

Supporting Information

for

Access to 2-oxoazetidine-3-carboxylic acid derivatives via thermal microwave-assisted Wolff rearrangement of 3-diazotetramic acids in the presence of nucleophiles

Ivan Lyutin, Vasilisa Krivovicheva, Grigory Kantin and Dmitry Dar'in

Beilstein J. Org. Chem. 2024, 20, 1894-1899. doi:10.3762/bjoc.20.164

General experimental information, X-ray crystallographic data, synthetic procedures, analytical data and NMR spectra for the reported compounds

Table of contents

2. Experimental procedures S3 2.1. Diazotetramic acids $1a$ – m S3 2.2. List of source nucleophiles S4 2.3. Preparation of β -lactams $3a$ – t S5 2.5. Preparation of β -lactams $3u$, v from acid $4a$ S14 3. NMR data S15 3.1. NMR spectra of β -lactams $3a$ – v S15 3.1. NMR spectra of β -lactamic acids $4a$ and $4b$ S41 4. Crystal structure data for compound $3t$ S43 5. References S45	1. General information	S2
2.2. List of source nucleophiles. S4 2.3. Preparation of β -lactams $3a$ – t S5 2.5. Preparation of β -lactams $3u$, v from acid $4a$ S14 3. NMR data S15 3.1. NMR spectra of β -lactams $3a$ – v S15 3.1. NMR spectra of β -lactamic acids $4a$ and $4b$ S41 4. Crystal structure data for compound $3t$ S43	2. Experimental procedures	S3
2.3. Preparation of β-lactams 3a–t	2.1. Diazotetramic acids 1a-m	S3
 2.5. Preparation of β-lactams 3u,v from acid 4a 3. NMR data 3.1. NMR spectra of β-lactams 3a–v 3.1. NMR spectra of β-lactamic acids 4a and 4b 4. Crystal structure data for compound 3t S15 S46 S47 S47 S48 	2.2. List of source nucleophiles.	S4
 3. NMR data	2.3. Preparation of β-lactams 3a–t	S5
3.1. NMR spectra of β-lactams 3a–v . 3.1. NMR spectra of β-lactamic acids 4a and 4b . 4. Crystal structure data for compound 3t . S43	2.5. Preparation of β-lactams 3u,v from acid 4a	S14
3.1. NMR spectra of β-lactamic acids 4a and 4b	3. NMR data	. S15
4. Crystal structure data for compound 3t	3.1. NMR spectra of β-lactams 3a–v	S15
·	3.1. NMR spectra of β-lactamic acids 4a and 4b	S41
5. References	4. Crystal structure data for compound 3t	. S43
	5. References	. S45

1. General information

Solvents: Solvents were obtained from commercial suppliers. Chlorobenzene (PhCl) was dried by distillation according to the standard protocol and stored over molecular sieves (4Å).

Reagents: All reagents were used as purchased from commercial suppliers.

Nuclear magnetic resonance spectroscopy: NMR spectroscopic data were recorded with a Bruker Avance III 400 MHz spectrometer (400.13 MHz for 1 H and NOESY 100.61 MHz for 13 C{ 1 H} and 376.50 MHz for 19 F{ 1 H}) in CDCl₃ and DMSO- d_6 and were referenced to residual solvent proton signals ($\delta_H = 7.26$ and 2.50, respectively) and solvent carbon signals ($\delta_C = 77.16$ and 39.52, respectively).

Melting points: Melting points were determined with a melting point apparatus REACH Devices RD-MP in the open capillary tubes.

Mass spectrometry: HRMS were recorded using a microOTOF-Q spectrometer (Brucker); ionization by electrospray, positive detection.

X-ray crystallography: Single crystal X-ray data were obtained using an Agilent Technologies SuperNova Atlas and an Agilent Technologies Xcalibur Eos diffractometers at a temperature of 100 K.

Thin layer chromatography: Thin layer chromatography (TLC) was performed on aluminum-backed pre-coated plates with silica gel 60 F₂₅₄ with suitable solvent system and was visualized using UV fluorescence.

Column chromatography: Column chromatography was carried out with silica gel grade 60 (0.040–0.063 mm) 230–400 mesh using Biotage Isolera Prime instrument.

Microwave reactor: Microwave-assisted reactions were performed using Microwave Synthesizer CEM Discover® 2.0 (standard mode – irradiating the sample with the highest available power for the shortest period of time).

2. Experimental procedures

2.1. Diazotetramic acids 1a-m

The diazotetramic acids **1a-m** were obtained as described previously¹.

2.2. List of source nucleophiles.

2.3. Preparation of β-lactams **3a–t**

General procedure 1: <u>preparation of β-lactams 3a-t</u>

A solution of the corresponding diazotetramic acid **1** (0.25 mmol, 1 equiv) and the corresponding nucleophile (0.275 mmol, 1.1 equiv for **3a–k,m–r** or 7.5 mmol, 30 equiv for **3l**) in dry PhCl (1 mL) was placed in a sealed vial (10 mL) equipped with a stirring bar. The sample was placed in the microwave reactor and irradiated using the "standard" mode at 200 °C for 1 hour. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (absorption at $\lambda = 214$ nm).

N-(4-Methoxyphenyl)-1-methyl-2-oxo-1-azaspiro[3.5]nonane-3-carboxamide (3a).

Obtained according to GP1 from diazotetramic acid 1a (52 mg, 0.25 mmol, 1 equiv) and

p-anisidine (34 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: *n*-hexane/acetone, from 3 to 45% of acetone. Yield: 63 mg (83%). White solid; mp 157.1–158.3 °C. ¹H NMR (400

MHz, Chloroform-*d*) δ 8.30 (s, 1H), 7.62 – 7.36 (m, 2H), 6.97 – 6.61 (m, 2H), 3.79 (s, 3H), 3.65 (s, 1H), 2.84 (s, 3H), 2.12 – 1.97 (m, 1H), 1.98 – 1.84 (m, 1H), 1.84 – 1.61 (m, 4H), 1.37 – 1.17 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.5, 163.4, 156.7, 130.7, 122.0, 114.2, 63.8, 63.6, 55.6, 35.9, 30.6, 24.8, 24.6, 23.9, 23.0. HRMS (ESI) *m/z*: [M+Na]⁺ Calc. for C₁₇H₂₂N₂NaO₃ 325.1523; Found 325.1534.

1-Cyclopropyl-2-oxo-N-(p-tolyl)-1-azaspiro[3.5]nonane-3-carboxamide (**3b**). Obtained

according to GP1 from diazotetramic acid **1d** (58 mg, 0.25 mmol, 1 equiv) and *p*-toluidine (29 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: *n*-hexane/acetone, from 5 to 25% of

acetone. Yield: 58 mg (74%). Reddish amorphous solid. 1 H NMR (400 MHz, Chloroform-d) δ 8.35 (s, 1H), 7.45 – 7.37 (m, 2H), 7.16 – 7.09 (m, 2H), 3.60 (s, 1H), 2.37 (tt, J = 7.3, 3.9 Hz, 1H), 2.31 (s, 3H), 2.09 – 1.80 (m, 5H), 1.80 – 1.60 (m, 4H), 1.36 – 1.22 (m, 1H), 1.07 – 0.97 (m, 1H), 0.97 – 0.88 (m, 1H), 0.86 – 0.70 (m, 2H). 13 C NMR (126 MHz, Chloroform-d) δ 166.1, 163.4, 135.0, 134.4, 129.6, 120.3, 65.3, 64.0, 36.9, 31.5, 24.9, 23.9, 23.0, 21.4, 21.0, 5.7, 5.5. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₉H₂₄N₂NaO₂ 335.1730; Found 335.1729.

1-Benzyl-N-cyclopropyl-2-oxo-1-azaspiro[3.5]nonane-3-carboxamide (3c). Obtained

according to GP1 from diazotetramic acid **1b** (71 mg, 0.25 mmol, 1 equiv) and cyclopropylamine (16 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent:
$$n$$
-pentane/acetone, from 5 to 40% of acetone. Yield: 62 mg (79%). Reddish oil. 1 H NMR (400 MHz, Chloroform- d) δ 7.38 – 7.16 (m, 5H), 6.71 (s, 1H), 4.39 (d, J = 15.7 Hz, 1H), 4.28 (d, J = 15.7 Hz, 1H), 3.52

(s, 1H), 2.71 (tq, J = 6.9, 3.5 Hz, 1H), 1.86 – 1.70 (m, 2H), 1.67 – 1.35 (m, 7H), 1.16 – 0.99 (m, 1H), 0.81 – 0.71 (m, 2H), 0.57 – 0.47 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.9, 165.5, 136.9, 128.8, 127.9, 127.7, 64.7, 63.7, 43.0, 37.1, 31.2, 24.7, 23.8, 22.9, 22.6, 6.7, 6.5. HRMS (ESI) m/z: [M+H]⁺ Calc. for C₁₉H₂₅N₂O₂ 313.1911; Found 313.1912.

N-(3,4-Dimethoxyphenyl)-1-methyl-2-oxo-7-oxa-1-azaspiro[3.5]nonane-3-carboxamide

brown solid; mp 217.5–219.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.48 (s, 1H), 7.21 – 7.16 (m, 1H), 7.00 – 6.93 (m, 1H), 6.80 – 6.71 (m, 1H), 4.12 – 4.04 (m, 1H), 4.03 – 3.96 (m, 1H), 3.92 – 3.85 (m, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.77 (s, 1H), 3.72 – 3.64 (m, 1H), 2.79 (s, 3H), 2.15 – 2.02 (m, 1H), 2.00 – 1.90 (m, 1H), 1.90 – 1.82 (m, 1H), 1.66 – 1.60 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0, 162.9, 149.1, 146.2, 130.9, 112.3, 111.3, 104.9, 65.3, 65.0, 63.7, 60.9, 56.1, 56.0, 35.3, 30.4, 24.1. HRMS (ESI) *m/z*: [M+Na]⁺ Calc. for C₁₈H₂₄N₂NaO₄ 357.1421; Found 357.1418.

1-Ethyl-N-(4-methoxybenzyl)-2-oxo-7-thia-1-azaspiro[3.5]nonane-3-carboxamide (3e).

2H), 6.91 (s, 1H), 6.87 – 6.82 (m, 2H), 4.42 – 4.33 (m, 2H), 3.79 (s, 3H), 3.54 (s, 1H), 3.51 – 3.40 (m, 1H), 3.30 – 3.09 (m, 2H), 2.96 – 2.84 (m, 1H), 2.72 – 2.63 (m, 1H), 2.54

-2.44 (m, 1H), 2.19 - 2.06 (m, 2H), 2.06 - 1.93 (m, 2H), 1.23 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 161.4, 135.1, 128.9, 128.8, 128.8, 67.5, 62.4, 62.0, 38.7, 34.2, 32.4, 27.0, 26.0, 15.0. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₈H₂₄N₂NaO₃S 371.1400; Found 371.1397.

N-(3,4-Dimethoxyphenethyl)-2-oxo-1-phenyl-1-azaspiro[3.5]nonane-3-carboxamide (3f).

