

Supporting Information

for

Synthesis and reactivity of the di(9-anthryl)methyl radical

Tomohiko Nishiuchi, Kazuma Takahashi, Yuta Makihara and Takashi Kubo

Beilstein J. Org. Chem. 2024, 20, 2254-2260. doi:10.3762/bjoc.20.193

Synthetic procedure and compound characterization data (¹H, ¹³C NMR, MS, melting point, X-ray crystallography) of new compounds. DFT calculation results and optimized structural Cartesian coordinates

Contents

1. General information	S2
2. Synthesis	S2
3. Spin density map of the DAntM radical	S4
4. Optimized structures and its relative Gibbs energies of DantM radicals	S5
5. Relative Gibbs energies potential curve of the DAntM radical	S6
6. VT-ESR study to elucidate the dimerization is solution	S7
7. VT-NMR study to elucidate the dimerization in solution	S7
8. TLC analysis of decomposition of the DAntM radical	S8
9. Spin density map of anthroxyl radical 5	S8
10. X-ray crystallography of anthroxyl radical 5	S9
11. Cyclic voltammogram	S10
12. TD-DFT calculation of the DAntM radical	S10
13. TD-DFT calculation of the DAntM cation	S11
14. Optimized structure of the DAntM cation	S12
15. Electrostatic potential surface of the DAntM cation	S12
16. NMR spectra	S13
17. Cartesian coordinates of optimized structures	S17
18. References	S22

General Information

All experiments were performed under nitrogen atmosphere. Anhydrous hexane and THF was purchased and used without further purification for reactions. Column chromatography was performed with silica gel [Silica gel 60 (MERCK)]. ¹H NMR and ¹³C NMR spectra were recorded on JEOL ECS-400 spectrometer. APCI–MS spectra were recorded on a Bruker micrOTOF II spectrometer. The UV–vis spectra were recorded on JASCO V-770 spectrophotometer. The ESR spectrum was recorded on JEOL JES-RE1X spectrometer. Cyclic voltammetric measurement was recorded on a BAS Model 612D electrochemical analyzer. The cyclic voltammogram was recorded with a glassy carbon working electrode and a Pt counter electrode in dichloromethane containing 0.1 M *n*-Bu₄NPF₆ as a supporting electrolyte. The experiment employed an Ag/AgNO₃ reference electrode, and was done under argon atmosphere at room temperature.

Computational methods. All DFT calculations were performed with the Gaussian 16 program. For structural optimization, (U)B3LYP-D3/6-31G** level of theory was used. Spin density of DAntM radical and anthroxyl radical were calculated using optimized structure with UBLYP/6-31G** level of theory. TD-DFT calculations were performed using optimized structure with (U)CAM-B3LYP/6-31G** level of theory.

Synthesis

Synthesis of compound 3

To a solution of 9-bromo-10-mesitylanthracene (751 mg, 2.00 mmol) in THF (10 ml) was added n-BuLi (1.6 M hexane solution, 1.25 ml, 2.00 mmol) at -78 °C. After stirring for 30 min at same temperature, compound $\mathbf{1}^{[S1]}$ (324 mg, 1.00 mmol) was added and stirred for 12 h at room temperature. The reaction was quenched by water, and extracted with dichloromethane and washed with brine. After removal of the solvent *in vacuo*, the crude material was subjected to column chromatography on silica gel (dichloromethane : hexane = 1 : 1) to afford the title compound $\mathbf{3}$ (365 mg, 0.59 mmol, 59%) as yellow solid.; Mp: 198-200 °C (dec.). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 3.20 Hz, 1H), 8.58 (dd, J = 7.60 Hz, J = 1.60 Hz, 4H), 7.52 (m, 4H), 7.21 (m, 8H), 7.10 (s, 4H), 2.98 (d, J = 3.60 Hz, 1H), 2.54 (s, 6H), 1.73 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 137.83, 137.43, 137.18, 134.95, 134.25, 130.04, 129.93, 128.27, 126.89, 125.71, 125.37, 124.94, 73.16, 21.24, 19.94. HR-MS (APCI) Calcd for C₄₇H₄₀O [M +H]: m/z 621.3152, Found: 621.3152.

Generation of DAntM radical and elucidation of the decomposition pathway

To a solution of compound **3** (200 mg, 0.320 mmol) and stannous chloride dihydrate (109 mg, 0.480 mmol) in THF (10 ml) under nitrogen atmosphere was added 12 M hydrogen chloride (several drops) and stirred for 1 h at room temperature. After exposing air for 30 min, the reaction was quenched by water, and extracted with dichloromethane and washed with brine. After removal of the solvent *in vacuo*, the crude material was subjected to column chromatography on silica gel (dichloromethane: hexane = 1:2) to afford compound **1** (66.3 mg, 0.204 mmol, 64%) as yellow solid, and compound **4** (26.1 mg, 0.043 mmol, 13%) as pale yellow solid. Compound **5** was isolated by recrystallization from dichloromethane, hexane, and small amount of pyridine (46.5 mg, 0.150 mmol, 47%).

To measure the ESR spectrum, an aliquot of the solution was picked and it was evaporated in the ESR tube. Degassed toluene was added to the ESR tube and freeze-pump-thaw cycling was conducted for five times. To measure the UV-vis spectrum, aliquot of the solution was picked and diluted into degassed toluene in UV cell.

Compound $\mathbf{1}^{[S1]}$: ¹H NMR (400 MHz, CDCl₃) δ 11.61 (s, 1H), 9.04 (d, J = 9.20 Hz, 2H), 7.66 (dd, J = 6.80 Hz, J = 1.20 Hz, 2H), 7.57 (d, J = 8.40 Hz, 2H), 7.40 (dd, J = 6.80 Hz, J = 1.20 Hz, 2H), 7.10 (s, 2H), 2.46 (s, 3H), 2.54 (s, 3H), 1.69 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.38, 145.12, 137.77, 136.89, 134.02, 131.92, 129.44, 128.81, 128.41, 126.94, 125.90, 124.72, 123.80, 21.22, 19.88.

Compound 4: Mp: 243-245°C (dec.). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 8.00 Hz, J = 1.60 Hz, 4H), 7.49 (m, 4H), 7.21 (m, 8H), 7.09 (s, 4H), 6.15 (s, 2H), 2.45 (s, 6H), 1.72 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 137.61, 137.05, 135.45, 135.08, 134.20, 130.40, 129.80, 128.23, 126.92, 125.32, 124.95, 124.92, 29.5, 21.26, 19.92. HR-MS (APCI) Calcd for $C_{47}H_{40}$ [M^+ +H]: m/z 605.3203, Found: 605.3202.

Compound 5: Mp: 216-217°C. MS (APCI): m/z 312 [M^++H].

