Supporting Information

for

Metal-catalyzed coupling/carbonylative cyclizations for accessing dibenzodiazepinones: an expedient route to clozapine and other drugs

Amina Moutayakine and Anthony J. Burke

Beilstein J. Org. Chem. 2024, 20, 193-204. doi:10.3762/bjoc.20.19

Experimental procedures and spectral data (NMR, mass spectra) and key kinetic studies

Table of contents

I) General experimental S1
II) Synthesis of o-(2-bromophenyl)aminoanilines S2
III) Synthesis of dibenzodiazepinones (DBDAs) S7
IV) Kinetic study of the molybdenum/palladium Buchwald-Hartwig coupling reaction S11
V) NMR spectra for o-(2-bromophenyl)aminoanilines S14
VI) Mass spectrum of o-(2-bromophenylamino)- N -methylaniline (3h) S21
VII) NMR spectra for 5,10-dihydro-11H-dibenzo[$b, e][1,4]$ diazepin-11-ones S23
VIII) Mass spectrum of 10-methyl-5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one (4h) S29
IX) References S29

General experimental

General considerations: Reagents were obtained from Sigma Aldrich, Acros, Strem and Alfa Aesar and were used as received. The solvents used were dried using standard laboratory techniques. The catalytic reactions were conducted in a Radley's 12-position carousel reactor under a nitrogen atmosphere or in round-bottomed flasks. Column chromatography was carried out on silica gel (Carlo Erba, 40-63 $\mu \mathrm{m}$ (flash) and 60-200 $\mu \mathrm{m}$, 60A). Thin-layer chromatography (TLC) was carried out on aluminum-backed Kieselgel 60 F254 plates (Merck and Machery Nagel).

Plates were visualized either by UV light or with phosphomolybdic acid in ethanol. Melting points (mp) were determined with a Barnstead Electrothermal 9100 apparatus and are uncorrected. NMR spectra were recorded with a Bruker Avance III instrument (400 MHz) with a broad band probe. Chemical shifts are quoted in parts per million (ppm) relative to $\delta=0.0$ ppm and were referenced to the appropriate non-deuterated solvent peak. Coupling constants (J) are reported in Hz and refer to apparent peak multiplicities. Splitting patterns are reported as s , singlet; d , doublet; t , triplet; m , multiplet; br, broad.

Low-resolution mass spectra (LRMS) were recorded with a quadrupole mass spectrometer Waters ZQ4000 and high-resolution mass spectra (HRMS) on a Thermo Orbitrap Q-exactive focus at a resolution of 70000 at the Chemistry Department, University of Salamanca (by Dr. César Raposo). ESI was used as ionization method, and the samples were dissolved in
methanol. In the case of the HRMS, an alternating method between positive and negative modes was applied and the mode with the best signal was used for the determination of the exact mass.

I. Synthesis of \boldsymbol{o}-(2-bromophenyl)aminoanilines (3)

I. 1 - Synthesis of \boldsymbol{o}-(2-bromophenyl)aminoaniline (3a)

Via Buchwald-Hartwig coupling: o-phenylenediamine (1a, $0.05 \mathrm{~g}, 1$ equiv, 0.46 mmol$)$ was added to a Radleys reaction tube (a Radleys® 12 position carousel reactor station was used) under N_{2} and dissolved in dry dioxane (5 mL). Next, 1,2- dibromobenzene (2, 0.055 $\mathrm{mL}, 0.46 \mathrm{mmol}$) was added to the reaction mixture, followed by the addition of $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.01 \mathrm{~g}, 0.046 \mathrm{mmol}), \mathrm{XPhos}(0.032 \mathrm{~g}, 0.069 \mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.18 \mathrm{~g}, 0.05 \mathrm{mmol})$. The resulting reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$. The reaction was left stirring for several hours, followed by TLC. After consumption of the starting material (verified through TLC). The reaction was allowed to cool down, and was filtered through a celite pad to remove the residual catalyst and base. The solvent was then evaportated under reduced pressure and the crude was purified by flash chromatography (hexane/AcOEt 9:1, to yield the o-(2-bromophenyl)aminoaniline (3) compound as a purple oil $(0.057 \mathrm{~g}, 47 \%$ yield).