Obtained according to GP1 from diazotetramic acid **1c** (67 mg, 0.25 mmol, 1 equiv) and 3,4-dimethoxyphenethylamine (50 mg, 0.275 mmol, 1.1 equiv.). Column chromatography was carried

out on silica gel, eluent: n-hexane/acetone, from 5 to 35% of acetone. Yield: 67 mg (54%). Yellowish oil. 1 H NMR (400 MHz, Chloroform-d) δ 7.52 - 7.47 (m, 2H), 7.37 - 7.29 (m, 2H), 7.18 - 7.10 (m, 1H), 6.79 - 6.72 (m, 3H), 6.65 - 6.57 (br.m, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.64 (s, 1H), 3.61 - 3.45 (m, 2H), 2.88 - 2.72 (m, 2H), 2.22 - 2.15 (m, 1H), 2.07 - 2.01 (m, 1H), 1.96 - 1.50 (m, 7H), 1.23 - 1.13 (m, 1H). 13 C NMR (101 MHz, Chloroform-d) δ 165.0, 163.8, 149.2, 147.9, 136.5, 131.3, 129.3, 125.2, 120.8, 119.9, 112.0, 111.5, 67.0, 64.6, 56.0, 56.0, 41.0, 36.9, 35.4, 30.7, 24.9, 23.9, 23.0. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₂₅H₃₀N₂NaO₄ 445.2100; Found 445.2104.

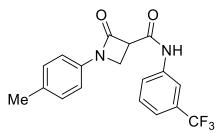
N-(4-Chlorophenyl)-1-(4-methoxyphenyl)-2-oxo-1-azaspiro[3.3]heptane-3-carboxamide

(3g). Obtained according to GP1 from diazotetramic acid 1h (68 mg, 0.25 mmol, 1 equiv) and p-chloroaniline (35 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried

out on silica gel, eluent: n-hexane/acetone, from 3 to 35% of acetone. Yield: 63 mg (68%). Brown solid; mp 167.0–167.9 °C. 1 H NMR (400 MHz, Chloroform-d) δ 8.49 (s, 1H), 7.60 – 7.46 (m, 4H), 7.37 – 7.21 (m, 2H), 6.98 – 6.87 (m, 2H), 4.09 (s, 1H), 3.82 (s, 3H), 2.98 – 2.88 (m, 1H), 2.78 – 2.59 (m, 2H), 2.51 – 2.40 (m, 1H), 2.24 – 2.10 (m, 1H), 2.02 – 1.87 (m, 1H). 13 C NMR (101 MHz, Chloroform-d) δ 163.4, 162.8, 157.4, 135.9, 129.9, 129.4, 129.2, 121.5, 120.8, 114.8, 65.8, 63.3, 55.6, 32.2, 28.1, 13.5. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₂₀H₁₉CIN₂NaO₃ 393.0976; Found 393.0981.

N-(4-Fluorobenzyl)-1-methyl-2-oxo-1-azaspiro[3.6]decane-3-carboxamide (3h).

Obtained according to GP1 from diazotetramic acid 1g (55 mg, 0.25 mmol, 1 equiv) and p-fluorobenzylamine (34 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: n-hexane/acetone, from 5 to 30% of acetone. Yield: 68 mg (85%). Yellow oil. 1 H NMR (400 MHz, Chloroform-d) δ 7.24 – 7.18 (m, 2H), 7.00 (s, 1H),


6.98-6.93 (m, 2H), 4.42-4.32 (m, 2H), 3.57 (s, 1H), 2.73 (s, 3H), 2.05-1.92 (m, 2H), 1.92-1.82 (m, 1H), 1.79-1.44 (m, 9H). 13 C NMR (101 MHz, Chloroform-d) δ 165.2, 164.9, 161.9 (d, 1 Jc $_{-F}$ = 245.4 Hz), 133.7 (d, 4 Jc $_{-F}$ = 2.9 Hz), 129.2 (d, 3 Jc $_{-F}$ = 8.1 Hz), 15.2 (d, 2 Jc $_{-F}$ = 21.4 Hz), 66.0, 64.0, 42.2, 37.4, 33.6, 33.6, 29.7, 24.0, 22.8, 22.8. 19 F NMR (376 MHz, Chloroform-d) δ -115.11. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₈H₂₃FN₂NaO₂ 341.1636; Found 341.1632.

1-(4-Chlorophenyl)-N-(4-fluorophenyl)-2-oxoazetidine-3-carboxamide (3i). Obtained

according to GP1 from diazotetramic acid **1k** (59 mg, 0.25 mmol, 1 equiv) and *p*-fluoroaniline (38 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: *n*-pentane/ethyl acetate, from 5 to 35% of ethyl acetate. Yield: 32 mg

(40%). Beige solid; mp 223.0–224.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.34 (s, 1H), 7.66 – 7.58 (m, 2H), 7.37 – 7.31 (m, 4H), 7.07 – 7.00 (m, 2H), 4.37 (dd, J = 5.4, 2.6 Hz, 1H), 3.91 (dd, J = 5.6, 2.6 Hz, 1H), 3.81 (t, J = 5.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 163.8, 160.8, 158.2 (d, ¹ J_{C-F} = 241.3 Hz), 136.4, 134.7 (d, ⁴ J_{C-F} = 2.5 Hz), 128.8, 127.7, 120.9 (d, ³ J_{C-F} = 7.7 Hz), 117.4, 115.0 (d, ² J_{C-F} = 22.2 Hz), 54.6, 41.2. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -118.40. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₆H₁₂CIFN₂NaO₂ 341.0464; Found 341.0471.

2-Oxo-1-(p-tolyl)-N-(3-(trifluoromethyl)phenyl)azetidine-3-carboxamide (3j). Obtained

according to GP1 from diazotetramic acid **1I** (54 mg, 0.25 mmol, 1 equiv) and nucleophile **2h** (44 mg, 0.275 mmol, 1.1 equiv). The sample obtained after chromatographic isolation was triturated with n-hexane/diethyl ether (1:1, 2 × 2 mL). Yield: 23 mg

(26%). White solid; mp 217.1–218.0 °C. 1 H NMR (400 MHz, DMSO- d_{0}) δ 10.45 (s, 1H), 8.05 – 8.00 (m, 1H), 7.80 – 7.74 (m, 1H), 7.45 – 7.37 (m, 1H), 7.32 – 7.24 (m, 1H), 7.24

-7.16 (m, 2H), 7.13 - 7.04 (m, 2H), 4.34 (dd, J = 5.4, 2.6 Hz, 2H), 3.93 (dd, J = 5.5, 2.6 Hz, 2H), 3.73 (t, J = 5.6 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.6, 160.0, 139.1, 134.1 (q, $^1J_{C-F} = 233.0$ Hz), 129.9 (q, $^2J_{C-F} = 31.0$ Hz), 129.2, 122.4, 119.64 (q, $^3J_{C-F} = 2.9$ Hz), 115.8, 115.6 (q, $^3J_{C-F} = 3.4$ Hz), 54.4, 40.7, 20.4. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -62.06. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₈H₁₅F₃N₂NaO₂ 371.0978; Found 371.0982.

Benzyl 1-methyl-2-oxo-1-azaspiro[3.5]nonane-3-carboxylate (3k). Obtained according to

Me-N O-Bn

GP1 from diazotetramic acid **1a** (52 mg, 0.25 mmol, 1 equiv) and benzyl alcohol (30 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: *n*-hexane/acetone, from 3 to 25% of acetone. Yield: 70 mg (96%).

Yellow oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.29 (m, 5H), 5.22 (d, J = 12.2 Hz, 1H), 5.11 (d, J = 12.2 Hz, 1H), 3.64 (s, 1H), 2.71 (s, 3H), 1.99 – 1.91 (m, 1H), 1.84 – 1.76 (m, 1H), 1.73 – 1.67 (m, 1H), 1.63 – 1.47 (m, 4H), 1.45 – 1.34 (m, 1H), 1.17 – 0.99 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 167.4, 162.2, 135.3, 128.7, 128.64, 128.5, 67.1, 62.8, 62.3, 35.7, 29.4, 24.8, 24.0, 23.9, 23.2. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₇H₂₁NNaO₃ 310.1414; Found 310.1426.

The synthesis of **3k** was additionally performed on a 6-fold scale (1.5 mmol) and yielded 336 mg (78%).

Methyl 1-methyl-2-oxo-1-azaspiro[3.5]nonane-3-carboxylate (31). Obtained according to

Me-N OMe

GP1 from diazotetramic acid **1a** (52 mg, 0.25 mmol, 1 equiv) and methanol (240 mg, 7.5 mmol, 30 equiv). Column chromatography was carried out on silica gel, eluent: *n*-pentane/acetone, from 5 to 40% of acetone. Yield: 69 mg (64%). Light brown oil. ¹H NMR (400

MHz, Chloroform-*d*) δ 3.71 (s, 3H), 3.59 (s, 1H), 2.71 (s, 3H), 2.04 – 1.91 (m, 1H), 1.87 – 1.51 (m, 6H), 1.48 – 1.34 (m, 1H), 1.27 – 1.08 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 162.3, 62.7, 62.1, 52.2, 35.7, 29.5, 24.8, 23.9, 23.3. HRMS (ESI) *m/z*: [M+Na]⁺ Calc. for C₁₁H₁₇NNaO₃ 234.1101; Found 234.1109.

Benzyl 1-ethyl-2-oxo-7-thia-1-azaspiro[3.5]nonane-3-carboxylate (3m). Obtained

according to GP1 from diazotetramic acid **1f** (60 mg, 0.25 mmol, 1 equiv) and benzyl alcohol (30 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: n-hexane/acetone, from 3 to 25% of acetone. Yield: 65 mg (81%). Red oil. 1 H NMR (400 MHz, Chloroform-d) δ 7.48 – 7.32 (m,

5H), 5.24 (d, J = 12.1 Hz, 1H), 5.12 (d, J = 12.1 Hz, 1H), 3.65 (s, 1H), 3.21 (q, J = 7.3 Hz, 2H), 2.82 – 2.63 (m, 2H), 2.42 – 2.32 (m, 3H), 2.19 – 2.08 (m, 1H), 2.02 – 1.87 (m, 2H), 1.23 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 167.0, 161.4, 135.1, 128.9, 128.8, 128.8, 67.5, 62.4, 62.0, 38.7, 34.2, 32.4, 27.0, 26.0, 15.0. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₇H₂₁NNaO₃S 342.1134; Found 342.1148.

Benzyl 1-(4-chlorophenyl)-2-oxoazetidine-3-carboxylate (3n). Obtained according to GP1

$$CI$$
 N
 O
 O
 O
 O
 O
 O
 O
 O

from diazotetramic acid 1k (59 mg, 0.25 mmol, 1 equiv) and benzyl alcohol (30 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel,

eluent: *n*-pentane/acetone, from 3 to 20% of acetone. Yield: 42 mg (41%). Yellowish solid; mp 122.1–123.8 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.22 (m, 9H), 5.27 (d, *J* = 12.3 Hz, 1H), 5.23 (d, *J* = 12.3 Hz, 1H), 4.25 (dd, *J* = 5.7, 2.9 Hz, 1H), 3.95 (dd, *J* = 5.9, 2.9 Hz, 1H), 3.75 (t, *J* = 5.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6, 158.7, 136.4, 135.2, 129.6, 129.4, 128.8, 128.6, 128.4, 117.8, 67.7, 53.5, 41.6. HRMS (ESI) *m/z*: [M+Na]⁺ Calc. for C₁₇H₁₄CINNaO₃ 338.0554; Found 338.0561.

S-(4-Methoxybenzyl) 1-methyl-2-oxo-1-azaspiro[3.5]nonane-3-carbothioate (30).