Generation of the DAntM cation

To a suspension of compound **3** (10 mg, 0.025 mmol) in hexane (1 ml) was added a solution of pentachloroantimonate (1.0 M in CH₂Cl₂, 0.1 ml), affording a black solid of DAntM cation. After washed the solid by hexane, residual hexane was evaporated. This solid was used for CV measurement. Due to the highly hygroscopic nature of DAntM cation, melting point measurement was difficult. To measure the UV–vis or NMR spectra of DAntM cation, compound **3** was dissolved in TFA or TFA-*d*, respectively, for *in situ* generation. From the NMR spectra, DAntM cation is quantitatively generated from **3** in TFA-*d*. ¹H NMR (400 MHz, TFA-*d*) δ 10.87 (s, 1H), 8.41 (d, J = 8.4 Hz, 4H), 7.81 (dd, J = 8.4 Hz, J = 0.8 Hz, 4H), 7.62 (m, 4H), 7.54 (m, 4H), 7.16 (s, 4H), 2.42 (s, 6H), 1.84 (s, 12H); ¹³C NMR (100 MHz, TFA-*d*) δ 169.03, 158.04, 142.79, 138.20, 138.04, 137.46, 136.71, 134.59, 134.19, 133.17, 131.36, 130.88, 128.04, 21.90, 20.67.

Spin density map of the DAntM radical

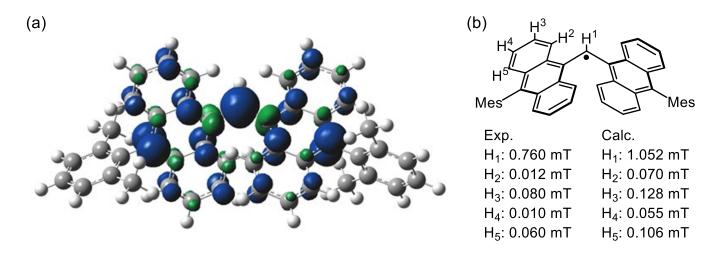


Figure S1. (a) Calculated spin distribution of DAntM radical with spin localization at the central sp² carbon. To reduce the computational costs, one methyl substituent of the mesityl group at 4-position was replaced by hydrogen. (b) Experimental and calculated hyperfine coupling constant of **5**. Calculations were conducted by UBLYP/6-31G**//UB3LYP-D3/6-31G** level of theory.

Optimized structures and its relative Gibbs energies of DAntM radicals

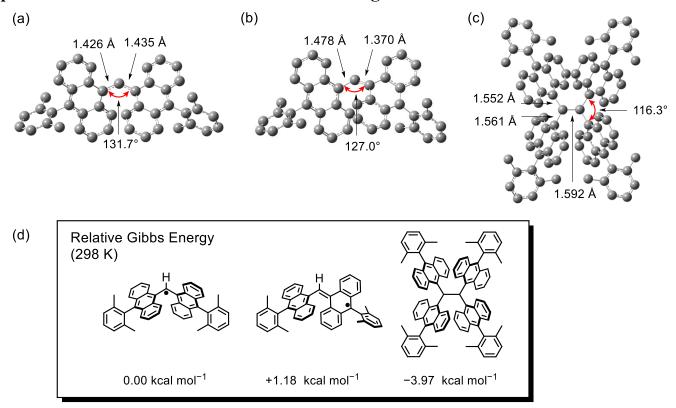


Figure S2. (a) Optimized structure and structural parameters of a DAntM radical with spin localization at the central sp² carbon.

(b) Optimized structure and structural parameters of a DAntM radical with spin localization on the right anthryl group. (c) Optimized structure and structural parameters of the DAntM radical dimer. (d) Relative Gibbs energies (298 K) of above structures. To reduce the computational cost, one methyl substituent of the mesityl group at 4-position was replaced by hydrogen. Structural optimization were conducted by UB3LYP-D3/6-31G** level of theory.

Relative Gibbs energies potential curve of the DAntM radical

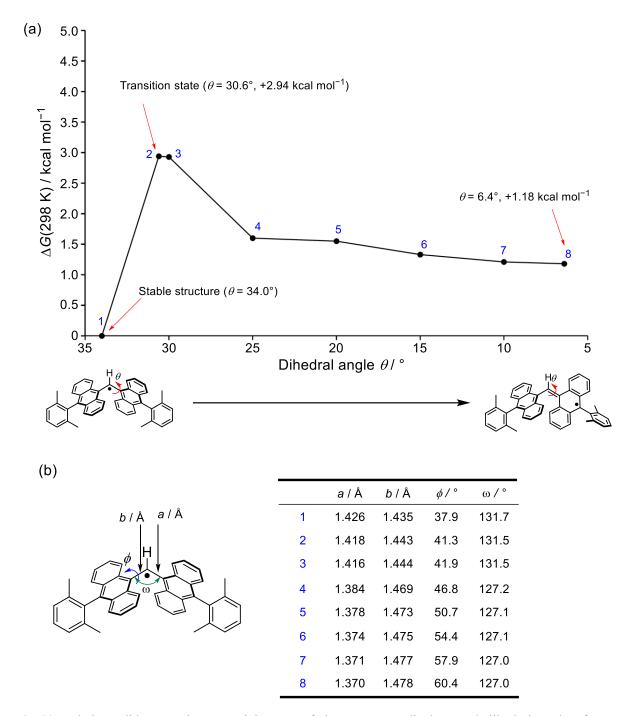


Figure S3. (a) Relative Gibbs energies potential curve of the DAntM radical toward dihedral angle of Ant unit. (b) Structural parameters, C-C bond lengths of a and b, dihedral angle ϕ of another anthryl unit, and bond angle ω in each optimized structures from 1 to 8.

VT-ESR study to elucidate the dimerization in solution

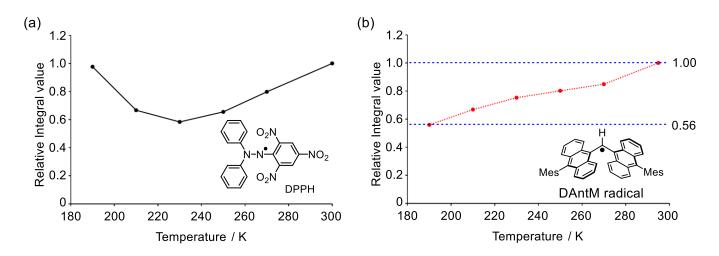


Figure S4. (a) Temperature dependency of the ESR peak integral of 2,2-diphenyl-1-picrylhydrazyl (DPPH) in toluene. (b) Temperature dependency of the ESR peak integral of the DAntM radical corrected by that of DPPH in toluene. Although DPPH is reported not to dimerize in solution, the ESR peak integral shows a temperature dependence due to the Curie law and sensitivity of the instrument; [S2] the relative peak integral decreases to about 0.6 at 230 K and then shows a reverse tendency to increase at lower temperature. Therefore, the dimerization of the DAntM radical was estimated by integral correction using DPPH. Based on these results, we concluded that the DAntM radical shows dimerization in solution.

VT-NMR study to elucidate the dimerization in solution



Figure S5. VT- 1 H NMR of DAntM radical from 298K to 173 K measured by using THF- d_8 . For all temperature, decomposed materials of compound 1 (\circ) and 4 (\diamond) were observed. Although two broad signals at 9.8 ppm (x) and 3.3 ppm (x) at 298 K became sharpen and shifted to lower magnetic field upon cooling temperature, they are unknown signals and the signals originating from dimer could not be observed probably due to the equilibrium between monomer radical and dimer even at low temperature.

