

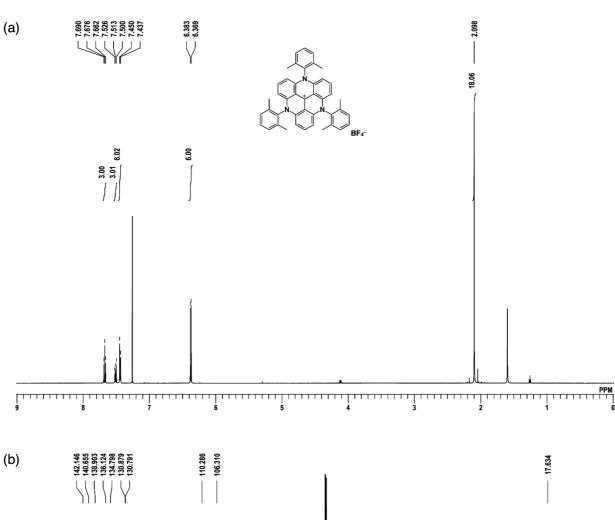
Supporting Information

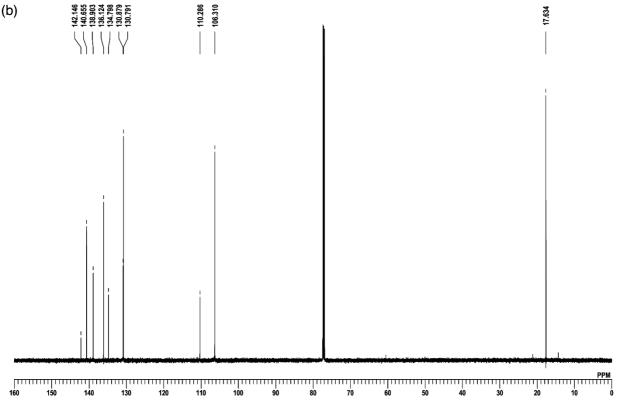
for

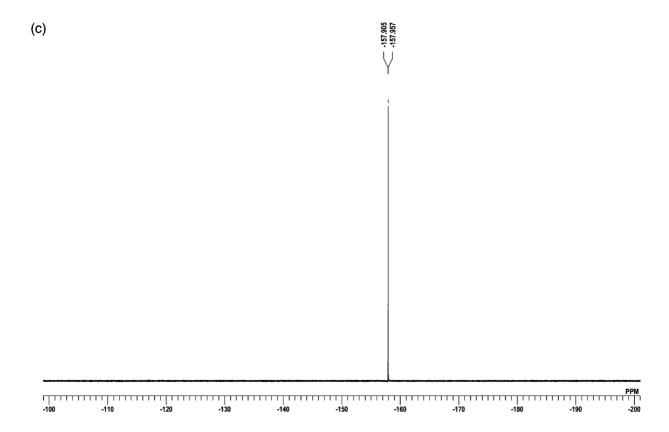
Anion-dependent ion-pairing assemblies of triazatriangulenium cation that interferes with stacking structures

Yohei Haketa, Takuma Matsuda and Hiromitsu Maeda

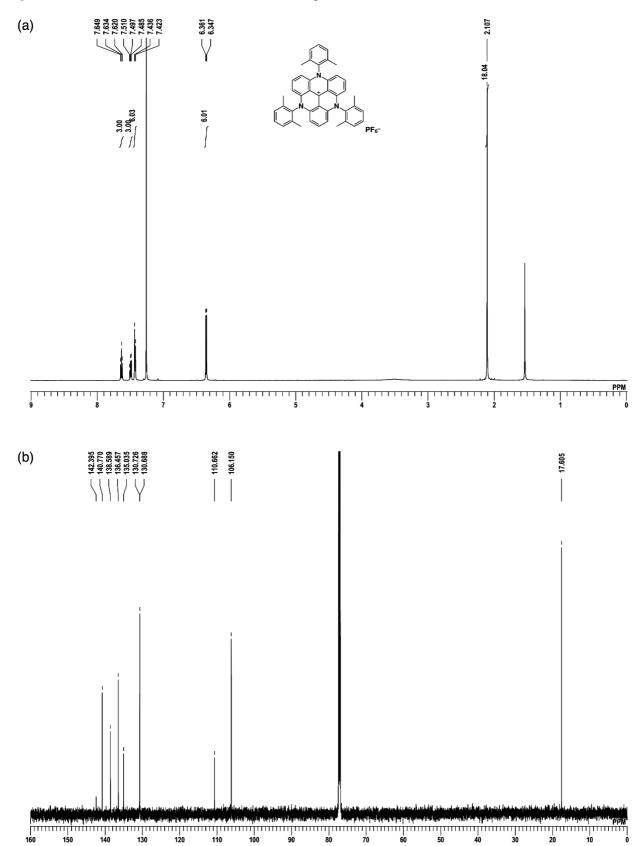
Beilstein J. Org. Chem. 2024, 20, 2567-2576. doi:10.3762/bjoc.20.215