Obtained according to GP1 from diazo tetramicacid 1a (52 mg, 0.25 mmol, 1 equiv) and

(*p*-methoxybenzyl)mercaptan (42 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: *n*-hexane/acetone, from 3 to 20% of acetone. Yield: 40 mg (48%). Yellow oil. 1 H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.12 (m, 2H), 6.88 – 6.70 (m, 2H), 4.15 (d, J = 13.7 Hz, 1H), 4.09 (d, J = 13.7 Hz, 1H), 3.81 (s, 1H), 3.76 (s, 3H),

2.71 (s, 3H), 2.11 – 1.97 (m, 1H), 1.88 – 1.74 (m, 1H), 1.76 – 1.67 (m, 1H), 1.68 – 1.36 (m, 5H), 1.28 – 1.05 (m, 2H). 13 C NMR (101 MHz, Chloroform-*d*) δ 192.1, 162.2, 159.0, 130.2, 128.8, 114.1 69.8, 63.3, 55.3, 35.9, 33.4, 29.2, 24.8, 24.0, 23.9, 23.3. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₈H₂₃NNaO₃S 356.1291; Found 356.1294.

S-Benzyl 1-ethyl-2-oxo-7-thia-1-azaspiro[3.5]nonane-3-carbothioate (3p). Obtained

oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.21 (m, 5H), 4.23 (d, J = 13.8 Hz, 1H), 4.16 (d, J = 13.7 Hz, 1H), 3.85 (s, 1H), 3.21 (q, J = 7.3 Hz, 2H), 2.83 (ddd, J = 14.5, 12.4, 2.5 Hz, 1H), 2.70 (dtd, J = 14.0, 3.8, 2.4 Hz, 1H), 2.58 – 2.43 (m, 2H), 2.41 – 2.32 (m, 1H), 2.25 – 2.09 (m, 1H), 2.00 (ddd, J = 13.2, 4.2, 2.1 Hz, 1H), 1.97 – 1.88 (m, 1H), 1.24 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.6, 161.3, 136.5, 129.0, 128.7, 127.5, 69.3, 62.9, 38.6, 34.1, 34.1, 32.1, 26.8, 26.0, 14.9. HRMS (ESI) m/z: [M+H]⁺ Calc. for C₁₇H₂₂NO₂S₂ 336.1086; Found 336.1085.

Methyl 2-((1-benzyl-2-oxo-1-azaspiro[3.5]nonane-3-carbonyl)thio)acetate (3q). Obtained

$$\begin{array}{c} O \\ O \\ S \\ CO_2 Me \end{array}$$

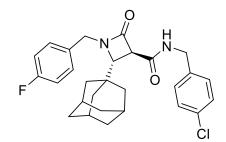
according to GP1 from diazotetramic acid **1b** (71 mg, 0.25 mmol, 1 equiv) and methyl thioglycolate (29 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: *n*-hexane/acetone, from 5 to 25% of

acetone. Yield: 50 mg (55%). Yellow oil. ¹H NMR (400 MHz, Chloroform-d) δ ¹H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.25 (m, 5H), 4.42 (d, J = 15.7 Hz, 1H), 4.33 (d, J = 15.7 Hz, 1H), 3.97 (s, 1H), 3.88 (d, J = 16.1 Hz, 1H), 3.75 (s, 3H), 3.70 (d, J = 16.1 Hz, 1H), 2.10 – 2.01 (m, 1H), 1.84 – 1.72 (m, 1H), 1.68 – 1.55 (m, 4H), 1.49 – 1.34 (m, 2H), 1.28 (tdd, J = 13.0, 7.5, 3.1 Hz, 1H), 1.07 (qt, J = 12.2, 3.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 190.8, 168.5, 161.9, 136.7, 128.7, 127.9, 127.7, 69.7, 65.2, 52.8, 42.9, 37.1, 31.6, 30.2, 24.6, 24.1, 23.2. HRMS (ESI) m/z: [M+H]⁺ Calc. for C₁₉H₂₄NO₄S 362.1421; Found 362.1415.

Benzyl (\pm) -trans-1-(4-methoxybenzyl)-2-oxo-4-phenylazetidine-3-carboxylate (3r).

Obtained according to GP1 from diazotetramic acid **1i** (80 mg, 0.25 mmol, 1 equiv) and benzyl alcohol (30 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: *n*-pentane/acetone, from 3 to 20% of acetone. Yield: 46 mg (46%). Yellowish oil. ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.41 - 7.32 (m, 8H), 7.26 - 7.21 (m, 2H), 7.07 - 7.02 (m, 2H), 6.79 - 6.74 (m, 2H), 5.26 (d, J = 12.4 Hz, 1H), 5.18 (d, J = 12.4 Hz, 1H), 4.81 (d, J = 15.1 Hz, 1H), 4.68 (d, J = 2.2 Hz, 1H), 3.95 (d, J = 1.7 Hz, 1H), 3.78 (s, 3H), 3.76 (d, J = 15.0 Hz,


1H),. ¹³C NMR (101 MHz, Chloroform-d) δ 166.7, 162.1, 159.3, 136.1, 135.3, 129.7, 129.2, 129.1, 128.7, 128.5, 128.3, 126.9, 126.7, 114.2, 67.5, 63.4, 56.9, 55.3, 44.4. HRMS (ESI) m/z: [M+H]⁺ Calc. for C₂₅H₂₄NO₄ 402.1699; Found 402.1687.

 (\pm) -trans-1-(4-Methoxybenzyl)-3-(morpholine-4-carbonyl)-4-phenylazetidin-2-one (3s).

Obtained according to GP1 from diazotetramic acid **1i** (80 mg, 0.25 mmol, 1 equiv) and morpholine (22 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: n-hexane/acetone, from 5 to 20% of acetone. Yield: 42 mg (44%). Red oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.31 (m, 4H), 7.30 – 7.25 (m,

1H), 7.08 - 6.99 (m, 2H), 6.83 - 6.73 (m, 2H), 5.11 (d, J = 1.9 Hz, 1H), 4.68 (d, J = 15.0 Hz, 1H), 4.05 (d, J = 1.8 Hz, 1H), 3.94 - 3.81 (m, 3H), 3.77 (s, 3H), 3.77 - 3.68 (m, 4H), 3.66 - 3.58 (m, 1H), 3.46 - 3.36 (m, 1H), 3.35 - 3.27 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 163.7, 163.6, 136.9, 129.8, 129.1, 128.8, 126.8, 126.8, 114.3, 67.1, 66.7, 63.2, 56.8, 55.3, 46.1, 44.6, 42.5. HRMS (ESI) m/z: [M+H]⁺ Calc. for C₂₂H₂₅N₂O₄ 381.1809; Found 381.1818.

(±)-trans-2-(Adamantan-1-yl)-N-(4-chlorobenzyl)-1-(4-fluorobenzyl)-4-oxoazetidine-3-carboxamide (3t). Obtained according to GP1 from diazotetramic acid 1j (92 mg,

0.25 mmol, 1 equiv) and (p-chlorobenzyl)amine (39 mg, 0.275 mmol, 1.1 equiv). Column chromatography was carried out on silica gel, eluent: n-pentane/acetone, from 5 to 30% of acetone. Yield: 60 mg (50%). Reddish solid; mp 124.8–126.0 °C. 1 H NMR (400 MHz, Chloroform-d) δ

7.32 – 7.23 (m, 3H), 7.22 – 7.14 (m, 3H), 7.05 – 6.95 (m, 2H), 6.88 (s, 1H), 4.73 (d, J = 15.3 Hz, 1H), 4.44 – 4.36 (m, 2H), 4.12 (d, J = 15.3 Hz, 1H), 3.76 (d, J = 1.7, 0.2 Hz, 1H), 3.48 (d, J = 1.6 Hz, 1H), 1.97 (s, 3H), 1.71 – 1.66 (m, 3H), 1.58 – 1.52 (m, 6H), 1.46 – 1.40 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.5, 166.1, 162.4 (d, $^1J_{C-F} = 246.6$ Hz), 136.6, 133.4, 131.3 (d, $^4J_{C-F} = 3.2$ Hz), 129.9 (d, $^3J_{C-F} = 8.2$ Hz), 129.1, 128.9, 115.9 (d, $^2J_{C-F} = 21.6$ Hz), 65.0, 53.4, 46.6, 42.9, 38.7, 36.8, 34.3, 27.9. ¹⁹F NMR (376 MHz, Chloroform-d) δ -114.09. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₂₈H₃₀CIFN₂NaO₂ 503.1872; Found 503.1871.

2.4. Preparation of β-lactamic acids 4a and 4b

General procedure 2: <u>preparation of β-lactamic acids 4a and 4b</u>

5% Pd/C (10 mol %) was added to the solution of corresponding benzyl ester in THF (for **3k**) or ethyl acetate (for **3o**). The inside air was replaced with H₂ (balloon) by three vacuum/H₂ cycles. The reaction mixture was stirred overnight at room temperature in an atmosphere of hydrogen. The reaction mixture was filtered through a syringe filter and the solvent was evaporated under reduced pressure.

1-Methyl-2-oxo-1-azaspiro[3.5]nonane-3-carboxylic acid (4a). Obtained according to

GP2 from β-lactam **3k** (0.91 mmol, 261 mg). Yield: 179 mg (100%). White solid. 1 H NMR (400 MHz, Chloroform- $^{\prime}$ d) δ 3.68 (s, 1H), 2.76 (s, 3H), 2.14 – 2.05 (m, 1H), 1.89 – 1.58 (m, 6H), 1.54 – 1.34 (m, 2H), 1.27 – 1.12 (m, 1H). 13 C NMR (101 MHz, Chloroform- $^{\prime}$ d) δ 170.9, 163.7, 62.9, 62.6, 35.7, 29.5, 24.9, 24.2, 23.9, 23.3. HRMS (ESI)

m/z: [M+Na]⁺ Calc. for C₁₀H₁₅NNaO₃ 220.0944; Found 220.0946. The substance decomposes slowly at room temperature and should be stored at reduced temperatures.

1-(4-Chlorophenyl)-2-oxoazetidine-3-carboxylic acid (4b). Obtained according to GP2

$$CI \longrightarrow N \longrightarrow O$$

from β -lactam **3o** (0.3 mmol, 100 mg). Yield: 68 mg (100%). ¹H NMR (400 MHz, Chloroform-*d*) δ 10.53 (br.s, 1H), 7.36 – 7.27 (m, 4H), 4.27 (dd, J = 5.3, 2.7 Hz, 1H),

3.97 (dd, J = 5.5, 2.3 Hz, 1H), 3.81 (t, J = 5.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.2, 158.6, 136.2, 130.01, 129.5, 117.9, 53.3, 41.7. HRMS (ESI) m/z: [M+H]⁺ Calc. for C₁₀H₉CINO₃ 226.0265; Found 226.0263. The substance decomposes slowly at room temperature and should be stored at reduced temperatures.