Via Chan-Lam coupling: o-phenylenediamine ($\mathbf{1 a}, 0.05 \mathrm{~g}, 1$ equiv, 0.46 mmol) was added to a round-bottomed flask and dissolved in dry dioxane (5 mL). Next, 2bromophenyl)boronic acid ($7,0.092 \mathrm{~g}, 1$ equiv, 0.46 mmol) was added, followed by the addition of $\mathrm{Et} 3 \mathrm{~N}(0.07 \mathrm{~mL}, 0.055 \mathrm{mmol}), \mathrm{CuI}(0.018 \mathrm{~g}, 0,092 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, and molecular sieves $3 \AA$. The reaction mixture was left stirring at room temperature for several hours, and monitored by TLC. After consumption of the starting material (verified through TLC), the reaction mixture was filtered through a celite pad to remove the residual catalyst and molecular sieves. The solvent was then evaporated under reduced pressure and the crude was purified by flash chromatography (hexane/AcOEt 9:1), to yield the o-(2bromophenyl)aminoaniline (3a) as a purple oil ($0.07 \mathrm{~g}, 59 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta}: 4.00\left(\mathrm{~s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.76(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 6.59-6.61(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $\mathrm{Ar}, 1 \mathrm{H}), 6.65-6.69(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.79-6-83(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.85-6.87(\mathrm{~d}, J=8 \mathrm{~Hz}$, Ar, 1H), 7.09-7.13 (m, Ar, 3H), 7.49-7.51 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 100 \mathrm{MHz}\right) \boldsymbol{\delta}: 110.42,114.41,116.47,119.48,119.70,127.00,127.04$, 128.39, 132.62, 142.45, 143.03.

HRMS (ESI): m/z [M+ H $\left.{ }^{+}\right]$calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2}$: 263,0184; Found: 263.0178.

I.2-Synthesis of N-(2-bromophenyl)-5-methylbenzene-1,2-diamine (3b) and N-(2-bromophenyl)-4-methylbenzene-1,2-diamine (3c)

3b

3c

Following the general Chan-Lam procedure, 4-methylbenzene-1,2-diamine ($\mathbf{1 b}, 0.05 \mathrm{~g}, 1$ equiv, 0.409 mmol) and 2-bromophenyl)boronic acid ($7,0.088 \mathrm{~g}, 0.409 \mathrm{mmol}$) were dissolved in dioxane (5 mL) followed by addition of $\mathrm{CuI}(0.0156 \mathrm{~g}, 0.082 \mathrm{mmol}), \mathrm{Et} 3 \mathrm{~N}$ $(0.068 \mathrm{~mL}, 0.49 \mathrm{mmol})$ and allowed to react as described above. After purification by silica gel chromatography (hexane/AcOEt 9:1), the compounds N-(2-bromophenyl)-4-methylbenzene-1,2-diamine (3c) and N-(2-bromophenyl)-5-methylbenzene-1,2-diamine (3b) and were obtained as a transparent oil $(0.07 \mathrm{~g}, 60 \%)$. Further separation using the same eluent system allowed the separation of both compounds. Compound $\mathbf{3 b}$ was eluted first to give 0.031 g , followed by 0.038 g of compound $\mathbf{3 c}$).

Data for compound 3b:

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathrm{MHz}$) $\boldsymbol{\delta}: 2.27$ ($\mathrm{s}, \mathrm{CH}_{3}, 3 \mathrm{H}$), $3.54\left(\mathrm{~s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.74(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 6.61-$ 6.63 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.67-6.71(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.76-7.78(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.93-$ 6.97 (m, Ar, 2H), 7.11-7.15 (t, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.51-7.53 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 0 0} \mathbf{M H z}\right) \boldsymbol{\delta}: 20.46,110.27,114.29,116.24,119.51,126.71,127.30$, 127.57,128.37, 128.62, 132.57, 140.38, 143.10.

MS (ESI) m/z: $277.10[\mathrm{M}]^{+}$.

Data for compound 3c:

${ }^{1} \mathbf{H}^{\mathbf{N M R}}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta :} 2.30\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.48\left(\mathrm{~s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.66(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 6.52-$ $6.54(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.59-6.67(\mathrm{~m}, \mathrm{Ar}, 3 \mathrm{H}), 6.98-6.70(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.06-7.10(\mathrm{t}$, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.46-7.49(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta}: 21.22,110.03,114.00,116.82,119.30,120.08,124.09$, 127.49, 128.37, 132.52, 137.26, 142.85, 143.47.

HRMS (ESI): m/z [M+ $\left.\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{2}$: 277.0340; Found: 277.0332.

I.4-Synthesis of $N^{\mathbf{1}}$-(2-bromophenyl)-4,5-dimethylbenzene-1,2-diamine (3d)