TLC analysis of decomposition of the DAntM radical

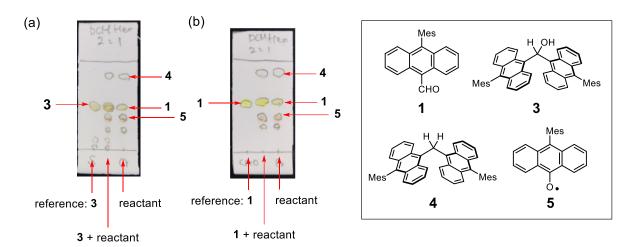


Figure S6. (a) TLC image of reference 3 (left) and reactant for generation of DAntM radical (right), (Developing solvent: dichloromethane: hexane = 2:1). In reactant, reference 3 (orange color) was consumed but yellow spot at almost identical R_f value was observed. (b) TLC image of reference 1 (left) and reactant for generation of DAntM radical (right), (Developing solvent: dichloromethane: hexane = 2:1). It is obvious that the compound 1 (yellow color) was generated from the reactant.

Spin density map of anthroxyl radical 5

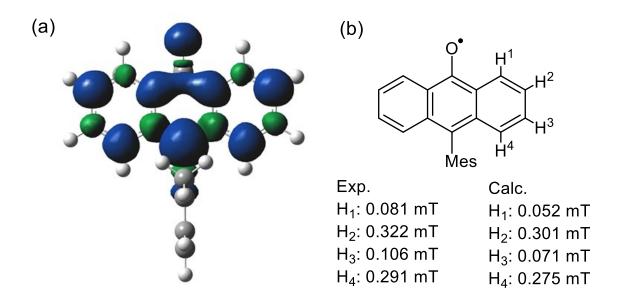


Figure S7. (a) Calculated spin distribution of anthroxyl radical **5**. To reduce the computational costs, one methyl substituent of the mesityl group at 4-position was replaced by hydrogen. (b) Experimental and calculated hyperfine coupling constant of **5**. Calculations were conducted by UBLYP/6-31G**//UB3LYP-D3/6-31G** level of theory.

X-ray crystallography of anthroxyl radical 5

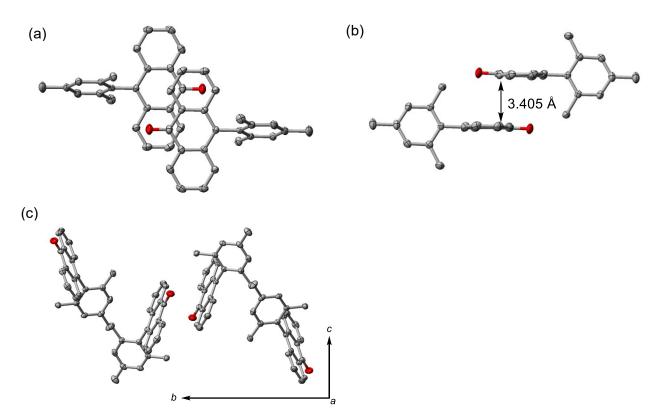


Figure S8. X-ray crystallography of anthroxyl radical 5. (a) Top view of dimeric structure of 5. (b) Side view. (c) Packing structure of 5. Hydrogen atoms are omitted for clarity.

Table S1. Crystal data and structure refinement for 5.

CCDC number 2373408 Empirical formula $C_{23}H_{19}O$ Formula weight 311.38 Temperature/K 120.15 Crystal system monoclinic Space group P2₁/c a/Å 8.7514(9) b/Å 22.1655(16) c/Å 9.2360(9) β/° 113.649(12) Volume/Å³ 1641.1(3) Z=4 pcalcg/cm³ 1.260 μ/mm^{-1} 0.075 F(000) 660.0 Crystal size/mm³ $0.5 \times 0.05 \times 0.05$ Radiation Mo K α (λ = 0.71073) 2Θ range for data collection/° 3.674 to 62.224 Index ranges $-11 \le h \le 11$, $-29 \le k \le 30$, $-12 \le l \le 12$ Reflections collected 19645 Independent reflections 4267 [$R_{int} = 0.0333$, $R_{sigma} = 0.0287$] Data/restraints/parameters 4267/0/220 Goodness-of-fit on F^2 1.061 Final R indexes [I>= 2σ (I)] $R_1 = 0.0493$, $wR_2 = 0.1305$ Final R indexes [all data] $R_1 = 0.0637$, $wR_2 = 0.1378$ Largest diff. peak/hole / e $\mbox{\normalfont\AA}^{-3}$ 0.34/-0.23

Cyclic voltammogram



Figure S9. Cyclic voltammogram of the DAntM cation at negative potential field. Measurement conditions: 100 mM *n*-Bu₄NPF₆ and 1 mM DAntM cation in CH₂Cl₂. Red arrows indicate the sweep direction.

TD-DFT calculation of DAntM radical (UCAM-B3LYP/6-31G**//B3LYP-D3/6-31G**)

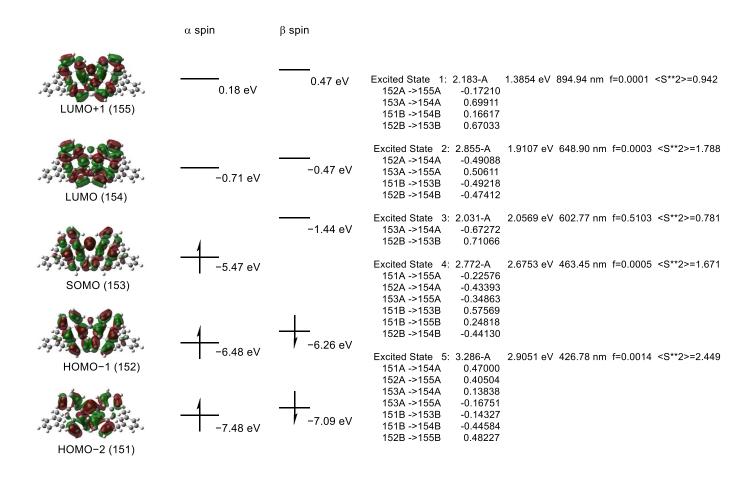
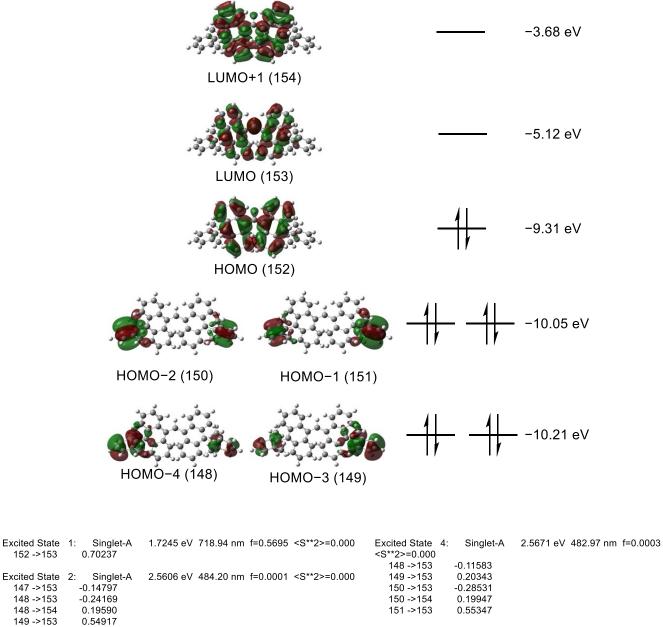



Figure S10. Frontier orbitals, energies, and transitions of the DAntM radical. To reduce the computational costs, one methyl substituent of the mesityl group at 4-position was replaced by hydrogen. Calculations were conducted by UCAM-B3LYP/6-31G**//UB3LYP-D3/6-31G** level of theory.

