76 (s, 1 H), 4.52 (s, 1 H), 3.81 (dd, J = 12.1, 4.8
Hz, 1 H), 2.89 (m, 1 H), 2.27-2.22 (m, 1 H), 2.14-2.07 (m, 1 H), 2.04-2.0 (m, 1 H), 1.92-1.84 (m,
2 H), 1.83-1.78 (m, 2 H), 1.71 (s, 3 H), 1.70-1.67 (m, 1 H), 1.63-1.54 (m, 2 H), 1.51-1.45 (m, 1
H), 1.40-1.33 (m, 1 H), 1.27-1.22 (m, 1 H), 1.19-1.14 (m, 1 H), 1.07-1.02 (m, 1 H), 1.00-0.92(m,
1 H), 0.92 (d, J = 6.4 Hz, 3 H), 0.80 (s, 3 H); 3C NMR (151 MHz, CDCl3) 6 147.86, 145.71,
113.25, 108.79, 72.54, 51.31, 42.53, 41.76, 40.89, 39.76, 38.12, 38.10, 37.72, 35.22, 31.15,
30.41, 26.52, 25.15, 20.08, 12.93;

Synthesis of 6-bromogersemiene (15)

To a solution of 2 (27 mg, 0.10 mmol) in CH2Cl2 (10 mL), NBS (21.2 mg, 0.12 mmol) was
added at —40 °C and the mixture was stirred overnight and then warmed up to room temperature.
A saturated Na2SO3 aqueous solution was added to quench the reaction after 2 was detected to be
completely consumed by HPLC. The reaction mixture was extracted with ethyl acetate and the
combined organic extract was concentrated under reduced pressure. The concentrated extract
was purified by silica gel chromatography with a gradient elution of hexane/EtOAc (100:0, 95:5)
to give the major product 15 (25.7 mg, 74%) as a light yellow oil.

6-Bromogersemiene (15): Rr = 0.9 (hexanes); [o]3' = +13 (¢ = 0.01, CHClI3); *H NMR (600
MHz, CDCls) 6 4.96 (s, 1 H), 4.83 (s, 1 H), 4.76 (s, 1 H), 4.52 (s, 1 H), 4.03 (dd, J = 12.4, 4.7
Hz, 1 H), 2.89 (s, 1 H), 2.28-2.20 (m, 2 H), 2.14-2.03 (m, 1 H), 2.01-1.92 (m, 2 H), 1.82-1.76 (m,
1H), 171 (s,3H), 1.71-1.67 (m, 1 H), 1.63-1.54 (m, 2 H), 1.51-1.44 (m, 1 H), 1.40-1.31 (m, 1
H), 1.29-1.11 (m, 2 H), 1.09-1.00 (m, 1 H), 1.00-0.92(m, 2 H), 0.92 (d, J = 6.4 Hz, 3 H), 0.84 (s,
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3 H); 3C NMR (151 MHz, CDCls) 6 147.82, 145.58, 113.27, 108.84, 68.38, 51.64, 42.65, 41.80,
41.27, 39.75, 39.57, 39.02, 38.09, 36.34, 31.15, 30.39, 26.50, 25.28, 20.06, 13.99.

Synthesis of 6-phenylselenylgersemienes 16 and 17

To a solution of 2 (27 mg, 0.10 mmol) in acetonitrile (20 mL), PhSeBr (26 mg, 0.11 mmol) was
added at —40 °C and the mixture was stirred overnight and then warmed up to room temperature.
A saturated Na>SO3 aqueous solution was added to quench the reaction after 2 was detected to be
completely consumed by HPLC. The reaction mixture was extracted with ethyl acetate and the
combined organic extract was concentrated under reduced pressure. The concentrated extract
was purified by silica gel chromatography with a gradient elution of hexane/EtOAc (100:0, 95:5)
to give two light yellow oils in a ratio of 3:1: the major product was 17 (26.1 mg, 61%), the
minor product was 16 (9.1 mg, 21%).