Following the general Chan-Lam procedure, 4,5-dimethylbenzene-1,2-diamine (1c, 0.05 $\mathrm{g}, 0.367 \mathrm{mmol}$) and (2-bromophenyl)boronic acid ($7,0.073 \mathrm{~g}, 0.367 \mathrm{mmol}$) were dissolved in dioxane (5 mL) followed by addition of $\mathrm{CuI}(0.014 \mathrm{~g}, 0.0734 \mathrm{mmol})$, $\mathrm{Et} 3 \mathrm{~N}(0.061 \mathrm{~mL}$, 0.44 mmol) and allowed to react as described above. After purification by silica gel chromatography (hexane/AcOEt, 9:1), compound 3d was obtained as a transparent oil ($0.053 \mathrm{~g}, 51 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta}: 2.15\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.22\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.63\left(\mathrm{~s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.65$
$(\mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.52-6.54(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.61-6.65(\mathrm{~m}, \mathrm{Ar}, 2 \mathrm{H}), 6.88(\mathrm{~s}, \mathrm{Ar}, 1 \mathrm{H}), 7.07-$ 7.11 (t, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.47-7.49$ (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (CDCl $\mathbf{~} \mathbf{1 0 0} \mathbf{~ M H z) ~ \delta : ~ 1 8 . 7 9 , ~ 1 9 . 5 3 , ~ 1 0 9 . 9 3 , ~ 1 1 3 . 9 6 , ~ 1 1 7 . 6 1 , ~ 1 1 9 . 1 7 , ~ 1 2 4 . 0 6 , ~}$ 127.14, 128.38, 128.46, 132.50, 135.61, 140.99, 143.54.

HRMS (ESI): m/z [M + H $\left.{ }^{+}\right]$calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrN}_{2}$: 291.0497; Found: 291.0491.

I.5-Synthesis of $\boldsymbol{N}^{\mathbf{1}}$-(2-bromophenyl)-4-chlorobenzene-1,2-diamine (3e)

Following the general Chan-Lam procedure, 4-chlorobenzene-1,2-diamine (1d, $0.05 \mathrm{~g}, 0.35$ mmol) and 2-(bromophenyl)boronic acid ($7,0.070 \mathrm{~g}, 0.35 \mathrm{mmol}$) were dissolved in dioxane (5
$\mathrm{mL})$ followed by addition of $\mathrm{CuI}(20 \mathrm{~mol} \%, 0.013 \mathrm{~g}, 0.07 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.058 \mathrm{~mL}, 1.2$ equiv, 0.42 mmol) and allowed to react as described above. After purification by silica gel chromatography (hexane/AcOEt 9:1), compound $\mathbf{3 e}$ was obtained as a transparent oil (0.038 g , 37% yield).
${ }^{1} \mathbf{H}$ NMR (CDCl3, 400 MHz) $\boldsymbol{\delta}: 3.90\left(\mathrm{~s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.62(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 6.52-6.54(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $\mathrm{Ar}, 1 \mathrm{H}), 6.66-6.74(\mathrm{~m}, \mathrm{Ar}, 2 \mathrm{H}), 6.80(\mathrm{~s}, \mathrm{Ar}, 1 \mathrm{H}), 7.01-7.03(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.09-7.13(\mathrm{t}$, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.48-7.50(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (CDCl3, 100 MHz) $\mathbf{\delta :} \mathbf{1 1 0 . 3 4 , 1 1 4 . 1 9 , 1 1 5 . 5 9 , 1 1 8 . 7 9 , 1 1 9 . 9 3 , 1 2 5 . 0 7 , 1 2 8 . 3 3 ,}$ 128.44, 132.31, 132,66, 142.78, 144.38.

HRMS (ESI): m/z [M + H $\left.{ }^{+}\right]$calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrClN}_{2}$: 296.9794; Found: 296.9788.

I.6-Synthesis of $\boldsymbol{N}^{\mathbf{1}}$-(2-bromophenyl)-4-(trifluoromethyl)benzene-1,2-diamine (3f)

Following the general Chan-Lam procedure, 4-(trifluoromethyl)benzene-1,2-diamine ($\mathbf{1 e}$, $0.05 \mathrm{~g}, 0.28 \mathrm{mmol}$) and (2-bromophenyl)boronic acid (7, $0.057 \mathrm{~g}, 0.28 \mathrm{mmol}$) were dissolved in dioxane (5 mL) followed by addition of $\mathrm{CuI}(20 \mathrm{~mol} \%, 0.056 \mathrm{mmol}), \mathrm{Et} 3 \mathrm{~N}$ ($0.047 \mathrm{~mL}, 1.2$ equiv, 0.36 mmol) and allowed to react as described above. After purification by silica gel chromatography (hexane/AcOEt 9:1), compound $\mathbf{3 f}$ was obtained as a transparent oil ($0.026 \mathrm{~g}, 28 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR (CDCl3, $400 \mathbf{M H z}$) $\boldsymbol{\delta}: 4.14$ (brs, NH2, 2H), 5.71 (brs, NH, 1H), 6.53-6.55 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.70-6.73(\mathrm{~m}, \mathrm{Ar}, 1 \mathrm{H}), 6.83-6.85(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.11-7.15(\mathrm{t}, J=8 \mathrm{~Hz}$, $\mathrm{Ar}, 1 \mathrm{H}), 7.32-7.34(\mathrm{~d}, \mathrm{Ar}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (s, Ar, 1 H), 7.50-7.53 (d, $J=12 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta}: 110.57,114.35,115.25,120.35,124.18,124.22,124.25$, 124.29, 126.07, 128.50, 132.75, 142.25, 146.13.