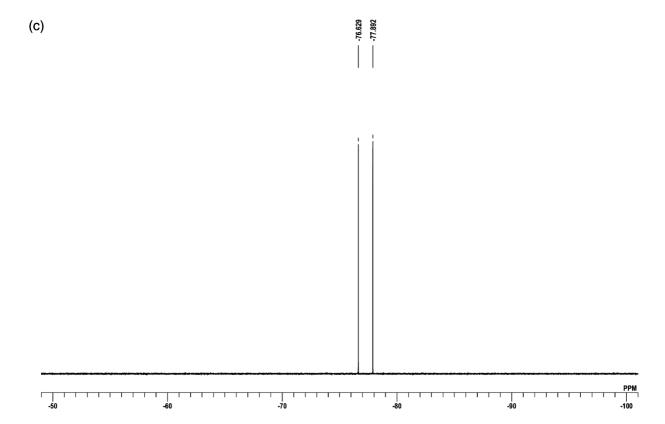

¹H, ¹³C, and ¹⁹F NMR spectra of new ion pairs, details for crystal structures, and theoretical calculations

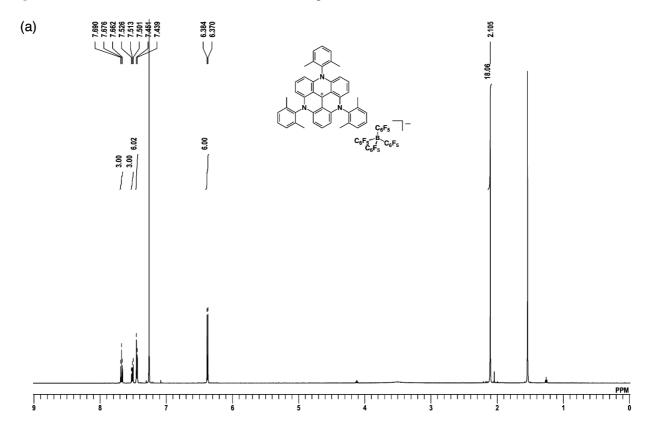

Table of contents

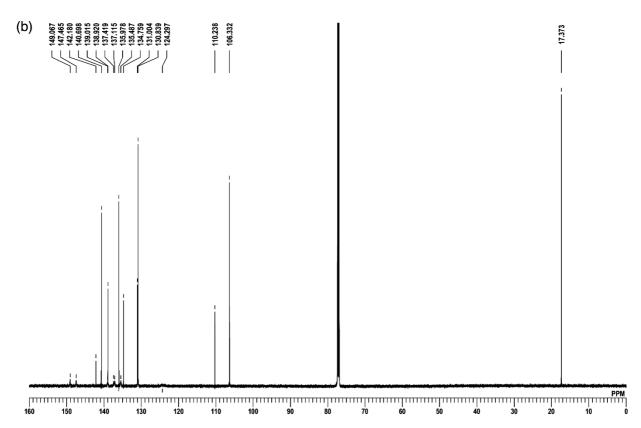

1. Spectroscopic data	S2
Figure S1–4 ¹ H and ¹³ C NMR spectra	S2
Figure S5 UV-vis absorption spectra	
2. X-ray crystallographic data	S10
Figure S6–10 Ortep drawings	S10
Figure S11–16 Packing diagrams	
Figure S17–21 Hirshfeld analysis	
3. Theoretical studies	S19
Figure S22 Optimized structure	S19
Figure S23 ESP mapping	S19
Figure S24,25 Molecular orbitals and TD-DFT calculations	S20
Figure S26–30 EDA analyses of single-crystal X-ray structures	
Cartesian coordination of optimized structures	S27