TD-DFT calculation of the DAntM cation

152 ->153	0.70237			<5^^2>=0.000		
				148 ->153	-0.11583	
Excited State	2: Singlet-A	2.5606 eV 484.20 nm f=0.0001	<s**2>=0.000</s**2>	149 ->153	0.20343	
147 ->153	-0.14797			150 ->153	-0.28531	
148 ->153	-0.24169			150 ->154	0.19947	
148 ->154	0.19590			151 ->153	0.55347	
149 ->153	0.54917					
151 ->153	-0.21410			Excited State	5: Singlet-A	2.5673 eV 482.93 nm f=0.0002
				<s**2>=0.000</s**2>		
Excited State	Singlet-A	2.5636 eV 483.63 nm f=0.0001	<s**2>=0.000</s**2>	148 ->153	0.23606	
148 ->153	0.54903			149 ->153	0.12646	
149 ->153	0.24151			150 ->153	0.53980	
149 ->154	0.19772			151 ->153	0.28123	
150 ->153	-0.25091			151 ->154	0.19509	
151 ->153	-0.10253					

Figure S11. Frontier orbitals, energies, and transitions of the DAntM cation. To reduce the computational costs, one methyl substituent of the mesityl group at 4-position was replaced by hydrogen. Calculations were conducted by CAM-B3LYP/6-31G**//B3LYP-D3/6-31G** level of theory.

Optimized structure of the DAntM cation

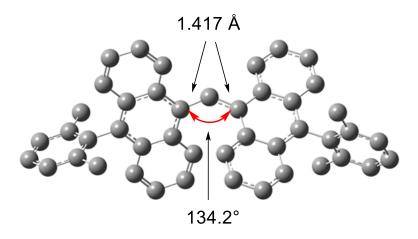
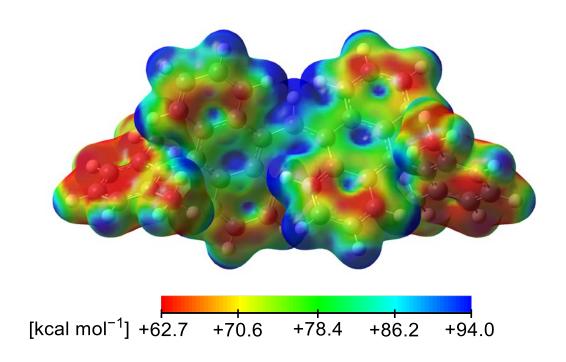
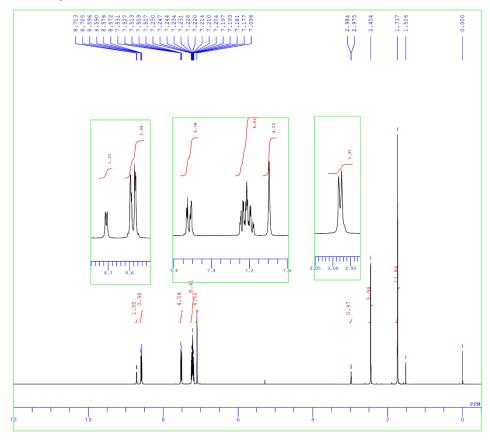
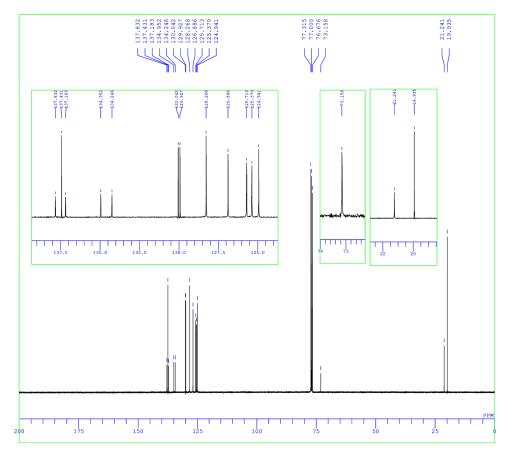
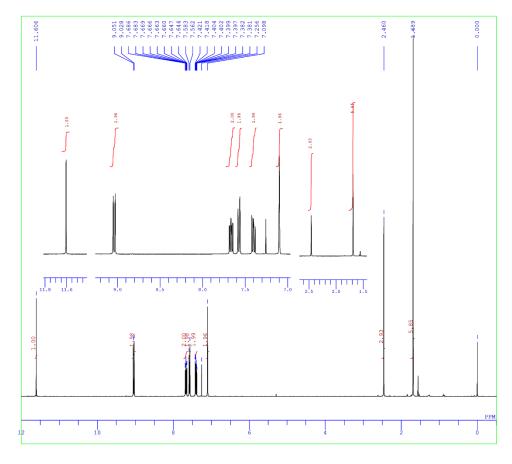


Figure S12. Optimized structure and structural parameters of DAntM cation. To reduce the computational costs, one methyl substituent of the mesityl group at 4-position was replaced by hydrogen. Calculations were conducted by B3LYP-D3/6-31G** level of theory.

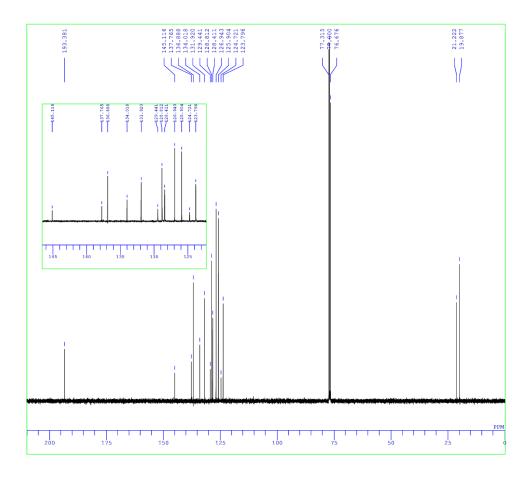
Electrostatic potential surface of the DAntM cation

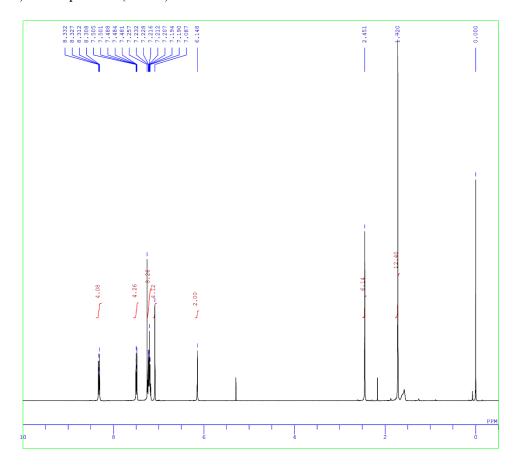

Figure S13. Electrostatic potential surface of the DAntM cation (B3LYP-D3/6-31G**). Energy color range represents from +62.7 (red) to +94.0 (blue) kcal mol⁻¹