2.5. Preparation of β-lactams 3u,v from acid 4a

General procedure 3: preparation of β-lactams 3u and 3v from 4a

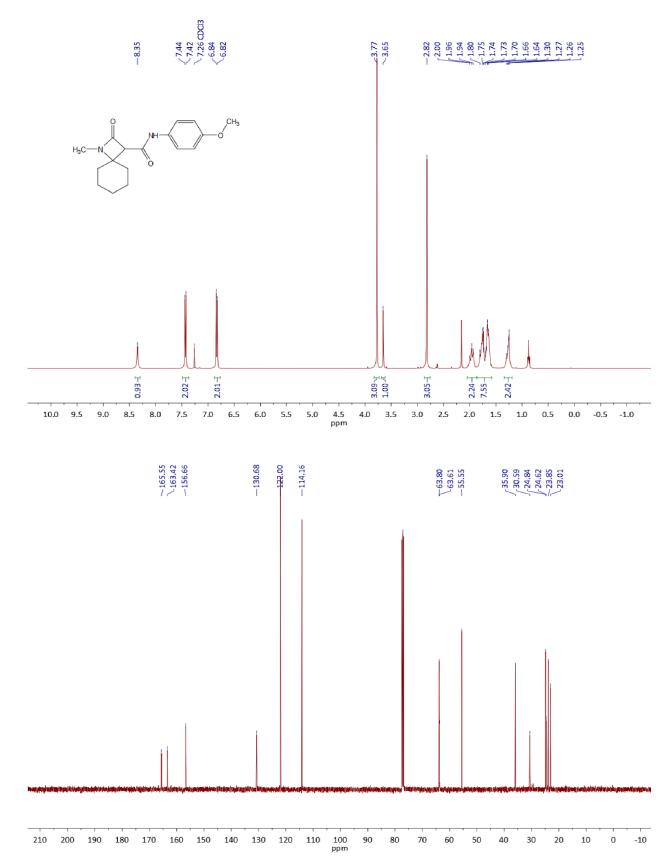
A solution of the β -lactamic acid **4a** (0.3 mmol, 30 mg, 1 equiv) and the corresponding nucleophile (0.32 mmol, 1.05 equiv) in dry DMF (5 mL) was added to the solution of HATU (0.33, 1.1 equiv, 127 mg) and DIPEA (0.33 mmol, 1.1 equiv, 43 mg) in dry DMF (5 mL). The reaction mixture was stirred overnight at room temperature. The solution was diluted with sat. aq. NaHCO₃ (15 mL), extracted with ethyl acetate, and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (absorption at $\lambda = 214$ nm).

3-(Indoline-1-carbonyl)-1-methyl-1-azaspiro[3.5]nonan-2-one (3u). Obtained according to GP3 from acid 4a and indoline (38 mg, 0.32 mmol, 1.05 equiv). Column

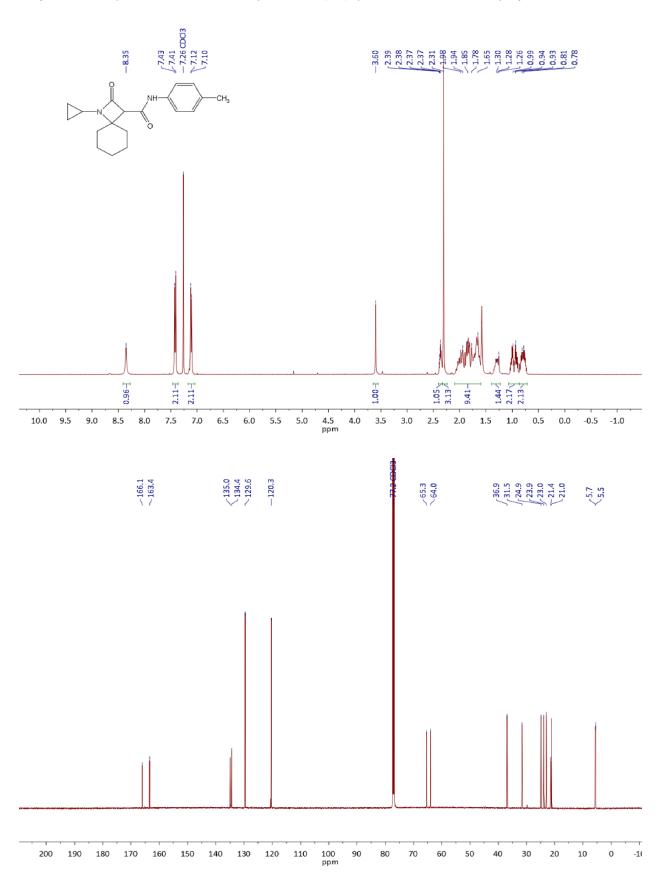
chromatography was carried out on silica gel, eluent: n-hexane/acetone, from 3 to 50% of acetone. Yield: 78 mg (86%). Beige solid, mp 156.3–157.8 °C. 1 H NMR (400 MHz, Chloroform-d) δ 8.36 – 8.20 (m, 1H), 7.22 – 7.13 (m, 2H), 7.09

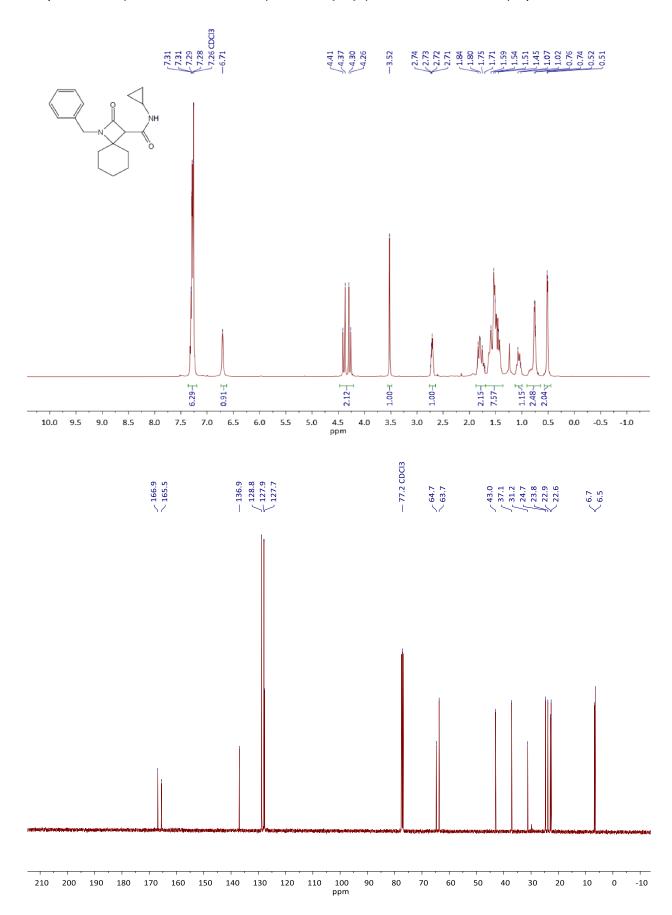
-6.94 (m, 1H), 4.35 - 4.22 (m, 1H), 4.18 - 4.02 (m, 1H), 3.85 (s, 1H), 3.33 - 3.12 (m, 2H), 2.80 (s, 3H), 2.49 - 2.33 (m, 1H), 2.03 - 1.77 (m, 2H), 1.80 - 1.55 (m, 4H), 1.49 - 1.36 (m, 1H), 1.36 - 1.09 (m, 2H). 13 C NMR (101 MHz, Chloroform-*d*) δ 164.6, 163.4, 142.8, 131.4, 127.8, 124.6, 124.3, 117.9, 62.9, 62.76, 49.0, 36.0, 29.1, 28.2, 24.9, 24.2, 24.1. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₈H₂₂N₂NaO₂ 321.1573; Found 321.1574.

tert-Butyl 4-(1-methyl-2-oxo-1-azaspiro[3.5]nonane-3-carbonyl)piperazine-1-carboxylate

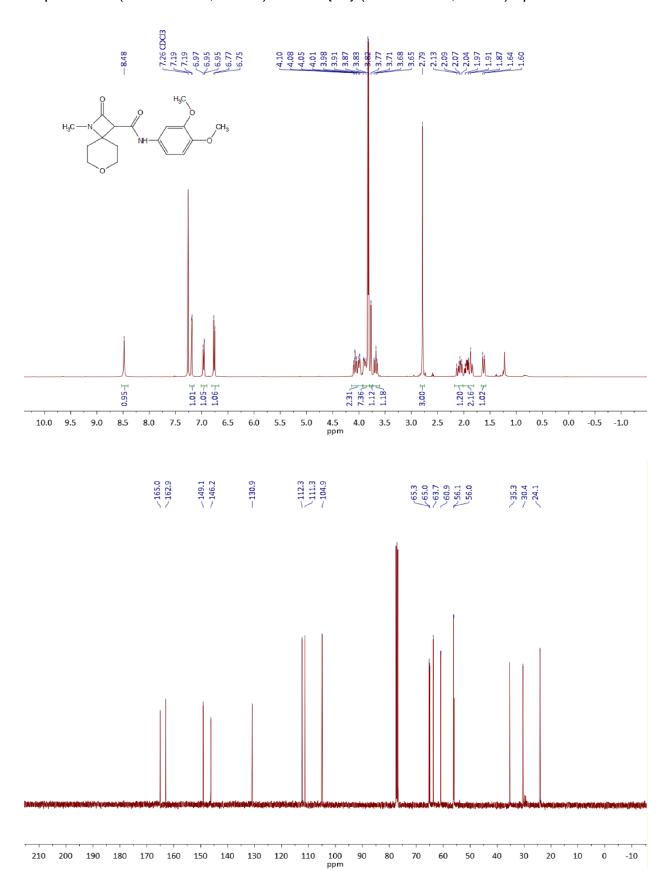

(3v). Obtained according to GP3 from acid 4a and *N*-Bocpiperazine (59 mg, 0.32 mmol, 1.05 equiv). Column chromatography was carried out on silica gel, eluent: *n*-hexane/acetone, from 3 to 50% of acetone. Yield: 105 mg (95%). White solid, mp 123.4–124.2 °C. ¹H NMR (400 MHz,

DMSO- d_6) δ 4.22 (s, 1H), 3.77 – 3.56 (m, 2H), 3.51 – 3.17 (m, 5H), 2.63 (s, 3H), 2.02 – 1.91 (m, 1H), 1.82 – 1.45 (m, 6H), 1.41 (s, 9H), 1.36 – 1.21 (m, 3H), 1.10 – 0.92 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.1, 163.1, 153.7, 130.3, 128.4, 127.0, 79.2, 61.4, 58.4, 45.5, 41.0, 34.3, 28.5, 28.0, 24.1, 23.9, 23.6, 23.2. HRMS (ESI) m/z: [M+Na]⁺ Calc. for C₁₉H₃₁N₃NaO₄ 388.2207; Found 388.2212.