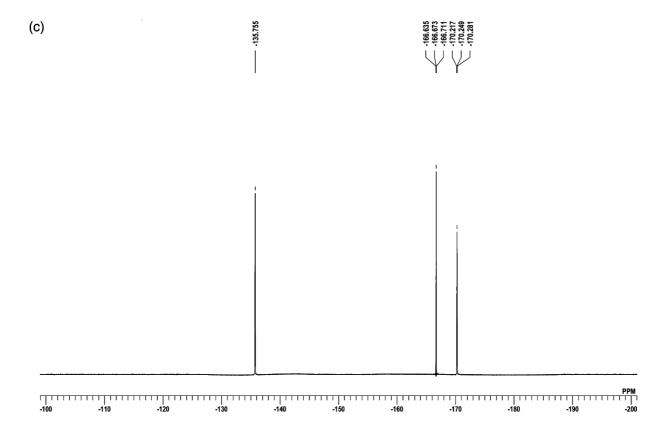
1. Spectroscopic data

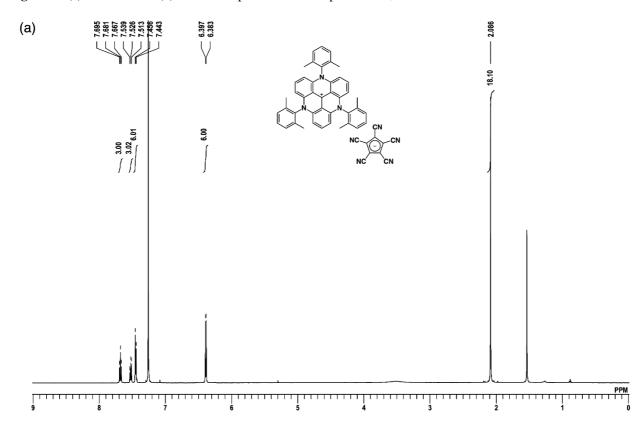

Figure S1 (a) 1 H NMR, (b) 13 C NMR, and (c) 19 F NMR spectra of $\mathbf{2}^{+}$ -BF $_{4}^{-}$ in CDCl₃.

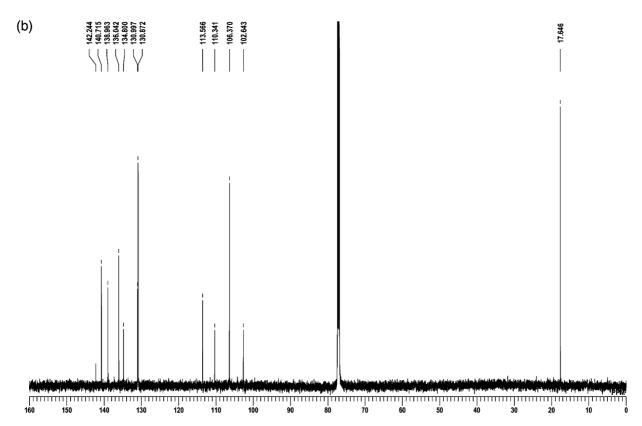





Figure S2 (a) 1 H NMR, (b) 13 C NMR, and (c) 19 F NMR spectra of **2**⁺-PF₆⁻ in CDCl₃.




Figure S3 (a) ${}^{1}H$ NMR, (b) ${}^{13}C$ NMR, and (c) ${}^{19}F$ NMR spectra of **2**⁺-B(C₆F₅)₄ in CDCl₃.