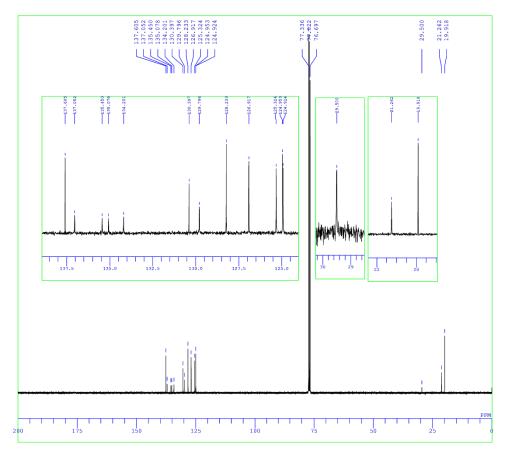

NMR spectra

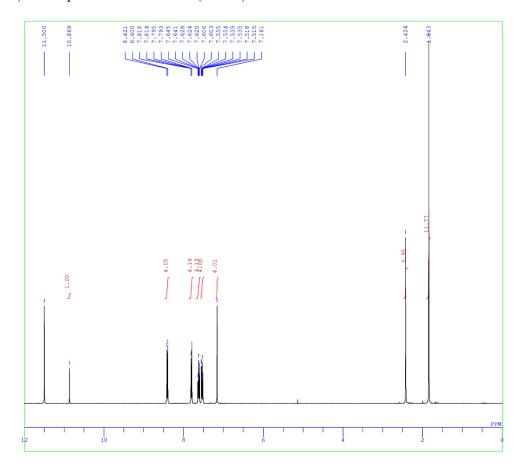
¹H NMR (400 MHz) of compound **3** (CDCl₃)

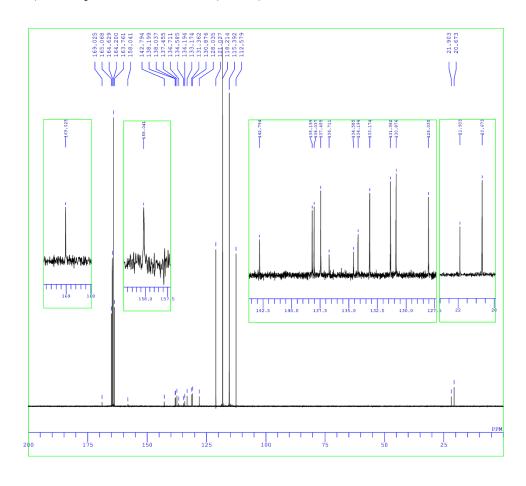


 13 C NMR (100 MHz) of compound 3 (CDCl₃)




¹³C NMR (100 MHz) of compound 1 (CDCl₃)


¹H NMR (400 MHz) of compound 4 (CDCl₃)


 ^{13}C NMR (100 MHz) of compound 4 (CDCl₃)

¹H NMR (400 MHz) of compound DAntM cation (TFA-d)

¹³C NMR (100 MHz) of compound DAntM cation (TFA-d)

Cartesian coordinates of optimized structures

Table S2. Cartesian coordinates of the DAntM radical (spin localization at the central sp² carbon)

Center Number	Atomic Numbe		 Atomic Co Type X		 linates (Ang: Y	stroms) Z	Center Number	Atomic Numb		Atomic Coo Type X	 dinates (Ang Y	jstroms) Z
		: I 										<u></u>
1	6	0	-3.2616	07	3.618518	1.930141	41	6	0	5.776717	-1.427605	-0.916791
2	6	0	-4.5820	34	3.125241	1.806423	42	6	0	4.814066	-1.774661	-2.027817
3	6	0	-4.8096	36	1.952928	1.129991	43	6	0	5.821946	0.677383	2.283843
4	6	0	-3.7419	33	1.225600	0.518535	44	6	0	-5.786903	0.634488	-2.320343
5	6	0	-2.4045	58	1.751760	0.596192	45	6	0	-4.838921	-1.754620	2.039711
6	6	0	-2.2104	36	2.940417	1.355747	46	1	0	-3.073107	4.526502	2.495291
7	6	0	-3.9878	40	-0.011125	-0.123383	47	1	0	-5.408381	3.662271	2.262448
8	6	0	-2.9266	07	-0.707578	-0.748863	48	1	0	-5.814109		1.052653
9	6	0	-1.5911			-0.743350	49	1	0	-1.205815		1.510906
10	6	0	-1.3037		1.051050	-0.024447	50	1	0	-4.176910		-1.403532
11	6	0	-3.1724	94	-1.941749	-1.427857	51	1	0	-2.385521	-3.527931	-2.621614
12	6	0	-2.1764	34	-2.592630	-2.110834	52	1	0	-0.101675		-2.748122
13	6	0	-0.8817			-2.171558	53	1	0	0.385119	-0.426152	-1.590668
14	6	0	-0.6065		-0.849056	-1.512627	54	1	0	0.001273		0.063835
15	6	0	-0.0034		1.633007	0.032446	55	1	0	5.788312		-1.106862
16	6	0	1.3046		1.044397	0.059714	56	1	0	5.346380		-2.331952
17	6	0	1.6035		-0.165453	0.780990	57	1	0	3.003530		-2.528410
18	6	0	2.9422		-0.698969	0.773883	58	1	0	1.159401	3.286382	-1.491953
19	6	0	3.9900		-0.005548	0.125288	59	1	0	-0.366429		1.642649
20	6	0	3.7282		1.220244	-0.528096	60	1	0	0.144180		2.808806
21	6	0	2.3864		1.739604	-0.586846	61	1	0	2.434056		2.672352
22	6	0	4.7802		1.946518	-1.168974	62	1	0	4.207556		1.429210
23	6	0	4.5323		3.109228	-1.853433	63	1	0	-8.211887		-2.012424
24	6	0	3.2061		3.596025	-1.956764	64	1	0	-8.954840		-0.173647
25	6	0	2.1701		2.920819	-1.355013	65	1	0	-7.406177		1.686064
26	6	0	0.6275		-0.848791	1.561527	66	1	0	8.247182		1.952271
27	6	0	0.9159		-2.017835	2.223772	67	1	0	8.967041		0.121575
28	6	0			-2.577730	2.156640	68	1	0	7.390747		-1.705015
29	6	0	3.2013		-1.926941	1.460617	69	1	0	5.271708		-2.751873
30	6	0	-5.3700			-0.139979	70	1	0	3.911336		-1.631831
31	6	0	5.3751		-0.570000	0.126986	71	1	0	4.486808		-2.560565
32	6	0	-6.2436			-1.201042	72	1	0	5.513489		1.892490
33	6	0	-7.5332		-0.813871	-1.197218	73	1	0	4.957679		2.814516
34	6	0	-7.9511		-1.650641	-0.164223	74	1	0	6.624418		3.008602
35	6	0	-7.0805		-1.954465	0.880676	75	1	0	-4.913031	0.216856	-2.832065
36	6	0	-5.7848			0.908511	76	1	0	-6.578464		-3.059562
37	6	0	6.2645		-0.240647	1.169287	77	1	0	-5.488001		-1.936843
38	6	0	7.5564		-0.777959	1.151537	78	1	0	-5.304844		2.764952
39	6	0	7.9613		-1.626611	0.123091	79	1	0	-3.927187		1.664991
40	6	0	7.0752	49	-1.948419	-0.903200	80	1 	0	-4.525406	-0.846406	2.565982