HRMS (ESI): m/z [M] ${ }^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{~N}_{2}$: 329.9979; Found: 328.9906 .

I.7-Synthesis of ethyl 3-amino-4-((2-bromophenyl)amino)benzoate (3g)

Following the general Chan-Lam procedure: ethyl 3,4-diaminobenzoate (1f, $0.05 \mathrm{~g}, 0.277$ mmol) and (2-bromophenyl)boronic acid ($7,0.055 \mathrm{~g}, 0.277 \mathrm{mmol}$) were dissolved in dioxane $(5 \mathrm{~mL})$ followed by addition of $\mathrm{CuI}(20 \mathrm{~mol} \%, 0.010 \mathrm{~g}, 0.055 \mathrm{mmol}), \mathrm{Et} 3 \mathrm{~N}(0.046 \mathrm{~mL}, 0.33$ mmol) and allowed to react as described above. After purification by silica gel chromatography (hexane/AcOEt 9:1), compound $\mathbf{3 g}$ was obtained as a transparent oil ($0.039 \mathrm{~g}, 43 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (CDCl3, 400 MHz) $\boldsymbol{\delta}: 1.33-1.37\left(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 4.26$ (brs.NH2, 2H), 4.28$4.35(\mathrm{~m}, \mathrm{CH} 2,2 \mathrm{H}), 5.70(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 6.47-6.49(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H})$, 6.67-6.70 (m, Ar, 1H), 6.78-6.80 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.08-7.12 (t, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.51-7.54 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), $7.80-7.82$ (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (CDCl3, 100 MHz) $\boldsymbol{\delta}: 14.48,60.60,110.74,112.80,121.94,122.33,126.89$, $128.47,129.47,131.35,133.12,135.45,136.07,139.88,167.49$
HRMS (ESI): m/z [M + $\left.\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$: 335.0340; Found: 335.0389.
I. 8 - Synthesis of \boldsymbol{o}-(2-bromophenylamino)- N-methylaniline (3h)

Following the general Chan-Lam procedure, N-methylbenzene-1,2-diamine ($\mathbf{1 f}, 0.05 \mathrm{~g}, 0.409$ mmol) and (2-bromophenyl)boronic acid ($7,0.082 \mathrm{~g}, 0.409 \mathrm{mmol}$) were dissolved in dioxane $(5 \mathrm{~mL})$ followed by addition of $\mathrm{CuI}(0.015 \mathrm{~g}, 0.082 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.068 \mathrm{~mL}, 0.49 \mathrm{mmol})$ and allowed to react as described above. After purification by silica gel chromatography (hexane/AcOEt 9:1), compound $\mathbf{3 h}$ was obtained as a transparent oil ($0.039 \mathrm{~g}, 35 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta :} 1.56$ (brs, $\mathrm{NH}, 1 \mathrm{H}$), 3.36 ($\mathrm{s}, \mathrm{CH}_{3}, 3 \mathrm{H}$), 6.71 (brs, NH, 1H), 7.01-7.15 (m, Ar, 4H), 7.29-7.31 (d, J= 8Hz, Ar, 1H), 7.35-7.38 (m, Ar, 1H), 7.46-7.48 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.62-7.64(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl3, 100 MHz$) \boldsymbol{\delta}: 30.1,67.1$, 108.9, 111.1, 119.36, 119.38, 126.4, 128.1, 130.6, 132.3, 135.61, 135,68, 138.2.

HRMS (ESI): m/z [M + H $\left.{ }^{+}\right]$calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{2}$: 277.0340; Found: 277.0330.

II - Synthesis of dibenzodiazepinones (DBDAs)

II.1-Synthesis of 5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one (4a)[1]