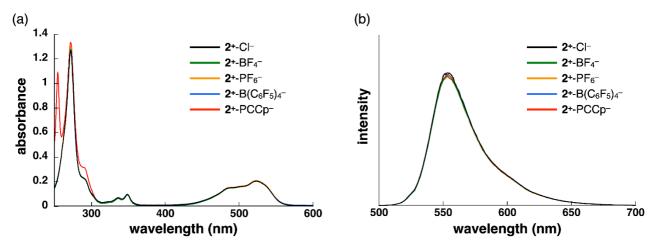
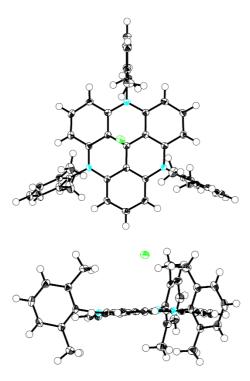
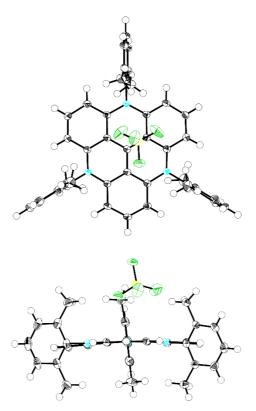
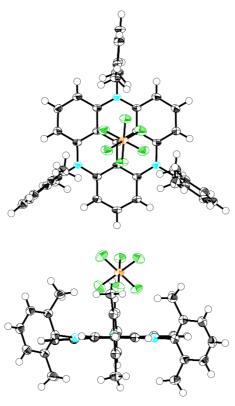


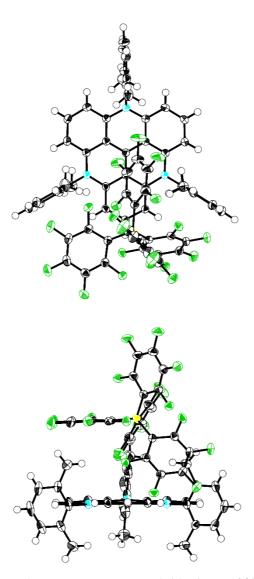
Figure S4 (a) ¹H NMR and (b) ¹³C NMR spectra of **2**⁺-PCCp⁻ in CDCl₃.

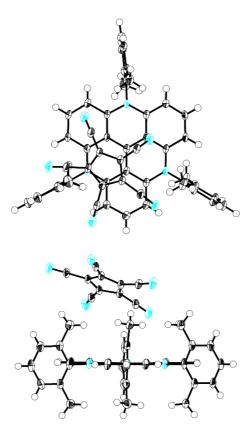


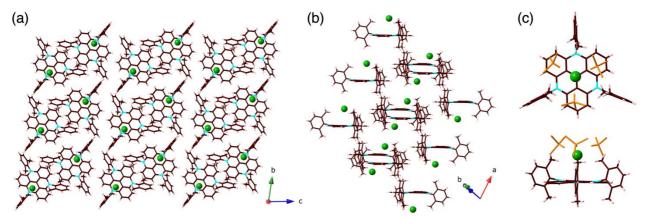

Figure S5 (a) UV–vis absorption and (b) fluorescence spectra of $\mathbf{2}^+$ -X $^-$ (X $^-$ = Cl $^-$,[S1] BF $_4$ $^-$, PF $_6$ $^-$, B(C $_6$ F $_5$) $_4$ $^-$, PCCp $^-$) in CH $_3$ CN (1 × 10 $^{-5}$ M) upon excitation at 524 nm for (b).

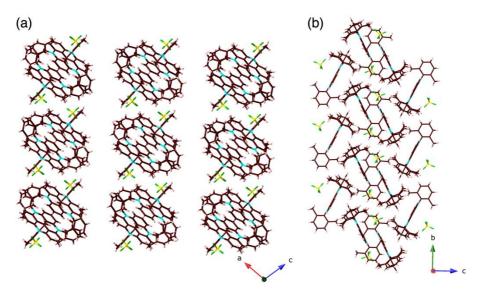
[S1] Li, D.; Silveira, O. J.; Matsuda, T.; Hayashi, H.; Maeda, H.; Foster, A. S.; Kawai, S. *Angew. Chem. Int. Ed.* **2024**, 63, e202411893.