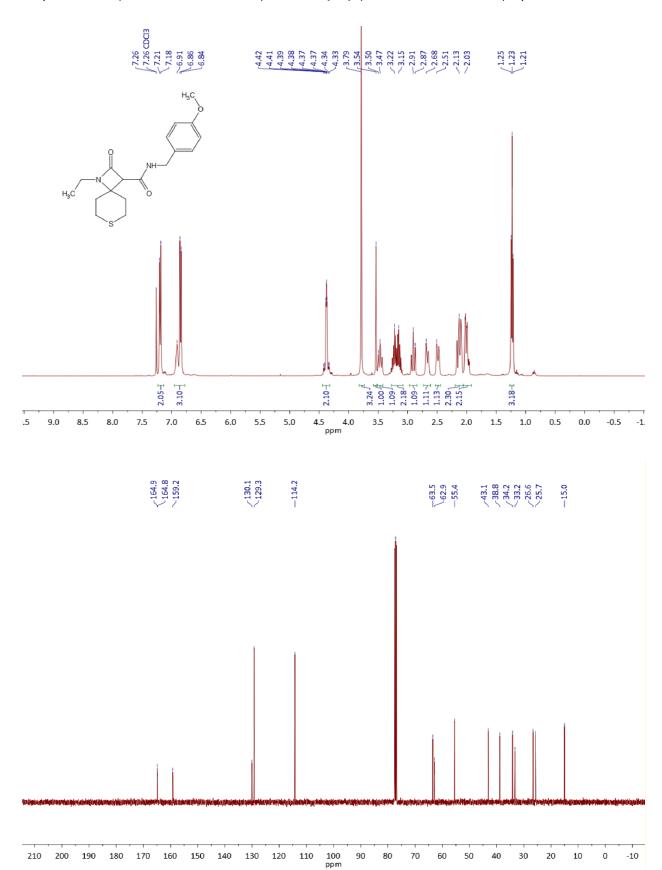

3. NMR data

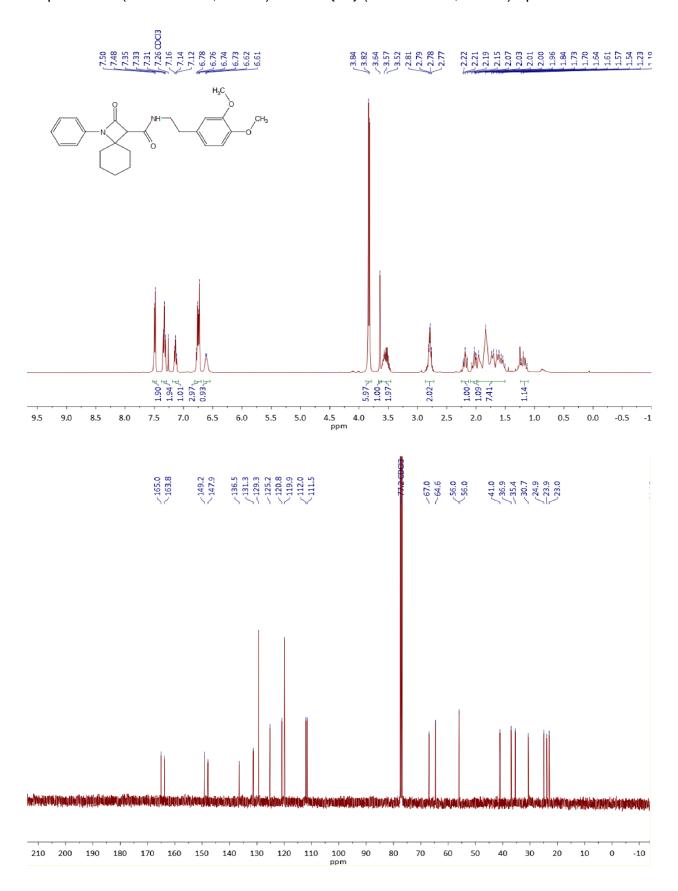

3.1. NMR spectra of β -lactams **3a**–**v**.

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of ${\bf 3a}$

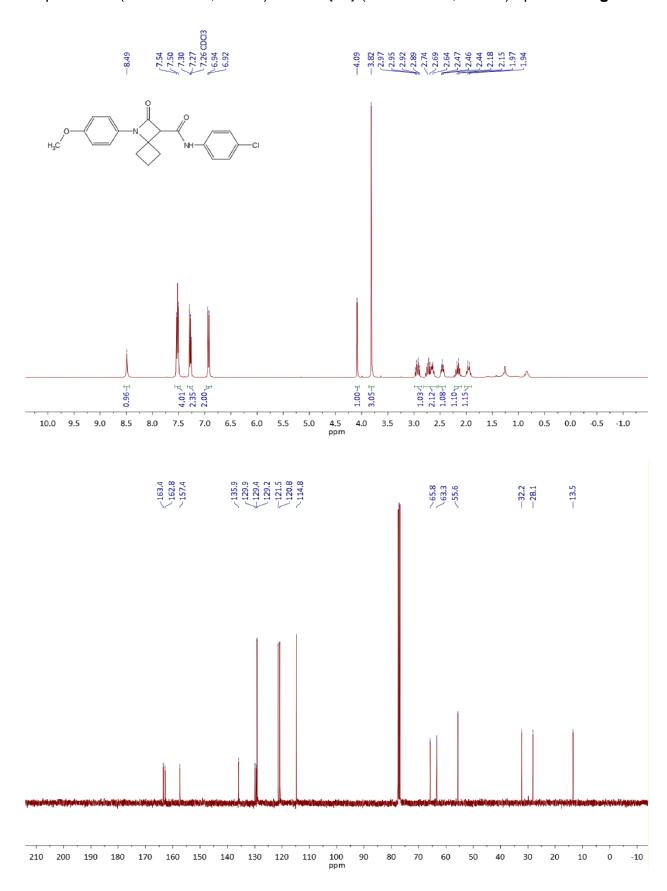


Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of ${\bf 3b}$

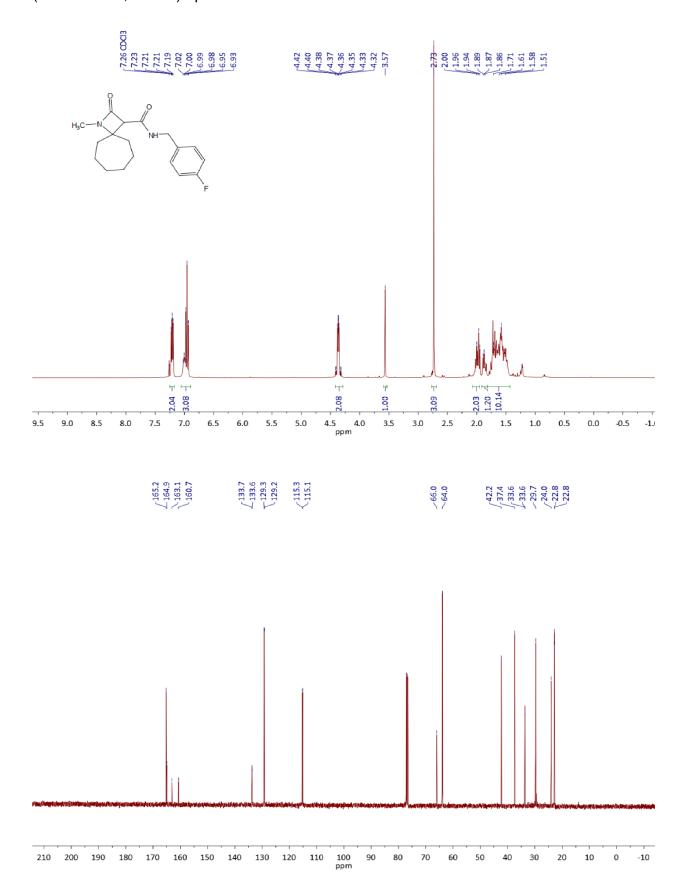


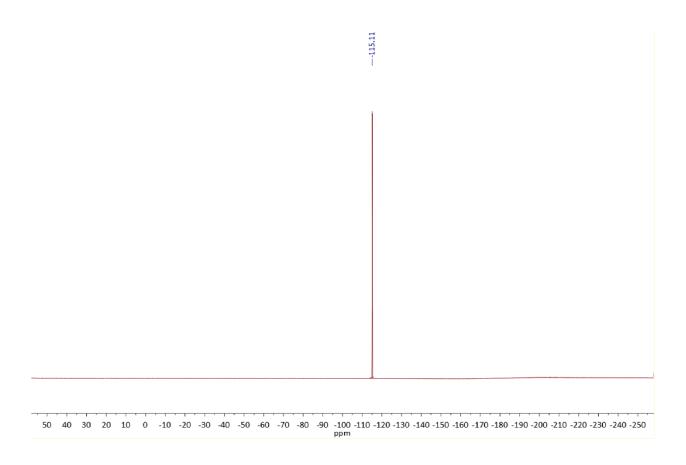


Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of **3d**

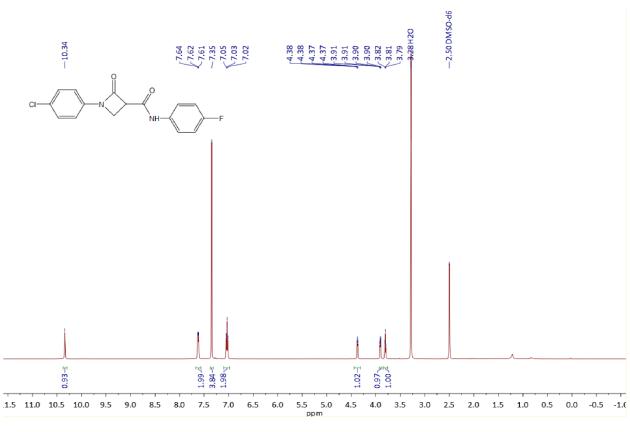


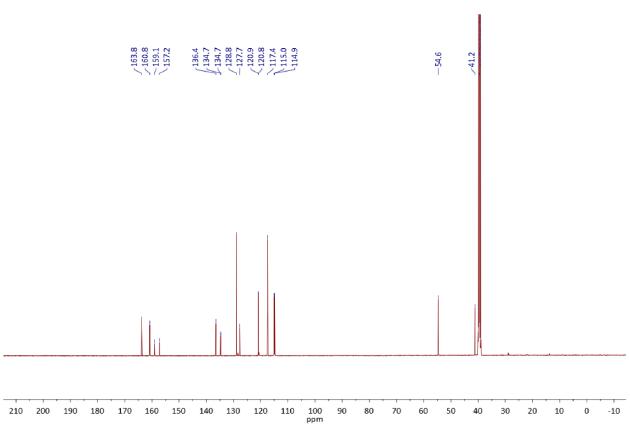
Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3e$

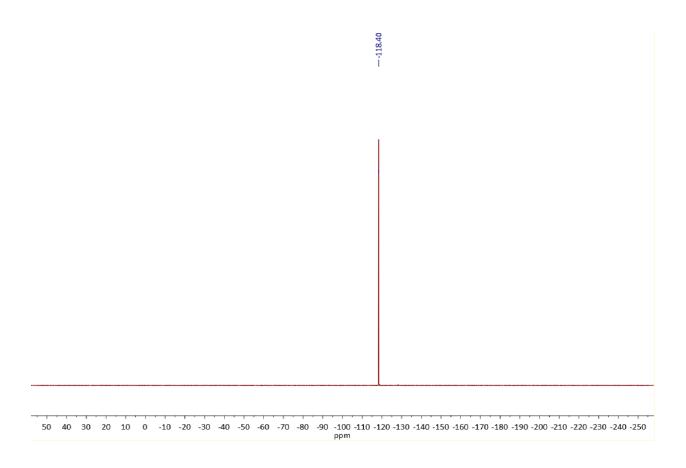


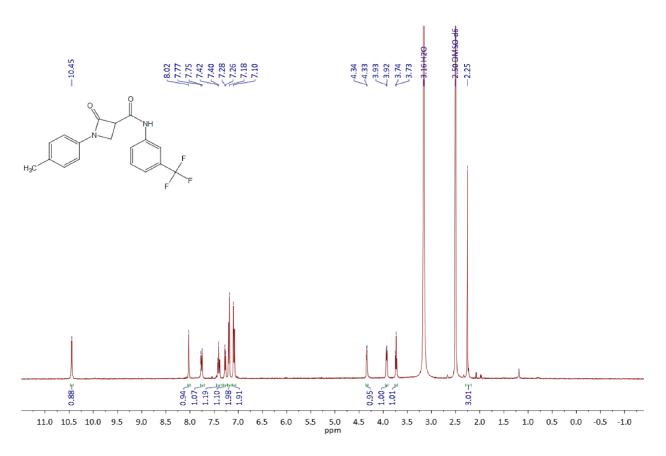


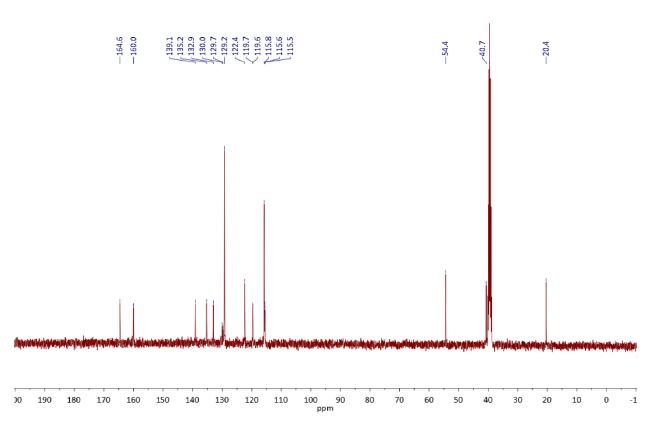
Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3g$