o-(2-Bromophenyl)aminoaniline ($\mathbf{3 a}, 0.05 \mathrm{~g}, 0.19 \mathrm{mmol}$) was added to a Radley's ${ }^{\circledR} 12$ position carousel reactor tube to which DMF, then $\operatorname{Pd}(\mathrm{OAc})_{2}(4.26 \mathrm{mg}, 0.019 \mathrm{mmol})$, DPEPhos ($30 \mathrm{mg}, 0.057 \mathrm{mmol}$), $\mathrm{Mo}(\mathrm{CO})_{6}(50 \mathrm{mg}$, 1 equiv, 0.19 mmol$)$, and $\mathrm{Et}_{3} \mathrm{~N}(0.026$ $\mathrm{mL}, 0.19 \mathrm{mmol})$ were added. The reaction mixture was then stirred at $130{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After completion of the reaction, as determined by TLC, the reaction mixture was allowed to cool to room temperature. The mixture was filtered through a pad of celite and washed with DCM, then the solvent was evaporated under reduced pressure to give a crude mixture. Further purification by flash chromatography (hexane/AcOEt 1:1), gave the desired compound $\mathbf{4 a}$ as a yellow solid yield ($0.032 \mathrm{~g}, 80 \%$). M.p.: $249-251{ }^{\circ} \mathrm{C}$ (Lit. [1] 255-257 ${ }^{\circ} \mathrm{C}$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (DMSO-d6, 400 MHz) $\boldsymbol{\delta}: 6.87-7.00(\mathrm{~m}, \mathrm{Ar}, 6 \mathrm{H}), 7.31-7.35$ (t, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.66-7.68 (d, J=8Hz, Ar, 1H), 7.84 (s, Ar, 1H), 9.85 (s, Ar, 1H).
${ }^{13} \mathbf{C}$ NMR (CDC13, $100 \mathbf{M H z}$) $\boldsymbol{\delta}: 119.52,120.23,121.17,121.73,123.24,123.40,124.95$, 130.29, 132.56, 133.67, 140.43, 150.92, 168.40.

MS (ESI) m/z: $221.12\left[\mathrm{M}+\mathrm{H}^{+}\right]$

II.2- Synthesis of 7-methyl-5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one (4b)

Following the general procedure, compound $\mathbf{3 b}(0.05 \mathrm{~g}, 0.18 \mathrm{mmol})$ was dissolved in DMF, then $\operatorname{Pd}(\mathrm{OAc})_{2}(4.05 \mathrm{mg}, 0.018 \mathrm{mmol})$ and DPEPhos ($29 \mathrm{mg}, 0.054 \mathrm{mmol}$), $\mathrm{Mo}(\mathrm{CO}) 6$ (47 $\mathrm{mg}, 0.18 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.026 \mathrm{~mL}, 0.19 \mathrm{mmol})$ were added to a Radley's ${ }^{\circledR} 12$ position carousel reactor tube. Purification with flash chromatography using (hexane/AcOEt 1:1), as eluent gave the desired compound $\mathbf{4 c}$ as a yellow solid yield ($0.038 \mathrm{~g}, 95 \%$). M.p.: 205$210^{\circ} \mathrm{C}$. (Lit. [2]; $255-257^{\circ} \mathrm{C}$)
${ }^{1} \mathbf{H}$ NMR (DMSO-d $\mathbf{d}, 400 \mathrm{MHz}$) $\boldsymbol{\delta}: 1.33\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 5.86-5-88(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 5-96-$ $6.05(\mathrm{~m}, \mathrm{Ar}, 3 \mathrm{H}), 6-12-6.14(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.46-6.50(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.80-6.82(\mathrm{~d}$, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.90(\mathrm{~s}, \mathrm{Ar}, 1 \mathrm{H}), 8.91(\mathrm{~s}, \mathrm{Ar}, 1 \mathrm{H})$
${ }^{13}$ C NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) $\mathbf{\delta}$: 20.71, 119.48, 120.61, 121.12, 121.64, 123.31, 123.90, $127.75,132.52,133.53,134.08,140.33,150.89,168.32$.

MS (ESI) m/z: $225.15\left[\mathrm{M}+\mathrm{H}^{+}\right]$

II. 3 - Synthesis of 8-methyl-5,10-dihydro-11H-dibenzo[b,e][1,4] diazepin-11-one (4c)[1].

Following the general procedure, compound $\mathbf{3 c}(0.05 \mathrm{~g}, 0.18 \mathrm{mmol})$ was dissolved in DMF, then $\operatorname{Pd}(\mathrm{OAc})_{2}(4.05 \mathrm{mg}, 0.018 \mathrm{mmol})$, DPEPhos ($29 \mathrm{mg}, 0.054 \mathrm{mmol}$), $\mathrm{Mo}(\mathrm{CO})_{6}(47 \mathrm{mg}$, $0.18 \mathrm{mmol})$, and $\mathrm{Et} 3 \mathrm{~N}(0.026 \mathrm{~mL}, 0.19 \mathrm{mmol})$ were added to a Radley's ${ }^{\circledR} 12$ position carousel reactor tube. Purification with flash chromatography using (hexane/AcOEt 1:1), as eluent, gave the desired compound $\mathbf{4 b}$ as a yellow solid yield ($0.037 \mathrm{~g}, 93 \%$). M.p.: 197$200{ }^{\circ} \mathrm{C}$. (Lit.[1], 200-204 ${ }^{\circ} \mathrm{C}$)
${ }^{1} \mathbf{H}$ NMR (DMSO-d6, 400 MHz) $\boldsymbol{\delta}: 2.14\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right)$, 6.72-6.74 (m, Ar, 2H), 6.83-6.86 (m Ar, 2 H), $6.93-6.95(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.27-7-31(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.62-7.64(\mathrm{dd}, J=8 \mathrm{~Hz}$, Ar, 1H), 7.70 (s, Ar, 1 H), 9.75 ($\mathrm{s}, \mathrm{Ar}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (DMSO-d6, 100 MHz) $\boldsymbol{\delta}$: 20.64, 119.37, 120.13, 120.99, 122.00, 123.19, 125.41, 130.11, 132.37, 132.54, 133.57, 137.91, 151.19, 168.49.