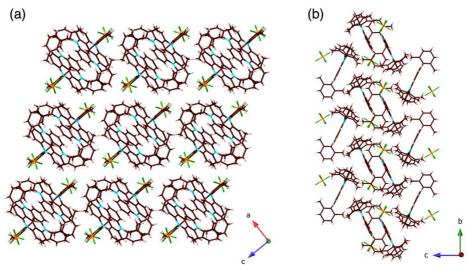

2. X-ray crystallographic data

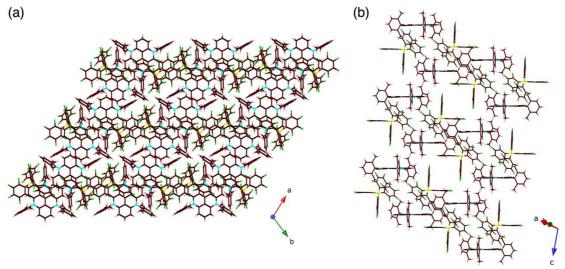

Figure S6 Ortep drawing of single-crystal X-ray structure (top and side views) of **2**⁺-Cl⁻. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom code: black, white (sphere), blue, and green refer to carbon, hydrogen, nitrogen, and chlorine, respectively.

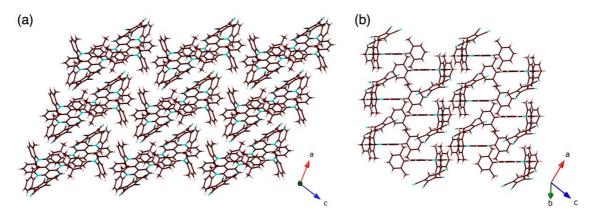

Figure S7 Ortep drawing of single-crystal X-ray structure (top and side views) of 2^+ -BF $_4^-$. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom code: black, white (sphere), yellow, blue, and green refer to carbon, hydrogen, boron, nitrogen, and fluorine, respectively.

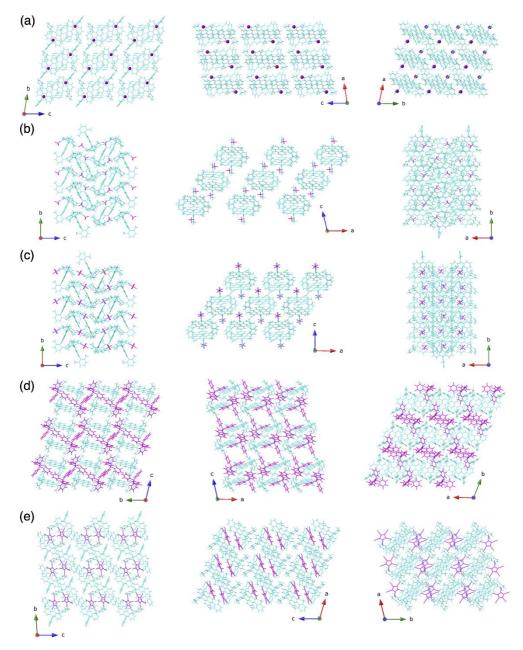

Figure S8 Ortep drawing of single-crystal X-ray structure (top and side views) of 2^+ -PF $_6^-$. Thermal ellipsoids are scaled to the 50% probability level. Atom code: black, white (sphere), blue, green, and tangerine refer to carbon, hydrogen, nitrogen, fluorine, and phosphorus, respectively.

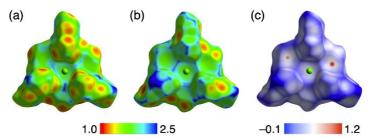

Figure S9 Ortep drawing of single-crystal X-ray structure (top and side views) of 2^+ -B(C₆F₅)₄. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom code: black, white (sphere), yellow, blue, and green refer to carbon, hydrogen, boron, nitrogen, and fluorine, respectively.