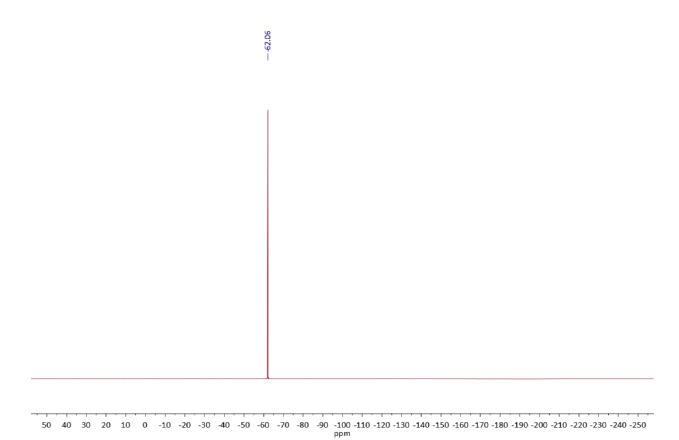


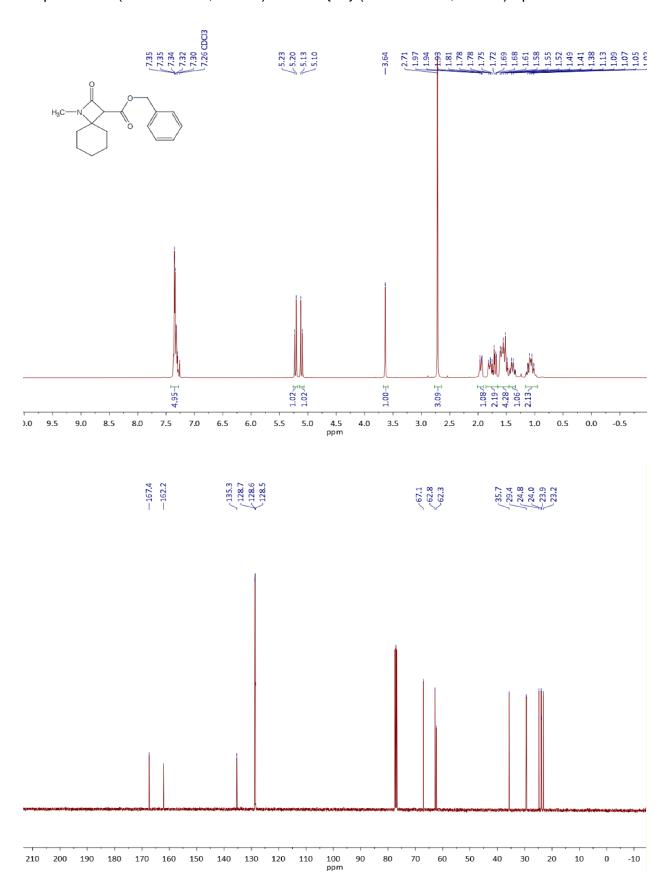

Copies of ^{1}H (400.13 MHz, CDCl₃), $^{13}C\{^{1}H\}$ (100.61 MHz, CDCl₃) and $^{19}F\{^{1}H\}$ (376.50 MHz, CDCl₃) spectra of **3h**

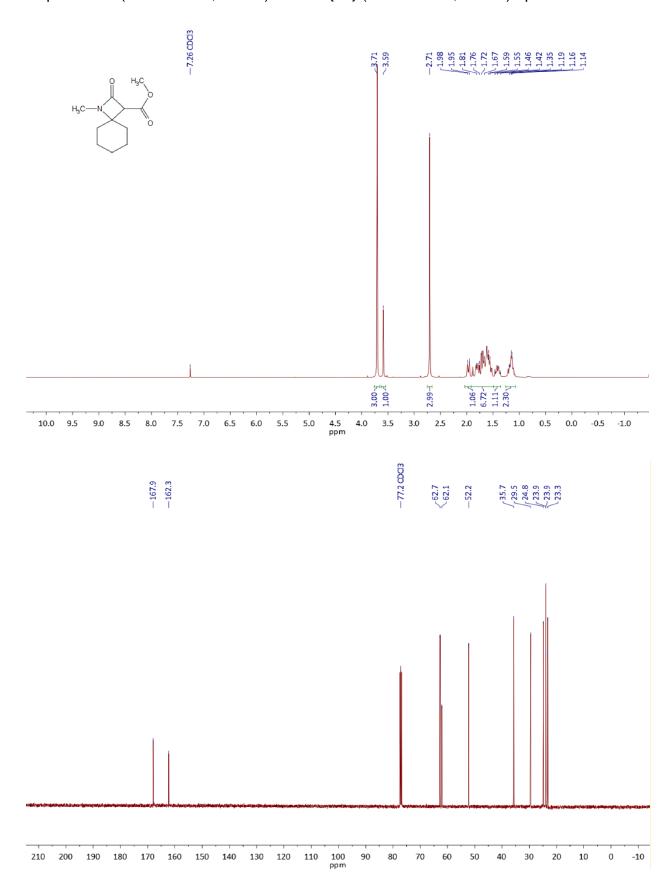


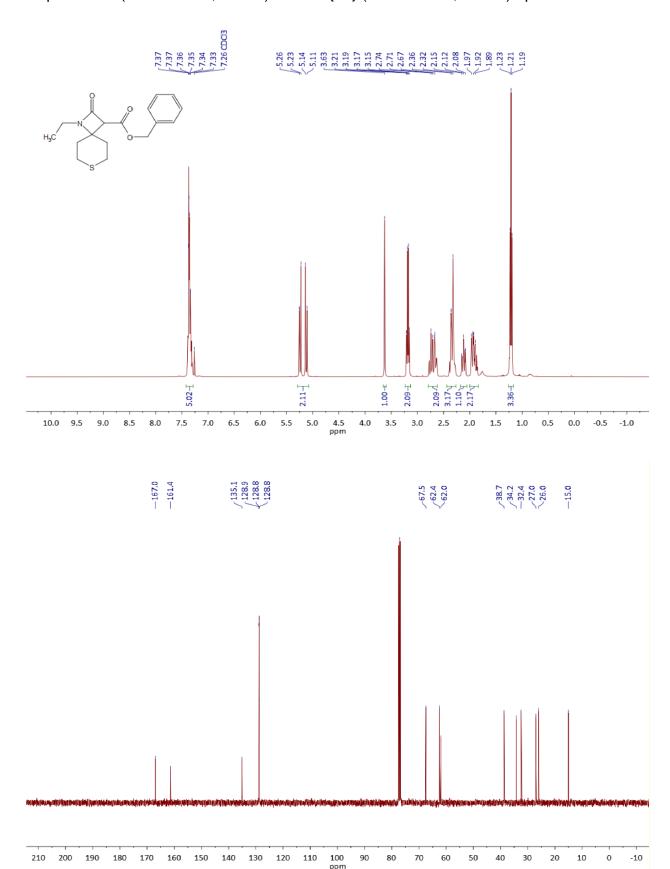

Copies of ${}^{1}H$ (400.13 MHz, DMSO- d_{6}), ${}^{13}C\{{}^{1}H\}$ (100.61 MHz, DMSO- d_{6}), and ${}^{19}F\{{}^{1}H\}$ (376.50 MHz, DMSO- d_{6}) spectra of **3i**