6-Phenylselenylgersemiene A (16): Rt = 0.85 (hexanes); [o]3* = +11 (c = 0.02, CHCls); H
NMR (600 MHz, CDCls) 6 7.57 (m, 2 H), 7.24 (m, 3 H), 5.34 (s, 1 H), 4.94 (s, 1 H), 4.88 (s, 1
H), 3.38 (t, J =8.6 Hz, 1 H), 2.86 (s, 1 H), 2.60-2.52 (m, 1 H), 2.43-2.34 (m, 1 H), 2.27 (d, J =
11.9 Hz, 1 H), 2.13 (dd, J = 10.1, 4.0 Hz, 1 H), 2.07-1.97 (m, 1 H), 1.85 (s, 3 H), 1.81-1.75 (m, 1
H), 1.75 (s, 3 H), 1.64-1.53 (m, 2 H), 1.50-1.44 (m, 1 H), 1.34-1.24 (m, 2 H), 1.22-1.15 (m, 1 H),
1.04-0.98 (m, 2 H), 0.90 (d, J = 6.4 Hz, 3 H), 0.87 (s, 3 H); *C NMR (151 MHz, CDCls) §
147.07, 136.87, 134.59, 130.63, 128.83, 126.98, 124.78, 114.06, 56.75, 47.77, 43.17, 42.78,
42.38, 39.75, 39.48, 38.75, 34.35, 31.12, 30.73, 26.66, 25.10, 23.87, 20.37, 14.82; HRESIMS:
calcd for CoeHs7Se [M - H]" m/z 427.1909; found m/z 427.1907.

6-Phenylselenylgersemiene B (17): Rr = 0.88 (hexanes); [a]3! = +37 (¢ = 0.05, CHCI3); *H NMR
(600 MHz, CDCl3) 6 7.60 (m, 2 H), 7.28 (m, 3 H), 4.94 (s, 1 H), 4.83 (s, 1 H), 4.78 (s, 1 H), 4.49
(s, 1H),3.10 (dd, J =12.3,4.5Hz, 1 H), 2.92 (m, 1 H), 2.28-2.22 (m, 2 H), 2.14-2.11 (m, 1 H),
2.01-1.90 (m, 3 H), 1.84-1.81 (m, 1 H), 1.73 (s, 3 H), 1.71 (m, 1 H), 1.64-1.55 (m, 2 H), 1.52-
1.47 (m, 1 H), 1.43-1.34 (m, 1 H), 1.30-1.23 (m, 2 H), 1.20-1.11 (m, 2 H), 1.04-0.98 (m, 1 H),
0.94 (d, J = 6.4 Hz, 3 H), 0.85 (s, 3 H); 3C NMR (151 MHz, CDCls) 6 148.07, 146.90, 134.73,
130.64, 128.85, 127.07, 113.13, 107.73, 60.54, 53.01, 42.65, 41.56, 41.09, 40.23, 39.67, 39.64,
38.13, 34.80, 31.21, 30.47, 26.58, 25.53, 20.09, 15.11; HRESIMS: calcd for CosHs7Se [M - H]
m/z 427.1909; found m/z 427.1910.

X-ray diffraction structure of 9

For crystallization of 9, pure 9 was dissolved in a 500 uL mixture of DCM:THF:CH30H (4:3:3)
at a concentration of 20 g mL%. After two weeks of solvent evaporation at 4 °C, colorless
crystals appeared. Mp = 117.3 - 119.0 °C.