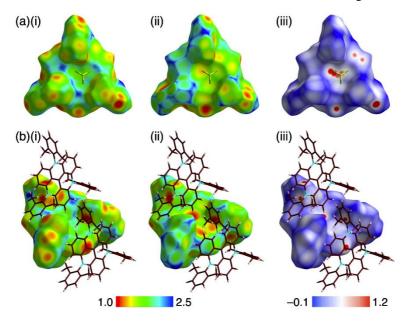

Figure S10 Ortep drawing of single-crystal X-ray structure (top and side views) of 2^+ -PCCp $^-$. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom code: black, white (sphere), and blue refer to carbon, hydrogen, and nitrogen, respectively.

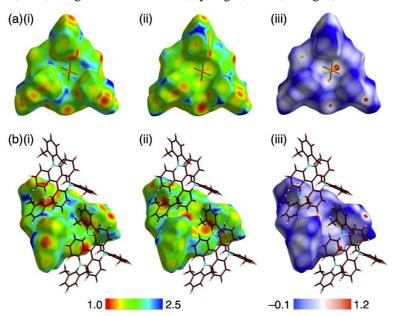

Figure S11 Single-crystal X-ray structure of 2^+ -Cl⁻: (a) top and (b) side views of the packing structure, and (c) monomers. Solvent molecules are omitted for clarity in (a) and (b). In (c), Cl⁻ formed hydrogen bonding with surrounding three CHCl₃ molecules (indicated as orange color). The dihedral angles between the TATA⁺ plane and N-aryl groups were 81.0° , 87.3° , and 89.9° . Atom color code: brown, pink, blue, and green refer to carbon, hydrogen, nitrogen, and chlorine, respectively.

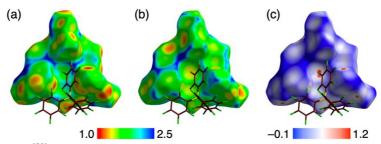

Figure S12 Single-crystal X-ray structure of 2^+ -BF₄⁻: (a) top and (b) side views. Solvent molecules are omitted for clarity. The dihedral angle between the TATA⁺ planes was 53.7°. Atom color code: brown, pink, yellow, blue, and green refer to carbon, hydrogen, boron, nitrogen, and fluorine, respectively.


Figure S13 Single-crystal X-ray structure of 2^+ -PF₆⁻: (a) top and (b) side views. The dihedral angle between the TATA⁺ planes was 51.4° . Atom color code: brown, pink, blue, green, and orange refer to carbon, hydrogen, nitrogen, fluorine, and phosphorus, respectively.


Figure S14 Single-crystal X-ray structure of 2^+ -B(C₆F₅)₄⁻: (a) top and (b) side views. Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, blue, and green refer to carbon, hydrogen, boron, nitrogen, and fluorine, respectively.


Figure S15 Single-crystal X-ray structure of 2^+ -PCCp $^-$: (a) top and (b) side views. Solvent molecules are omitted for clarity. The distance between the TATA $^+$ planes on the same column was 8.93 Å. Atom color code: brown, pink, and blue refer to carbon, hydrogen, and nitrogen, respectively.


Figure S16 Packing diagrams through a, b, and c axes of (a) $\mathbf{2}^+$ -Cl $^-$, (b) $\mathbf{2}^+$ -BF $_4^-$, (c) $\mathbf{2}^+$ -PF $_6^-$, (d) $\mathbf{2}^+$ -B(C $_6$ F $_5$) $_4^-$, and (e) $\mathbf{2}^+$ -PCCp $^-$, wherein cyan and magenta represent cation and anion parts, respectively.


Figure S17 Hirshfeld surfaces^[S2] of 2^+ -Cl⁻ in the crystal structure mapped with (a) d_i , (b) d_e , and (c) d_{norm} . d_i is a distance from the Hirshfeld surface to the nearest atom inside the surface, d_e is a distance from the Hirshfeld surface to the nearest atom outside the surface, and d_{norm} is a normalized contact distance. Atom color code: green refers to chlorine.