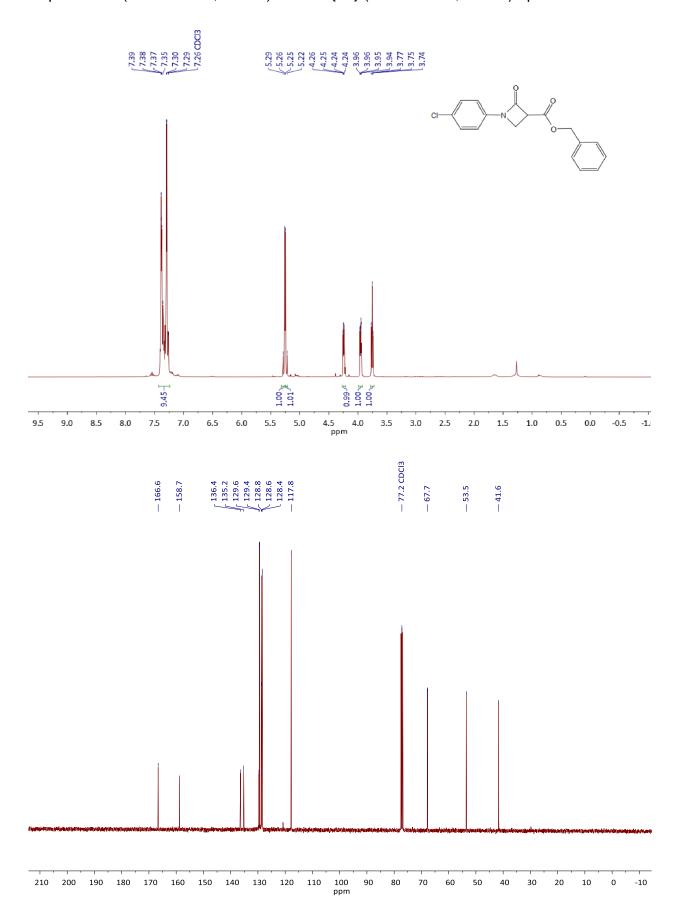


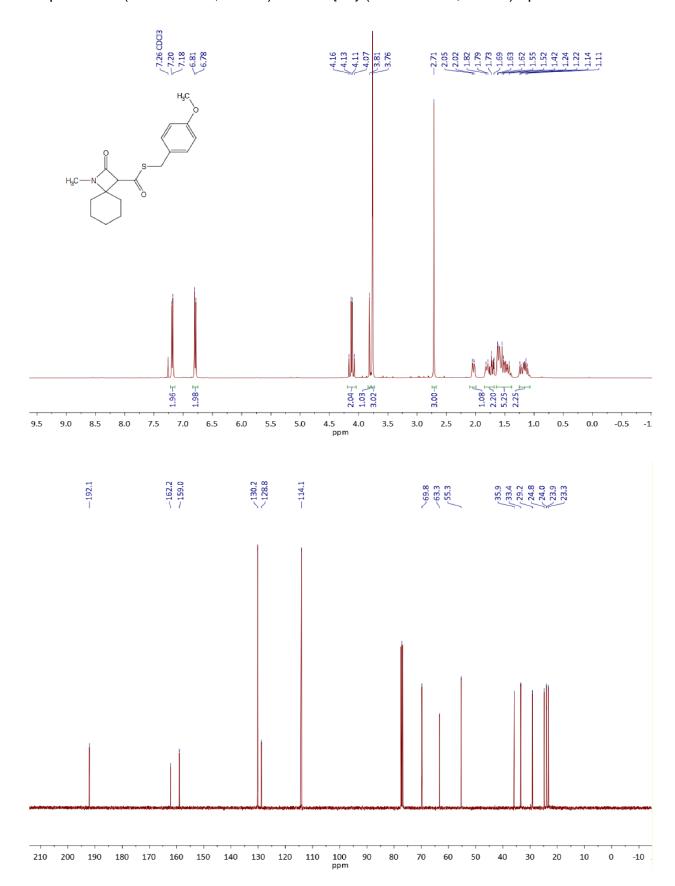


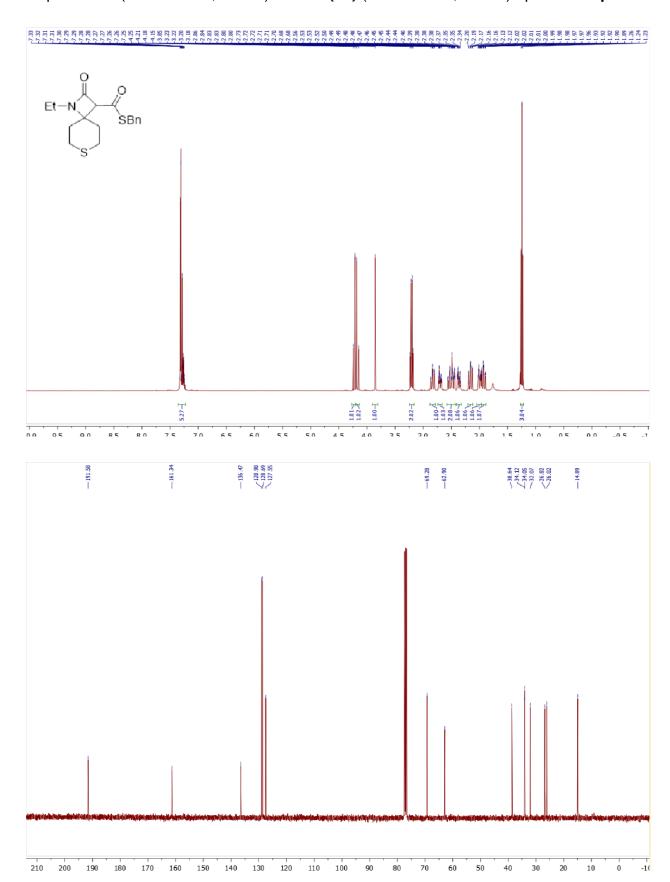

Copies of ${}^{1}H$ (400.13 MHz, DMSO- d_{6}), ${}^{13}C\{{}^{1}H\}$ (100.61 MHz, DMSO- d_{6}), and ${}^{19}F\{{}^{1}H\}$ (376.50 MHz, DMSO- d_{6}) spectra of **3j**