Table S3. Cartesian coordinates of the DAntM radical (localization on the anthryl group)

Center Number	Atomic Number	Atomi Type	c Coor	dinates (Ang Y	stroms) Z	Center Number	Atomic Number		 Atomic Coor Type X	dinates (Ang Y	ıstroms) Z
				· 						' 	
1	6 (251717	3.946950	1.154492	41	-	0		-1.833325	-0.991037
2	6 (520867	3.307601	1.222442	42		0	3.731571	-1.876505	-1.965071
3	6 (-4.	675608	2.028879	0.756205	43		0	5.907651	0.099510	2.156071
4	6 (580320	1.311170	0.176665	44		0	-5.763604	0.127658	-2.352733
5	6 () -2.	298654	1.968238	0.084043	45	6	0	-4.178703	-1.533253	2.158824
6	6 () -2.	177084	3.292959	0.611423	46		0	-3.135501	4.954221	1.543590
7	6 () -3.	723622	-0.017622	-0.271312	47		0	-5.365800	3.834546	1.655877
8	6 (630593	-0.684790	-0.862267	48		0	-5.638468	1.533641	0.820794
9	6 () -1.	353736	-0.022092	-0.985005	49	1	0	-1.205427	3.775119	0.584741
10	6	0 -1	.188884	1.287311	-0.467126	50		0	-3.714175	-2.524447	-1.240196
11			.755992		-1.346189	51	1	0	-1.818879	-3.691626	-2.293498
12		0 -1	.701548	-2.673828	-1.933174	52		0	0.373617	-2.519509	-2.572643
13	-		.452943	-2.009754	-2.086069	53		0	0.664300	-0.232201	-1.758066
14	-		.288789	-0.729434	-1.629694	54	1	0	0.173730	2.836306	-1.159795
15	-	0 0	.127805	1.956303	-0.521960	55		0	5.840651	1.234317	-0.872578
16			.294288	1.529914	0.056237	56		0	5.953673	3.559693	-1.694694
17	6	0 1	.369517	0.369551	0.954878	57	1	0	3.926888	5.014075	-1.590731
18			.557124	-0.426406	0.954016	58		0	1.802703	4.107593	-0.745375
19			.709469	0.002218	0.225406	59		0	-0.571650	0.629907	1.849247
20			.752832	1.322977	-0.321039	60		0	-0.477607	-1.422088	3.199217
21	-		.576331	2.138982	-0.332415	61		0	1.527856	-2.906916	3.077453
22		0 4	.956903	1.862876	-0.850726	62	1	0	3.462049	-2.246372	1.690598
23			.018465	3.164560	-1.309284	63	1	0	-7.988391	-1.296334	-1.665503
24	6	0 3	.875245	3.981158	-1.260179	64	1	0	-8.389607	-2.598946	0.406095
25			.676890	3.465490	-0.785694	65		0	-6.640695	-2.709267	2.160445
26	-		.305632	-0.002243	1.795589	66		0	7.839760	-1.728575	1.541802
27	-		.358515	-1.160647	2.557691	67		0		-3.337540	-0.344481
28	-		.491544	-1.990428	2.495840	68		0	5.991472		-1.953270
29			.571990	-1.627010	1.715360	69		0	3.893783	-2.630783	-2.739645
30			.025663	-0.731517	-0.089864	70		0	2.790627		-1.452491
31			.876551	-0.914980	0.078933	71		0	3.593177	-0.906667	-2.455875
32	-		.013624		-1.091664	72		0	5.879521	1.134933	1.799659
33	-		.221789	-1.343665	-0.896569	73		0	5.011250	-0.047622	2.768254
34			.447621	-2.075946	0.267329	74		0	6.784158	-0.016539	2.798828
35			.464289	-2.137624	1.253088	75		0	-4.882658	-0.247238	-2.884959
36	-		.245606	-1.469899	1.090533	76		0	-6.620264	0.077407	-3.029863
37			.940578	-0.874672	1.002214	77		0	-5.568160	1.180996	-2.124188
38	-		.015826	-1.754447	0.833533	78	-	0	-4.496214	-2.156124	2.999191
39			.036441	-2.660002	-0.225456	79		0	-3.243399	-1.942024	1.760933
40	6	0 5	.976477	-2.698924	-1.129707	80	1	0	-3.946747	-0.533211	2.541664

Table S4. Cartesian coordinates of the DAntM dimer

Center Number	Atomic Number		 Atomic Type	Coord	linates (Ang: Y	stroms) Z	Center Number	Atomic Number			linates (Angs Y	stroms) Z
1	6	0	3.14	 9975	-0.659105	3.223149	41	6	0	2.186540	3.662207	3.555591
2		0			-1.329794	3.025462	42	6	0	0.914079	3.060575	3.365698
3		0			-2.007161	1.857355	43	6	0	0.627672	2.387632	2.208352
4		0			-2.071719	0.829943	44	6	0	-0.024272	0.742108	-0.287486
5		0			-1.401603	1.019789	45	6	0	-1.327246	1.583478	-0.112172
6		0			-0.694471	2.261047	46	6	0	-1.585280	2.531183	-1.147110
7		0				-0.353721	47	6	0	-2.854624	3.217869	-1.230375
8		0				-1.344644	48	6	0	-3.850442	2.981719	-0.267302
9	6	0	1.57	7987	-2.235351	-1.148064	49	6	0	-3.589265	2.106365	0.799829
10	6	0	1.31	13306	-1.483608	0.023576	50	6	0	-2.320581	1.406322	0.893943
11	6	0	3.12	24985	-3.573227	-2.565297	51	6	0	-4.592605	1.906003	1.805099
12	6	0	2.18	86409	-3.662458	-3.555461	52	6	0	-4.385336	1.089349	2.880143
13	6	0		13943	-3.060837	-3.365557	53	6	0	-3.140360	0.422687	3.007600
14	6	0	0.62	27552	-2.387873	-2.208219	54	6	0	-2.165598	0.578362	2.059877
15	6	0	-0.02	24321	-0.742208	0.287531	55	6	0	-0.633966	2.834111	-2.178892
16	6	0	-1.32	27334	-1.583515	0.112182	56	6	0	-0.908499	3.705955	-3.200222
17	6	0	-1.58	85433	-2.531192	1.147131	57	6	0	-2.165257	4.359355	-3.278904
18	6	0	-2.85	54806	-3.217826	1.230379	58	6	0	-3.104522	4.120272	-2.314316
19	6	0	-3.85	50592	-2.981651	0.267280	59	6	0	5.177117	3.468815	0.547676
20	6	0	-3.58	89357	-2.106323	-0.799857	60	6	0	-5.178226	3.665581	-0.372624
21	6	0	-2.32	20643	-1.406330	-0.893957	61	6	0	-5.178410	-3.665451	0.372585
22	6	0	-4.59	92670	-1.905940	-1.805150	62	6	0	5.177092	-3.468831	-0.547678
23	6	0	-4.38	85351	-1.089314	-2.880205	63	6	0	6.228360	2.786579	1.191820
24	6	0	-3.14	40349	-0.422699	-3.007646	64	6	0	7.456158	3.437521	1.356137
25	6	0	-2.16	65612	-0.578392	-2.059902	65	6	0	7.640732	4.739113	0.893994
26	6	0	-0.63	34160	-2.834135	2.178944	66	6	0	6.594497	5.407540	0.260856
27	6	0	-0.90	08749	-3.705957	3.200279	67	6	0	5.353994	4.786147	0.079255
28	6	0	-2.16	65528	-4.359317	3.278934	68	6	0	-5.354930	4.940658	0.200608
29	6	0		04762		2.314322	69	6	0	-6.603926	5.562643	0.094086
30	6	0		50000	0.659048	-3.223115	70	6	0	-7.658742	4.935211	-0.566051
31	6	0		84396	1.329722	-3.025427	71	6	0	-7.475298	3.673615	-1.128856
32	6	0		98802	2.007081	-1.857317	72	6	0	-6.239493	3.023214	-1.041268
33	6	0	3.60	01875	2.071598	-0.829882	73	6	0	5.354209	-4.786046	-0.079017
34	6	0		32567	1.401475	-1.019720	74	6	0	6.594756	-5.407325	-0.260703
35	6	0		76375	0.694403	-2.261004	75	6	0	7.640800	-4.738904	-0.894162
36	6	0		58209	2.787085	0.353785	76	6	0	7.455988	-3.437431	-1.356544
37	6	0		66095	2.868206	1.344740	77	6	0	6.228141	-2.786601	-1.192145
38	6	0		78088	2.235143	1.148175	78	6	0	-6.239666		1.041179
39	6	0		13387	1.483444	-0.023488	79	6	0	-7.475508		1.128743
40	6	0	3.12	25097	3.573013	2.565405	80	6	0	-7.658996	-4.934951	0.565965