MS (ESI) m/z: 225.15

II. 4 - Synthesis of 7,8-dimethyl-5,10-dihydro-11H-dibenzo $[b, e][1,4]$ diazepin- 11-one (4d)

Following the general procedure, compound $\mathbf{3 d}(0.05 \mathrm{~g}, 0.17 \mathrm{mmol})$ was dissolved in DMF, then $\operatorname{Pd}(\mathrm{OAc})_{2}(3.86 \mathrm{mg}, 0.017 \mathrm{mmol})$ and DPEPhos ($28 \mathrm{mg}, 0.052 \mathrm{mmol}$), $\mathrm{Mo}(\mathrm{CO}) 6(44$ $\mathrm{mg}, 0.17 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.023 \mathrm{~mL}, 0.17 \mathrm{mmol})$ were added to a Radley's ${ }^{\circledR} 12$ position carousel reactor tube. Purification with flash chromatography using (hexane/AcOEt 1:1), as eluent gave the desired compound $\mathbf{4 d}$ as a yellow solid yield ($0.03 \mathrm{~g}, 75 \%$). M.p.: 209$215{ }^{\circ} \mathrm{C}$. (Lit. [3], off white solid).
${ }^{1} \mathbf{H}$ NMR (DMSO-d $\left.\mathbf{d}, 400 \mathrm{MHz}\right) \boldsymbol{\delta}: 1.22-1.24(\mathrm{~d}, J=8 \mathrm{~Hz}, 6 \mathrm{H}), 5.86(\mathrm{~s}, \mathrm{Ar}, 1 \mathrm{H}), 5.91(\mathrm{~s}, \mathrm{Ar}$, $1 \mathrm{H}), 5.99-6.03(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.09-6.11(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.43-6.45(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}$, $1 \mathrm{H}), 6.79-6.80(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, \mathrm{Ar}, 2 \mathrm{H}), 8.84(\mathrm{~s}, \mathrm{Ar}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (DMSO-d6, 100 MHz) 8:31.17, 119.34, 120.92, 121.23, 122.62, 123.26, 127.70, 130.87, 132.53, 133.45, 137.99, 151.25, 168.46, 207.04.

HRMS (ESI): m/z [M+H $\left.{ }^{+}\right]$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: 239.1184; Found 239,1175.

II. 5 - Synthesis of 8-chloro-5,10-dihydro-11H-dibenzo $[b, e][1,4]$ diazepin-11-one (4e)

 [1]

Following the general procedure, compound $\mathbf{3 e}(0.05 \mathrm{~g}, 1$ equiv, 0.168 mmol$)$ was dissolved in DMF, then $\mathrm{Pd}(\mathrm{OAc})_{2}(3.77 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.0168 \mathrm{mmol})$ and DPEPhos ($27 \mathrm{mg}, 30 \mathrm{~mol} \%$, $0.050 \mathrm{mmol}), \mathrm{Mo}(\mathrm{CO})_{6}(44 \mathrm{mg}, 1$ equiv, 0.168 mmol$)$, and $\mathrm{Et}_{3} \mathrm{~N}(0.023 \mathrm{~mL}, 1$ equiv, 0.17 mmol) were added to a Radley's ${ }^{\circledR} 12$ position carousel reactor tube. Purification with flash chromatography using (hexane/AcOEt 1:1) as eluent gave the desired compound $\mathbf{4 e}$ as a yellow solid yield ($0.035 \mathrm{~g}, 85 \%$). M.p.: $235-237^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (DMSO-d6, 400 MHz) $\boldsymbol{\delta}: 6.03-6.07(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.11-6.14$ (m, Ar, 4H), 6.48-6.52 (t, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 6.81-6.83 (d, J=8Hz, Ar, 1H), 7.13 ($\mathrm{s}, \mathrm{Ar}, 1 \mathrm{H}$), 9.07 ($\mathrm{s}, \mathrm{Ar}, 1 \mathrm{H}$). ${ }^{13}$ C NMR (DMSO-d6, 100 MHz) $\boldsymbol{\delta}$: 119.56, 120.90, 121.43, 121.51, 122.82, 124.46, 126.71, 131.66, 132.66, 133.99, 139.19, 150.25, 168.12.