X-ray experimental: X-ray Intensity data were collected at 100 K on a Bruker Dual micro source
D8 Venture diffractometer and PHOTON |11 detector running APEX3 software package of
programs and using CuKa. radiation (A = 1.54178 A). The data frames were integrated and multi-
scan scaling was applied in APEX3. Intrinsic phasing structure solution provided all of the non-
H atoms.
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The structure was refined using full-matrix least-squares refinement (SHELXL) [5]. The non-H
atoms were refined with anisotropic displacement parameters and all of the H atoms were
calculated in idealized positions and refined riding on their parent atoms. The asymmetric unit is
the full hydrocarbon molecule with an epoxide, O1, bound at C6 and C7. The absolute
configuration was determined with anomalous dispersion and refined with a Flack parameter of -
0.01. In the final cycle of refinement, 3029 reflections (of which 2992 are observed with | > 2¢
(1)) were used to refine 194 parameters and the resulting R1, wR2 and S (goodness of fit) were
2.68%, 6.73% and 1.062, respectively. The refinement was carried out by minimizing the wR>
function using F? rather than F values. R1 is calculated to provide a reference to the conventional
R value but its function is not minimized.

Assessment of cell toxicity

Compounds 5, 6, 8, and 14-17 were tested for cell viability inhibition against human colorectal
carcinoma (HCT-116, ATCC CCL-247) following established protocols [6]. Cells were
maintained in MEM growth media, supplemented with 10% (v/v) fetal bovine serum, penicillin
(100 U mL™?) and streptomycin (100 ug mL™1), in a humidified chamber at 37 °C in 5% COx.
Cells were plated into 96-well plates (7,000 cells well™*) and maintained overnight before
treatment. Cell viability was determined by measuring the reduction of the tetrazolium salt MTT
[3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide] by metabolically active cells.
Compounds were prepared at 10 uM in DMSO for single dose treatment. After 48 h, MTT
reagent (5 mg mL™* in PBS) was added to each well at a final concentration of 0.5 mg mL™. The
plates were incubated for 2 h at 37°C. The growth media was removed, and then purple formazan
product solubilized by the addition of 50 phL DMSO. Absorbance was measured at 550 nm using
a Biotek Synergy 96-well plate reader. Metabolic activity of vehicle-treated cells (0.1% DMSO)
was defined as 100% cell growth. Etoposide (250 uM) was used as a positive control.
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Figure S1. *H NMR spectrum of 7 in chloroform-d (600 MHz).
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Figure S2. 3C NMR spectrum of 7 in chloroform-d (151 MHz).
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Figure S3. EIMS of gersemiene C (7). The fragmentation matched the recently reported

spectrum [3].
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Figure S4. Alternative protonation-mediated cyclization of 1. Results of DFT calculations on the
protonation-induced cyclizations of 1. The free energies (blue values) are compared with the
values of similar structures in Figure 2C. The free energies of B1b* and B1* are relative to Alb*
and A1*, respectively, while those of 7 and the unnumbered putative product are relative to that
of 1. A similar scheme to that found in Fig. 2C is included here for comparison.
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Figure S5. *H NMR spectrum of 9 in chloroform-d (600 MHz).
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Figure S6. 3C NMR spectrum of 9 in chloroform-d (151 MHz).
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Figure S7. *H-'H COSY spectrum of 9 in chloroform-d (600 MHz).
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Figure S8. tH-3C HSQC spectrum of 9 in chloroform-d (600 MHz).
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Figure S9. *H-*C HMBC spectrum of 9 in chloroform-d (600 MHz).
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Figure S10. *H-'H NOESY spectrum of 9 in chloroform-d (600 MHz).
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Figure S11. Relative free energy profiles for the Cope rearrangement in cis-eunicellanes. The
2E-cis-eunicellane 1 does not undergo observable thermal Cope rearrangement in our tested
conditions (up to 200 °C for 5 h). (A) 1-DD (lowest energy conformer) and (B) 1-UD have
higher activation barriers, whereas comparatively less stable conformer (C) 1 has the lower