Center	Atomic			inates (Angs		Center	Atomic			nates (Angs	
Number	Number	T	ype X	Υ	Z	Number	Number	Ty	/pe X	Y	Z
81	6	0	-6.604191	-5.562455	-0.094119	121	1	0	0.350035	2.396877	-2.155005
82	6	0	-5.355160	-4.940536	-0.200617	122	1	0	-0.147836	3.902841	-3.950216
83	6	0	4.219984	5.507445	-0.609905	123	1	0	-2.374569	5.046272	-4.093423
84	6	0	6.018082	1.383952	1.704613	124	1	0	-4.069404	4.613122	-2.353938
85	6	0	-4.211397	-5.617724	-0.917829	125	1	0	8.271150	2.916165	1.851313
86	6	0	-6.036235	-1.656149	1.646541	126	1	0	8.599146	5.232857	1.027671
87	6	0	6.017591	-1.384132	-1.705264	127	1	0	6.737612	6.423270	-0.098303
88	6	0	4.220411	-5.507335	0.610503	128	1	0	-6.747066	6.545922	0.534359
89	6	0	-6.036107	1.656362	-1.646672	129	1	0	-8.623408	5.429115	-0.641272
90	6	0	-4.211156	5.617771	0.917873	130	1	0	-8.297828	3.183637	-1.643235
91	1	0	2.973415	-0.099684	4.136819	131	1	0	6.738055	-6.422963	0.098644
92	1	0	5.153514	-1.295340	3.790904	132	1	0	8.599251	-5.232559	-1.027902
93	1	0	5.539669	-2.517226	1.685445	133	1	0	8.270832	-2.916078	-1.851967
94	1	0	1.270330	-0.145041	2.465530	134	1	0	-8.298030	-3.183315	1.643080
95	1	0	4.097776	-4.035852	-2.688774	135	1	0	-8.623691	-5.428803	0.641166
96	1	0	2.406589	-4.195578	-4.475527	136	1	0	-6.747365	-6.545739	-0.534368
97	1	0	0.154878	-3.139034	-4.138563	137	1	0	4.509130	6.523057	-0.892351
98	1	0	-0.352854	-1.966026	-2.099862	138	1	0	3.907394	4.975611	-1.515241
99	1	0	0.000137	-0.598612	1.356590	139	1	0	3.339064	5.568247	0.038026
100	1	0	-5.531568	-2.436146	-1.695453	140	1	0	5.679421	0.710060	0.912082
101	1	0	-5.158745			141	1	0	6.935117	0.971531	2.133333
102	1	0	-2.949956	0.221269		142	1	0	5.238103	1.355793	2.472077
103	1	0	-1.236640	-0.067794	-2.239314	143	1	0	-4.515082	-6.586535	-1.322832
104	1	0	0.349854	-2.396930	2.155085	144	1	0	-3.843302	-5.000014	-1.744140
105	1	0	-0.148111	-3.902856	3.950296	145	1	0	-3.362892	-5.778468	-0.244002
106	1	0	-2.374883	-5.046222	4.093454	146	1	0	-6.940561	-1.302409	2.148624
107	1	0	-4.069662		2.353926	147	1	0	-5.217892	-1.661308	2.373127
108	1	0	2.973422	0.099655	-4.136798	148	1	0	-5.757465	-0.917880	0.887486
109	1	0	5.153532	1.295290	-3.790885	149	1	0	6.934704	-0.971406	-2.133523
110	1	0	5.539699	2.517174	-1.685421	150	1	0	5.238051	-1.356423	-2.473201
111	1	0	1.270346	0.145006	-2.465501	151	1	0	5.678167	-0.710253	-0.913055
112	1	0	4.097889	4.035635	2.688879	152	1	0	4.509655	-6.522935	0.892895
113	1	0	2.406732	4.195304	4.475667	153	1	0	3.908088	-4.975479	1.515919
114	1	0	0.155025	3.138752	4.138718	154	1	0	3.339298	-5.568165	-0.037161
115	1	0	-0.352732	1.965775	2.100008	155	1	0	-5.757279	0.918078	-0.887654
116	1	0	0.000215	0.598521	-1.356547	156	1	0	-6.940468	1.302633	-2.148698
117	1	0	-5.531482	2.436244	1.695391	157	1	0	-5.217816	1.661538	-2.373318
118	1	0	-5.158750	0.955718	3.630033	158	1	0	-4.514809	6.586579	1.322905
119	1	0	-2.950007	-0.221301	3.860888	159	1	0	-3.843105	5.000015	1.744169
120	1	0	-1.236645	0.067729	2.239295	160	1	0	-3.362629	5.778505	0.244071