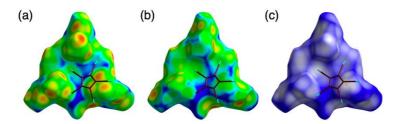

Figure S18 Hirshfeld surfaces^[S2] of 2^+ -BF₄⁻ in the crystal structure as (a) ion pair and (b) cations mapped with (i) d_i , (ii) d_e , and (iii) d_{norm} . d_i is a distance from the Hirshfeld surface to the nearest atom inside the surface, d_e is a distance from the Hirshfeld surface to the nearest atom outside the surface, and d_{norm} is a normalized contact distance. Atom color code: brown, pink, yellow, blue, and green refer to carbon, hydrogen, boron, nitrogen, and fluorine, respectively.

Figure S19 Hirshfeld surfaces^[S2] of 2^+ -PF₆⁻ in the crystal structure as (a) ion pair and (b) cations mapped with (i) d_i , (ii) d_e , and (iii) d_{norm} . d_i is a distance from the Hirshfeld surface to the nearest atom inside the surface, d_e is a distance from the Hirshfeld surface to the nearest atom outside the surface, and d_{norm} is a normalized contact distance. Atom color code: brown, pink, blue, green, and orange refer to carbon, hydrogen, nitrogen, fluorine, and phosphorus, respectively.

Figure S20 Hirshfeld surfaces^[S2] of 2^+ -B(C₆F₅)₄⁻ in the crystal structure mapped with (a) d_i , (b) d_e , and (c) d_{norm} . d_i is a distance from the Hirshfeld surface to the nearest atom inside the surface, d_e is a distance from the Hirshfeld surface to the nearest atom outside the surface, and d_{norm} is a normalized contact distance. Atom color code: brown, yellow, and green refer to carbon, boron, and fluorine, respectively.

Figure S21 Hirshfeld surfaces^[S2] of 2^+ -PCCp⁻ in the crystal structure mapped with (a) d_i , (b) d_e , and (c) d_{norm} . d_i is a distance from the Hirshfeld surface to the nearest atom inside the surface, d_e is a distance from the Hirshfeld surface to the nearest atom outside the surface, and d_{norm} is a normalized contact distance. Atom color code: brown and blue refer to carbon and nitrogen, respectively.

[S2] Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. *J. Appl. Cryst.* **2021**, *54*, 1006–1011.

3. Theoretical studies

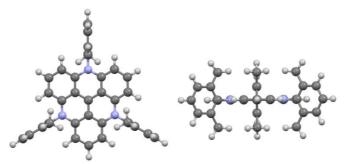
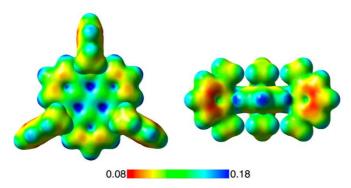
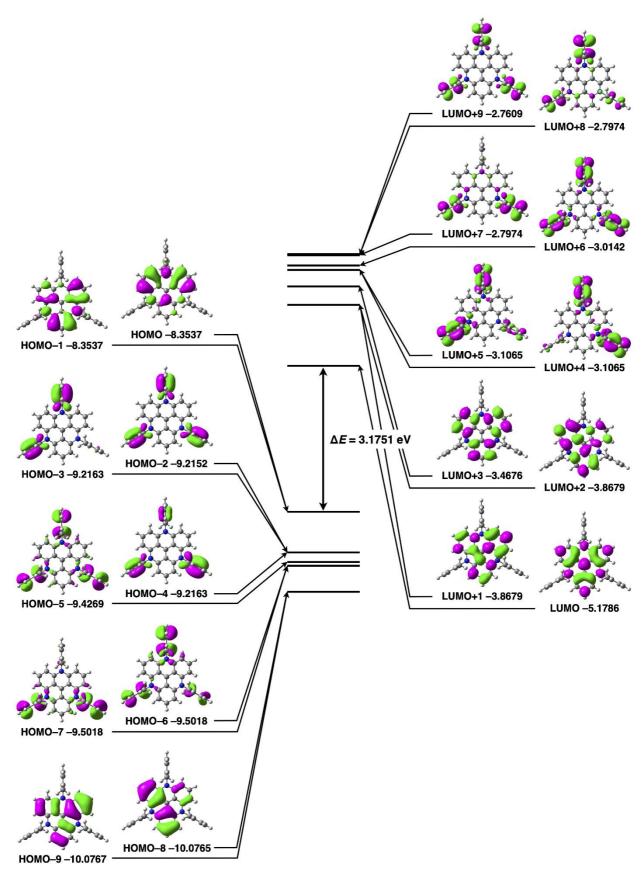
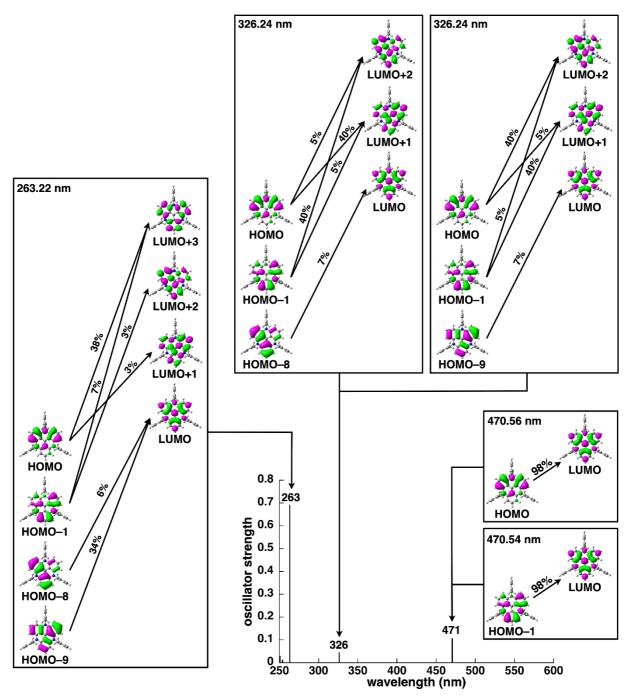