activation barrier.
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Figure S12. Relative free energy profiles for the oxy-Cope rearrangement in 11. The free
energies below were calculated using mPW1PW91/6-31+G(d/p)/SMD(chloroform). Similar
calculations with water resulted in free energies of 0.0, 26.9, -2.8, and -13.8 for 11, 11-TS, enol-
12, and keto-12, respectively.
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Figure S13. 'H NMR spectrum of 14 in chloroform-d (600 MHz).
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Figure S14. 13C NMR spectrum of 14 in chloroform-d (151 MHz).
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Figure S15. *H-'H COSY spectrum of 14 in chloroform-d (600 MHz).
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Figure S16. *H-*C HSQC spectrum of 14 in chloroform-d (600 MHz).
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Figure S17. Selective 1D NOESY spectrum of 14 in chloroform-d with selective excitation at
3.816 ppm (H-6); mixing time = 300 ms.
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Figure S18. *H NMR spectrum of 15 in chloroform-d (600 MHz).
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Figure S19. 13C NMR spectrum of 15 in chloroform-d (151 MHz).
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Figure S20. *H-'H COSY spectrum of 15 in chloroform-d (600 MHz).
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Figure S21. H-3C HSQC spectrum of 15 in chloroform-d (600 MHz).
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Figure S22. *H-3C HMBC spectrum of 15 in chloroform-d (600 MHz).
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Figure S23. Selective 1D NOESY spectrum of 15 in chloroform-d with selective excitation at
4.04 ppm (H-6); mixing time = 300 ms.
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Figure S24. 'H NMR spectrum of 16 in chloroform-d (600 MHz).
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Figure S25. 13C NMR spectrum of 16 in chloroform-d (151 MHz).
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Figure S26. *H-'H COSY spectrum of 16 in chloroform-d (600 MHz).
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Figure S27. *H-3C HSQC spectrum of 16 in chloroform-d (600 MHz).
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Figure S28. tH-13C HMBC spectrum of 16 in chloroform-d (600 MHz).
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Figure S29. Selective 1D NOESY spectrum of 16 in chloroform-d with selective excitation at
3.38 ppm (H-6); mixing time = 300 ms.
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Figure S30. *H NMR spectrum of 17 in chloroform-d (600 MHz).
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Figure S31. 13C NMR spectrum of 17 in chloroform-d (151 MHz).
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Figure S32. *H-'H COSY spectrum of 17 in chloroform-d (600 MHz).
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Figure S33. tH-3C HSQC spectrum of 17 in chloroform-d (600 MHz).
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Figure S34. 'H-13C HMBC spectrum of 17 in chloroform-d (600 MHz).
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Figure S35. *H-'H NOESY spectrum of 17 in chloroform-d (600 MHz).
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Figure S36. Selective 1D NOESY spectrum of 17 in chloroform-d with selective excitation at

3.10 ppm (H-6); mixing time = 300 ms.
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Table S1. Crystal data and structure refinement for 9

CCDC Deposition Number
Empirical formula

Formula weight
Temperature/K
Wavelength/A

Crystal system

Space group

alA

b/A

c/A

ol°

pr°

vl°

Volume/A3

Z

Density (calculated)/Mg/m?®
Absorption coefficient/mm
F(000)

Crystal size/mm?®

O range for data collection/®
Index ranges

Reflections collected
Independent reflections
Completeness to ©
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2c ()]

R indices (all data)
Absolute structure parameter
Largest diff. peak and hole /e A3

2326275

C20H320

288.45

100(2)

1.54178

Orthorhombic

P212121

6.7692(2)

10.7877(2)

23.7138(5)

90

90

90

1731.68(7)

4

1.106

0.490

640

0.192 x 0.130 x 0.091
3.728 10 66.633
-8<h<8,-12<k<12,-28<1<28
20792

3029 [Rint = 0.0250]
99.2%

Multi-scan

Full-matrix least-squares on F2
3029/0/194

1.062

R1 = 0.0268, WR2 = 0.0673 [2992]
R1 =0.0272, wR2 = 0.0678
-0.01(5)

0.176 and -0.153
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