HRMS (ESI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: 245.0482; Found 245.0475.

II. 6 - Synthesis of 7-(trifluoromethyl)-5,10-dihydro-11H-dibenzo $[b, e][1,4]$ diazepin-

 11-one (4f)[1]

Following the general procedure, compound $\mathbf{3 f}(0.05 \mathrm{~g}, 0.15 \mathrm{mmol})$ was dissolved in DMF, then $\operatorname{Pd}(\mathrm{OAc})_{2}(3.36 \mathrm{mg}, 0.015 \mathrm{mmol})$ and DPEPhos ($24 \mathrm{mg}, 0.045 \mathrm{mmol}$), $\mathrm{Mo}(\mathrm{CO}) 6$ (39 $\mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{Et} 3 \mathrm{~N}(0.020 \mathrm{~mL}, 0.17 \mathrm{mmol})$ were added to a Radley's ${ }^{\circledR} 12$ position carousel reactor tube. Purification with flash chromatography using (hexane/AcOEt 1:1), gave the desired compound $\mathbf{4 f}$ as a yellow solid yield $(0.023 \mathrm{~g}, 55 \%)$. M.p.: 200-205 ${ }^{\circ} \mathrm{C}$. (Lit. [1], 202-203 ${ }^{\circ} \mathrm{C}$)
${ }^{1} \mathbf{H}$ NMR (DMSO-d6, 400 MHz) $\boldsymbol{\delta}: 6.91-6.95(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 6.97-6.99(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}$, $1 \mathrm{H}), 7.11-7.13$ (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.24-7.26 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.35-7.40 (m, Ar, 2H), $7.69-7.71(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 8.14$ (s, Ar, 1H), 10.15 ($\mathrm{s}, \mathrm{Ar}, 1 \mathrm{H}$). ${ }^{13}$ C NMR (DMSO-d6, 100 MHz) $\boldsymbol{\delta}: 116.82,119.64,120.17,121.70,122.05,122.78,123.41,126.44,132.72,133.93$, 134.20, 140.28, 149.71, 167.95.

HRMS (ESI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$: 279.0745; Found: 279.0734.

II.7- Synthesis of ethyl 11-oxo-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepine-8carboxylate (4g)

Following the general procedure, compound $\mathbf{3 g}(0.05 \mathrm{~g}, 0.15 \mathrm{mmol})$ was dissolved in DMF, then $\operatorname{Pd}(\mathrm{OAc})_{2}(3.36 \mathrm{mg}, 0.015 \mathrm{mmol})$ and DPEPhos ($24 \mathrm{mg}, 0.045 \mathrm{mmol}$), $\mathrm{Mo}(\mathrm{CO})_{6}(39 \mathrm{mg}$, $0.15 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.020 \mathrm{~mL}, 0.17 \mathrm{mmol})$ were added to a Radley’s ${ }^{\circledR} 12$ position carousel reactor tube. Purification with flash chromatography using (hexane/AcOEt 1:1), gave the desired compound $\mathbf{4 g}$ as a yellow solid yield $(0.016 \mathrm{~g}, 40 \%)$. M.p.: $225-230^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (DMSO-d6, 400 MHz) $\boldsymbol{\delta}: 1.29-1.31\left(\mathrm{t}, J=4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.23-4.29(\mathrm{q}, J=8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 6.91-6.94(\mathrm{~m}, \mathrm{Ar}, 1 \mathrm{H}), 6.99-7.01$ (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.05-7.07 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}$), 7.35$7.39(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 7.55-7.59$ (t, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 2 \mathrm{H}$), 7.70-7.72 (d, $J=8 \mathrm{~Hz}, \mathrm{Ar}, 1 \mathrm{H}), 8.34$ (s, Ar, 1H), 9.97 (s, Ar, 1H).
${ }^{13}$ C NMR (DMSO-d6, 100 MHz) $\mathbf{\delta :}$ 14.68, 31.18, 60.93, 119.70, 119.99, 121.61, $122.58,122.67,124.50,126.26,129.80,132.80,134.07,144.51,149.08,165.56,167.75$.

HRMS (ESI): m/z [M + H ${ }^{+}$] calculated for C16H14N2O3: 283.1083; Found 283.1073.

III - Kinetic study of the Molybdenum/Palladium Buchwald-Hartwig coupling reaction

In order to understand the role of the Molybdenum species in this reaction, and if it exerted a catalytic effect, a kinetic study was performed using the aforementioned model system described above with $5 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$. The standard reaction (benchmark) contained everything bar the Mo species. A 1 mL sample was collected every 10 min and the reaction progress was constantly monitored by ${ }^{1} \mathrm{H}$ NMR (Scheme S1). For practical reasons, the reaction was carried out at a larger scale than in the previous reactions, and the results are shown in Figure S1. At the larger scale, we observed the formation of the usual black precipitate in the presence of $\mathrm{Mo}(\mathrm{CO})_{6}$ which could be due to the complexation of the palladium with the molybdenum, which may lead to a reduction in the catalytic activity of that particular system.