Table S5. Cartesian coordinates of the DAntM cation

Center Number	Atomic Numb		tomic Coord	linates (Ang: Y	stroms) Z	Center Number	Atomic Number	Ator Typ		linates (Ang: Y	stroms) Z
			·	·				٠,٠		·	
1	6	0	-3.121460	3.596904	1.898735	41	6	0	5.930591	-1.286584	-0.942167
2	6	0	-4.466945	3.182946	1.782525	42	6	0	5.021641	-1.666431	-2.087602
3	6	0	-4.758344	2.012777	1.125746	43	6	0	5.767969	0.742268	2.316334
4	6	0	-3.727000	1.224562	0.532117	44	6	0	-5.767749	0.741911	-2.316585
5	6	0	-2.361878	1.667675	0.607401	45	6	0	-5.021826	-1.666145	2.087771
6	6	0	-2.100453	2.848776	1.348678	46	1	0	-2.883255	4.505011	2.443785
7	6	0	-4.042399	-0.006466	-0.091524	47	1	0	-5.259150	3.775498	2.227392
8	6	0	-3.025278	-0.789257	-0.690346	48	1	0	-5.780839	1.661336	1.053692
9	6	0	-1.655396	-0.346757	-0.679696	49	1	0	-1.079965	3.168893	1.520824
10	6	0	-1.305422	0.881237	0.003146	50	1	0	-4.400886	-2.329930	-1.333253
11	6	0	-3.365429	-2.011064	-1.346309	51	1	0	-2.685132	-3.682807	-2.492213
12	6	0	-2.414003	-2.756377	-1.997269	52	1	0	-0.333546	-2.850413	-2.594175
13	6	0	-1.082439	-2.288410	-2.044758	53	1	0	0.304852	-0.782620	-1.490632
14	6	0	-0.718853	-1.118067	-1.411367	54	1	0	0.000015	2.518492	0.000121
15	6	0	-0.000000	1.433156	0.000091	55	1	0	5.780749	1.661189	-1.054025
16	6	0	1.305419	0.881208	-0.003029	56	1	0	5.258959	3.775282	-2.227816
17	6	0	1.655416	-0.346769	0.679827	57	1	0	2.883075	4.504858	-2.443947
18	6	0	3.025315	-0.789219	0.690499	58	1	0	1.079842	3.168830	-1.520669
19	6	0	4.042401	-0.006474	0.091557	59	1	0	-0.304844	-0.782718	1.490698
20	6	0	3.726960	1.224496	-0.532175	60	1	0	0.333638	-2.850408	2.594377
21	6	0	2.361842	1.667627	-0.607356	61	1	0	2.685286	-3.682628	2.492616
22	6	0	4.758254	2.012649	-1.125983	62	1	0	4.400995	-2.329757	1.333572
23	6	0	4.466799	3.182778	-1.782802	63	1	0	-8.268726	-0.301620	-2.013683
24	6	0	3.121308	3.596774	-1.898869	64	1	0	-9.125139	-1.715104	-0.167534
25	6	0	2.100351	2.848703	-1.348653	65	1	0	-7.637037	-2.341379	1.712273
26	6	0	0.718887	-1.118099	1.411492	66	1	0	8.268945	-0.301245	2.013316
27	6	0	1.082522	-2.288382	2.044969	67	1	0	9.125192	-1.714977	0.167277
28	6	0	2.414118	-2.756260	1.997577	68	1	0	7.636893	-2.341587	-1.712260
29	6	0	3.365519	-2.010947	1.346582	69	1	0	5.543365	-2.292611	-2.814379
30	6	0	-5.457860	-0.483014	-0.115000	70	1	0	4.144703	-2.220162	-1.733375
31	6	0	5.457870	-0.483007	0.114979	71	1	0	4.650009	-0.779214	-2.612615
32	6	0	-6.292071	-0.118792	-1.191281	72	1	0	5.414364	1.711196	1.946408
33	6	0	-7.614487	-0.574602	-1.190879	73	1	0	4.921230	0.264867	2.822173
34	6	0	-8.096153	-1.369573	-0.152800	74	1	0	6.542428	0.930324	3.062836
35	6	0	-7.259224	-1.721783	0.904213	75	1	0	-4.921082	0.264356	-2.822401
36	6	0	-5.930681	-1.286441	0.942214	76	1	0	-6.542193	0.930008	-3.063093
37	6	0	6.292193	-0.118595	1.191105	77	1	0	-5.414009	1.710822	-1.946745
38	6	Ō	7.614623	-0.574367	1.190624	78	1	0	-5.543704	-2.291952	2.814758
39	6	Ö	8.096193	-1.369478	0.152608	79	1	0	-4.145045	-2.220233	1.733706
40	6	0		-1.721875	-0.904254	80	1	0	-4.649941		2.612490

Table S6. Cartesian coordinates of anthroxyl radical 5

Center	Atomic		Atomic	Coord	linates (An	gstroms)
Number	Number	٢	Type	X	Y Y	Z
1	6	0		33603	-0.000000	1.938640
2	6	0		31188	-0.000000	0.532527
3	6	0		37114	-0.000000	-0.167507
4	6	0		11656	-0.000000	0.515662
5	6	0		59080	-0.000000	1.942388
6	6	0		78677	-0.000000	2.630155
7	6	0		00000	0.000000	-0.197189
8	6	0	-1.24	11656	0.000000	0.515662
9	6	0		59080	0.000000	1.942388
10	6	0		00000	-0.000000	2.717188
11	6	0		87114	0.000000	
12	6	0		81188	0.000000	0.532527
13	6	0		83603	0.000000	1.938640
14	6	0	-2.4	78677	0.000000	
15	8	0	0.0	00000	-0.000000	3.954199
16	6	0	-0.0	00000	0.000000	-1.689778
17	6	0		00000	-1.225677	-2.385819
18	6	0	-0.0	00000	-1.206811	
19	6	0	-0.0	00000	0.000000	-4.481523
20	6	0	-0.0	00000	1.206811	-3.784756
21	6	0	0.0	00000	1.225677	
22	6	0		00000	-2.531589	
23	6	0	0.0	00000	2.531589	-1.626997
24	1	0	4.6	24164	-0.000000	2.480976
25	1	0	4.6	22026	-0.000000	-0.010088
26	1	0	2.4	89336	-0.000000	
27	1	0	2.4	45141	-0.000000	3.714534
28	1	0	-2.4	89336	0.000000	-1.252137
29	1	0	-4.6	22026	0.000000	-0.010088
30	1	0	-4.6	24164	0.000000	2.480976
31	1	0	-2.4	45141	0.000000	3.714534
32	1	0	-0.0	00000	-2.147764	-4.328363
33	1	0	-0.0	00000	0.000000	-5.567724
34	1	0	0.0	00000	2.147764	-4.328363
35	1	0	-0.8	79104	-2.611480	-0.978175
36	1	0	-0.0	00000	-3.386358	-2.307976
37	1	0	0.8	79104	-2.611480	-0.978175
38	1	0	0.0	00000	3.386358	-2.307976
39	1	0	-0.8	79104	2.611480	-0.978175
40	1	0	8.0	79104	2.611480	-0.978175

References

[S1] Zhen, C. –J.; Lu, S. –F.; Lin, M. –H.; Wu, J. –T.; Chao, I.; Lin, C. –H. Chem. Eur. J. **2021**, 27, 16682-16689.

[S2] Lü, J. -M.; Rosokha, S. V.; Kochi, J. K. J. Am. Chem. Soc. 2003, 125, 12161-12171.