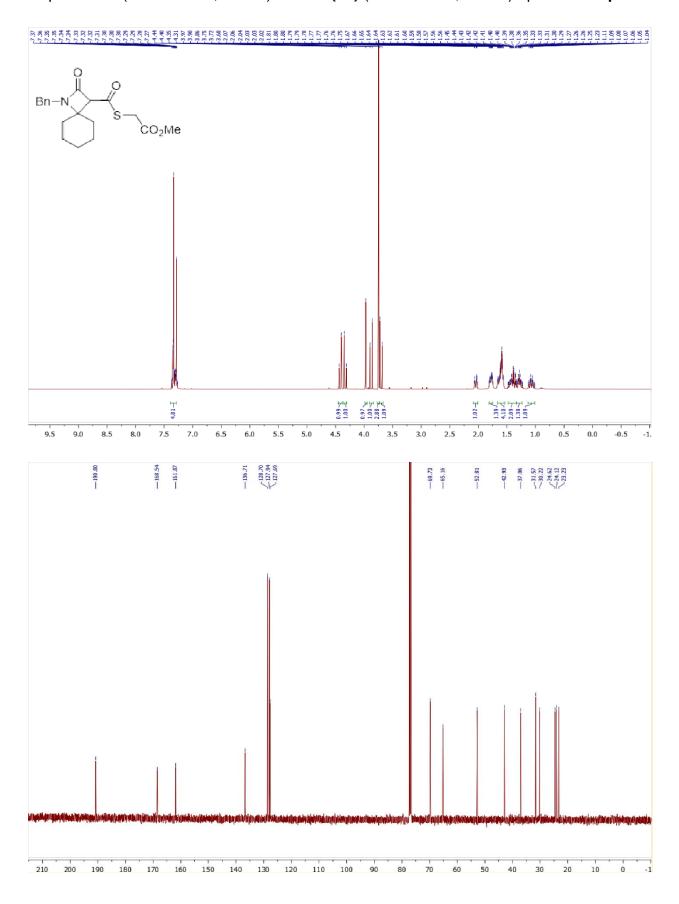


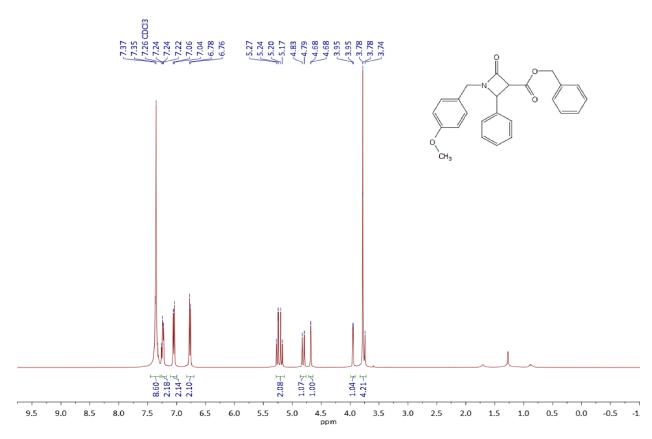

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3k$

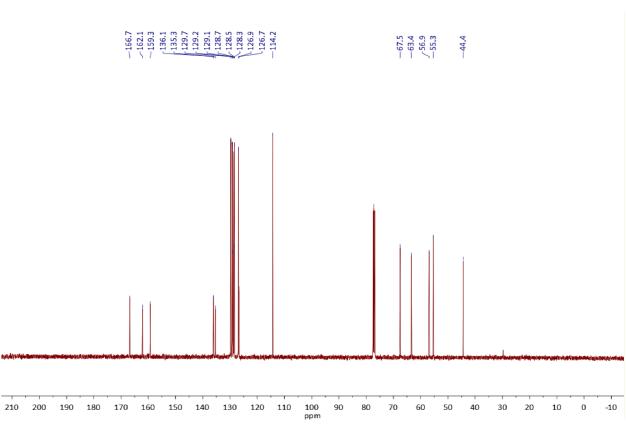

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of 3I


Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3m$

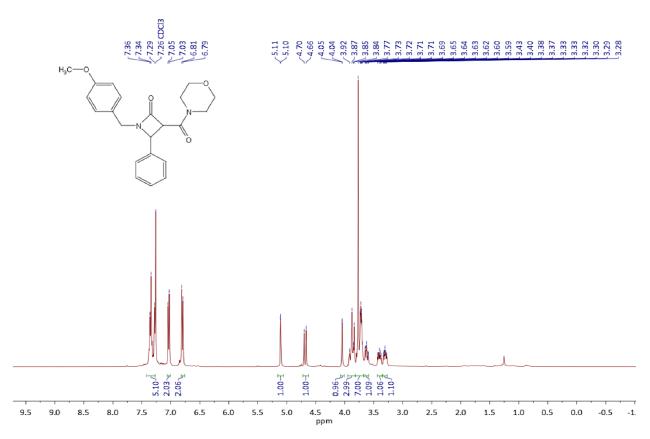

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3n$

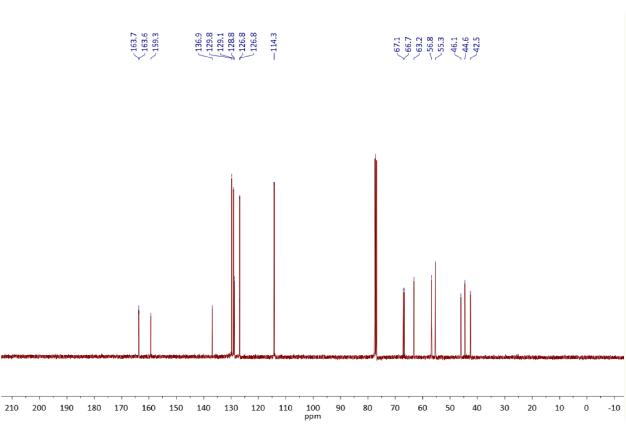

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\boldsymbol{3o}$

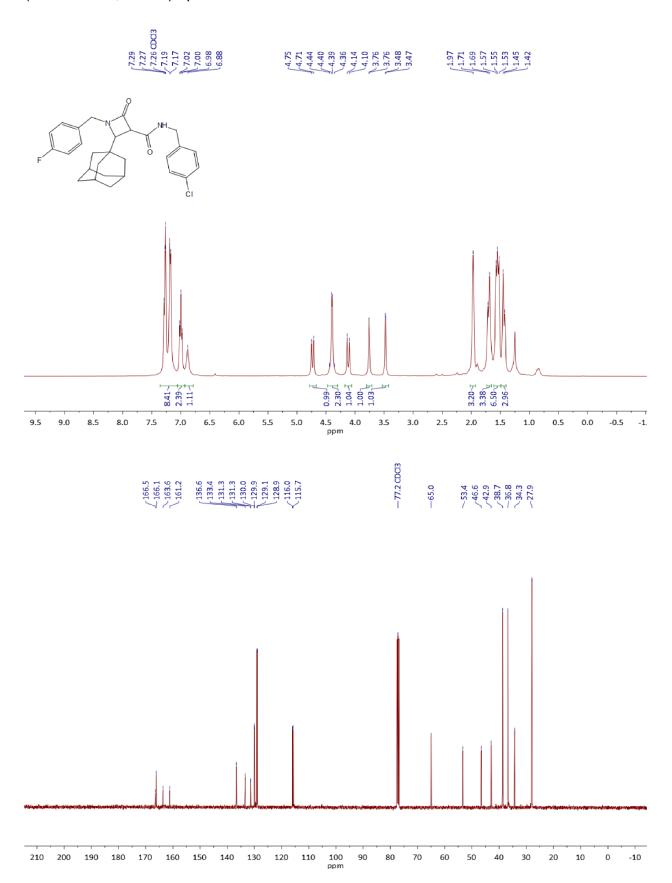

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3p$

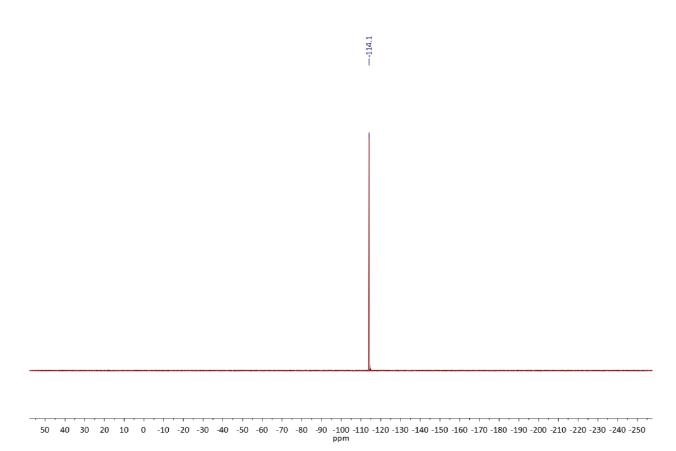


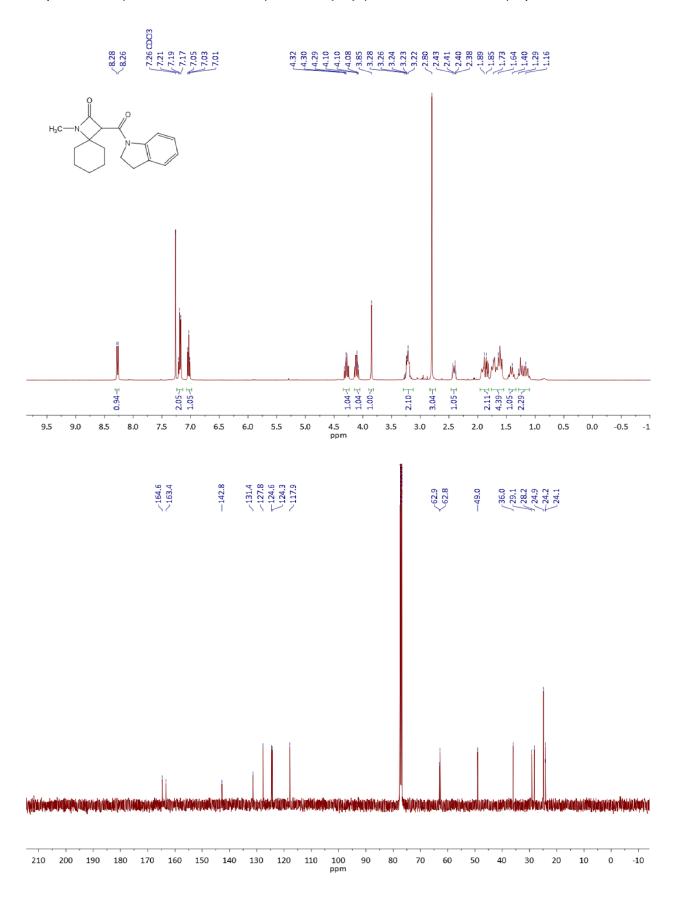
Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3q$

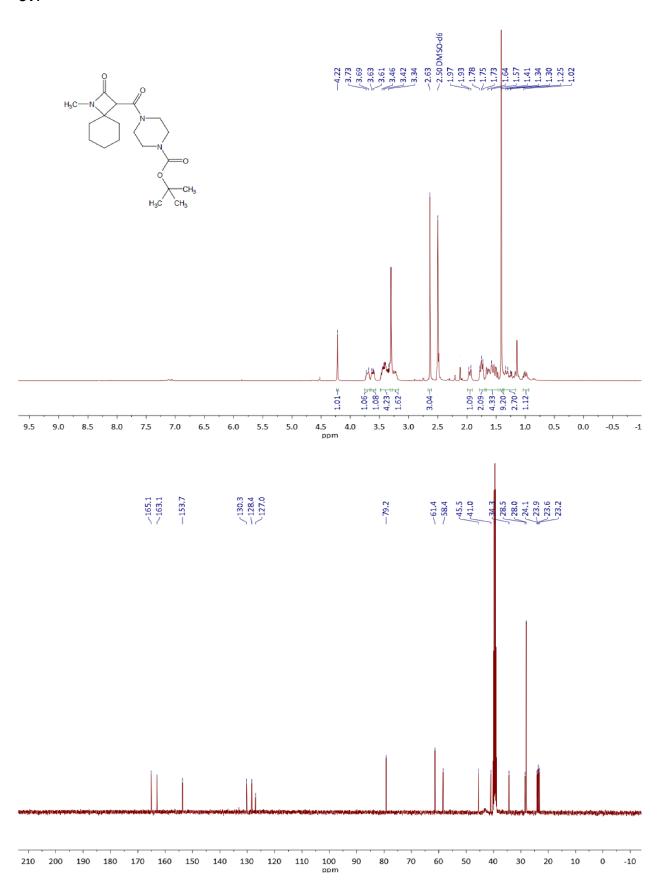


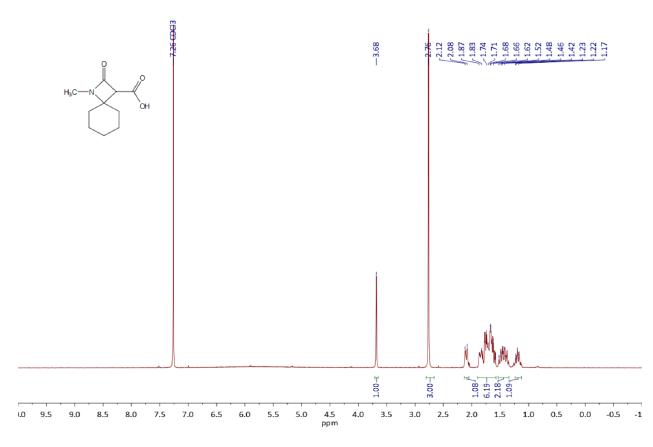

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 3r$

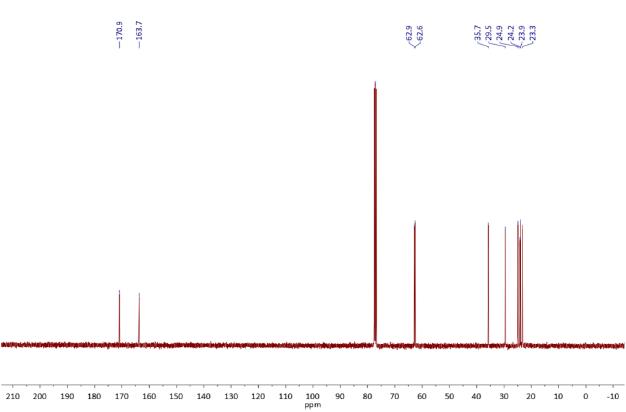


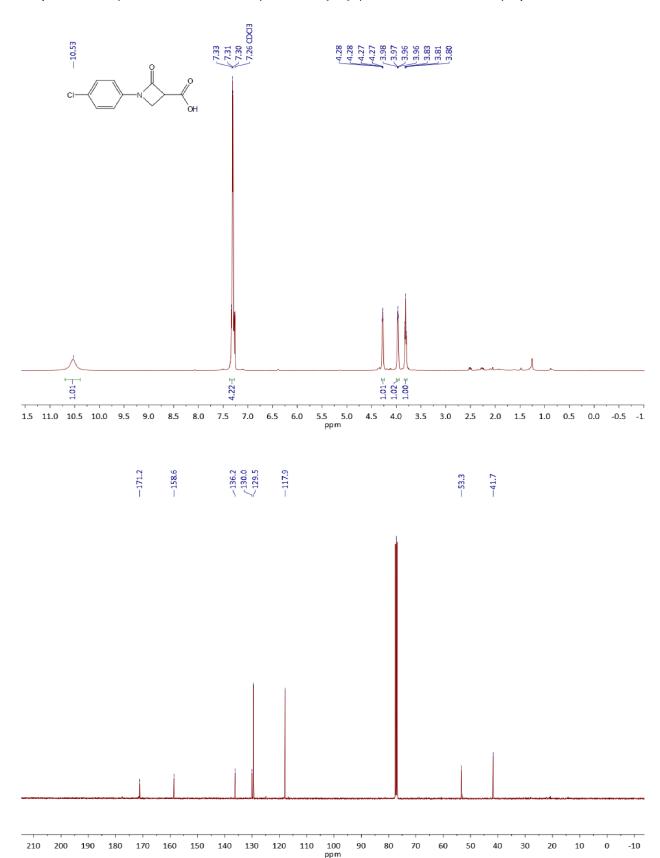

Copies of ^{1}H (400.13 MHz, CDCl₃) and $^{13}C\{^{1}H\}$ (100.61 MHz, CDCl₃) spectra of **3s**



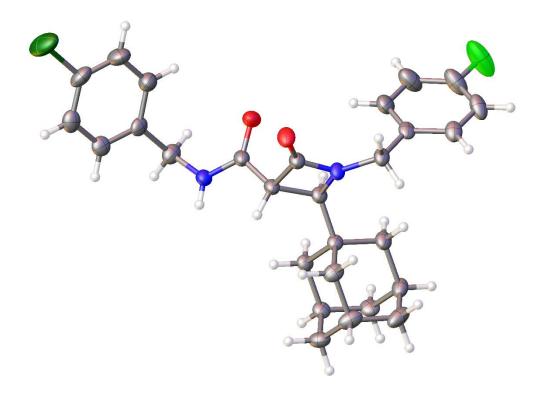

Copies of ${}^{1}H$ (400.13 MHz, CDCl₃), ${}^{13}C\{{}^{1}H\}$ (100.61 MHz, CDCl₃), and ${}^{19}F\{{}^{1}H\}$ (376.50 MHz, CDCl₃) spectra of **3t**




Copies of ¹H (400.13 MHz, DMSO- d_6) and ¹³C{¹H} (100.61 MHz, DMSO- d_6) spectra of **3v**.


3.1. NMR spectra of $\beta\text{-lactamic}$ acids 4a and 4b

Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\boldsymbol{4a}$



Copies of 1H (400.13 MHz, CDCl₃) and $^{13}C\{^1H\}$ (100.61 MHz, CDCl₃) spectra of $\bf 4b$

4. Crystal structure data for compound 3t

X-ray single crystal analysis was performed on a SuperNova diffractometer. Crystals were kept at 100(2)K during data collection. Using Olex2², the structures were solved with the SHELXT³ structure solution program using Intrinsic Phasing and refined with the SHELXL⁴ refinement package using Least Squares minimization.

Figure S1. ORTEP representation of compound **3t** (thermal ellipsoids are shown at 50% probability).

Table S1. Crystal data and structure refinement for 3t	
CCDC	2323689
Empirical formula	C ₂₈ H ₃₀ CIFN ₂ O ₂
Formula weight	480.99
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	9.7326(3)
b/Å	32.1486(5)

c/Å	9.6486(2)
α/°	90
β/°	118.040(4)
γ/°	90
Volume/Å ³	2664.58(14)
Z	4
ρ _{calc} g/cm ³	1.199
µ/mm ⁻¹	1.536
F(000)	1016.0
Crystal size/mm ³	0.16 × 0.1 × 0.08
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	5.498 to 134.966
Index ranges	-7 ≤ h ≤ 11, -38 ≤ k ≤ 38, -11 ≤ l ≤ 11
Reflections collected	21040
Independent reflections	4646 [R _{int} = 0.0718, R _{sigma} = 0.0430]
Data/restraints/parameters	4646/0/311
Goodness-of-fit on F ²	1.055
Final R indexes [I>=2σ (I)]	$R_1 = 0.0690, wR_2 = 0.1838$
Final R indexes [all data]	$R_1 = 0.0746$, $wR_2 = 0.1882$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.75

5. References

- (1) Dar'in, D.; Kantin, G.; Glushakova, D.; Sharoyko, V.; Krasavin, M. Diazo Tetramic Acids Provide Access to Natural-Like Spirocyclic Δ^{α,β}-Butenolides through Rh(II)-Catalyzed O–H Insertion/Base-Promoted Cyclization. *J Org Chem* **2023**, *89* (11), 7366–7375. https://doi.org/10.1021/acs.joc.2c02600.
- (2) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *OLEX2*: A Complete Structure Solution, Refinement and Analysis Program. *J Appl Crystallogr* **2009**, *42* (2), 339–341. https://doi.org/10.1107/S0021889808042726.
- (3) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr A Found Adv 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370.
- (4) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr C Struct Chem 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218.