Palladium catalysts have a tendency for aggregation which often leads to the formation of a black precipitate and we believe this phenomenon can also take place at the larger scale used here [4]. The $\mathrm{Mo}(\mathrm{CO})_{6}$ may also exert a reducing effect on the $\mathrm{Pd}(\mathrm{II})$ catalyst, producing $\operatorname{Pd}(0)$ as black precipitate. For practical reasons, the reaction was only monitored for 90 min . In all cases, except for the first 10 min , the reaction without Mo gave the best yields, this was particularly evident after 30 min .

Scheme S1: Mo-catalyzed Buchwald-Hartwig coupling of bromobenzene with aniline.

Figure S1: Comparative study of the Pd and $\mathrm{Pd} / \mathrm{Mo}$-catalyzed $\mathrm{B}-\mathrm{H}$ amination between bromobenzene and aniline (analysis conducted via ${ }^{1} \mathrm{H}$ NMR with a mesitylene standard).

In a round-bottomed flask, aniline ($0.45 \mathrm{~mL}, 5 \mathrm{mmol}$), o-bromobenzene ($0.52 \mathrm{~mL}, 5 \mathrm{mmol}$) were dissolved in DMF (20 ml), then $\mathrm{Pd}(\mathrm{OAc})_{2}(56 \mathrm{mg}, 0.25 \mathrm{mmol}$), DPEPhos ($0.13 \mathrm{~g}, 0.25$ $\mathrm{mmol})$ and $\mathrm{Mo}(\mathrm{CO})_{6}(66 \mathrm{mg}, 0.25 \mathrm{mmol})$ were added to the reaction mixture. The resulting mixture was allowed to stir at $130^{\circ} \mathrm{C}$ under a nitrogen atmosphere. A sample (1 mL) was taken from the reaction mixture after $5 \mathrm{~min}, 10 \mathrm{~min}, 20 \mathrm{~min}, 30 \mathrm{~min}, 40 \mathrm{~min}, 50 \mathrm{~min}, 60 \mathrm{~min}$, and 90
min of reaction. The sample was filtered through a glass pipette with flash silica and washed with DCM. The solvent was evaporated under reduced pressure, and mesitylene ($0.08 \mathrm{~g}, 0.48$ mmol) was added as standard to each crude mixture and analyzed by ${ }^{1} \mathrm{H}$ NMR, the yields were determined afterwards.

Table S1: Kinetic study of the Pd/Mo catalyzed B-H coupling of aniline with bromobenzene.

Time (min)	Without MoCO6(\%)	With $\mathrm{MoCO}_{6}(\%)$
10	6	6
20	12	8
30	15	8
40	18	10
50	21	12
60	23	14
90	39	28

IV NMR spectra of \boldsymbol{o}-(2-bromophenyl)aminoanilines

IV.1- NMR data for 3a

IV.2- NMR data for compound 3b

IV.3- NMR data for compound 3c

IV.4- NMR data forcompound 3d

IV.5- NMR data for compound 3e

IV.6- NMR data for compound $3 f$

IV.7- NMR data for compound 3g

IV.7- ${ }^{1}$ H NMR spectrum for compound 3 h

IV.8- Mass spectrum of compound 3h

220926_006 \#17 RT: 0.16 AV: $1 \mathrm{NL}: 4.21 \mathrm{E}+008$
T: FTMS + p ESI Full ms [100.0000-1500.0000]

V- NMR spectra for 5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-ones

V.1- NMR data for compound 4a

V.2- NMR data forcompound 4b

V.3- NMR data for compound 4c

V.4- NMR data for compound 4d

V.5- NMR data for compound 4d

V.6- NMR data for compound 4f

V.7- NMR data for compound 4 g

V. 8 - Mass spectrum of compound $4 h$

220301-009 \#17 RT: $0.16 \mathrm{AV}: 1 \mathrm{NL}: 4.79 \mathrm{E}+009$
T: FTM $\bar{S}+\mathrm{p}$ ESI Full ms [100.0000-1500.0000]

References

1. Tryniszewski, M.; Bujok, R.; Gańczarczyk, R. Wróbel, Z. Synthesis 2020, 52, 30863094.
2. Majumdar, K.C., Ganai, S. Synlett, 2011, 13, 1881-1887.
3. Jamatia, R., Gupta, A., Pal, A.K. ChemistrySelect, 2016, 1, 852-860.
4. Iwasawa, T., Tokunaga, M., Obora, Y., Tsuji, Y. J. Am. Chem. Soc. 2004, 126, 65546555.