Figure S22 Optimized structure (top and side views) of 2⁺ at B3LYP/6-31+G(d,p).

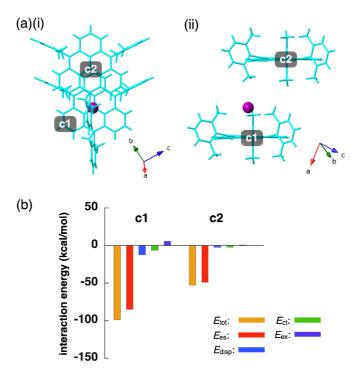

Figure S23 Electrostatic potentials (ESP) mapped onto the electron density isosurfaces (δ = 0.01) for top and side views of 2⁺ at B3LYP/6-31+G(d,p).

Figure S24 Molecular orbitals (HOMO/LUMO) of **2**⁺ estimated at B3LYP/6-31G(d,p).

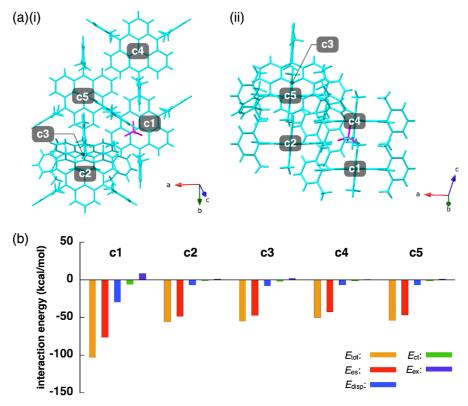

Figure S25 TD-DFT-based UV-vis absorption stick spectrum of **2**⁺ estimated at B3LYP/6-31G(d,p).

Figure S26 Single-crystal X-ray structure of 2^+ -Cl $^-$ for the EDA calculations (Table S1): (a) packing structures ((i) top and (ii) side views) and (b) intermolecular interaction energies (kcal/mol) between Cl $^-$ and selected 2^+ estimated at the FMO2-MP2 method using NOSeC-V-DZP with MCP. [S3-5]

Table S1 Energies between selected fragments in 2^+ -Cl $^-$ (Figure S26) estimated by EDA calculations based on an FMO2-MP2 using the basis set of NOSeC-V-DZP with MCP. [S3-5]

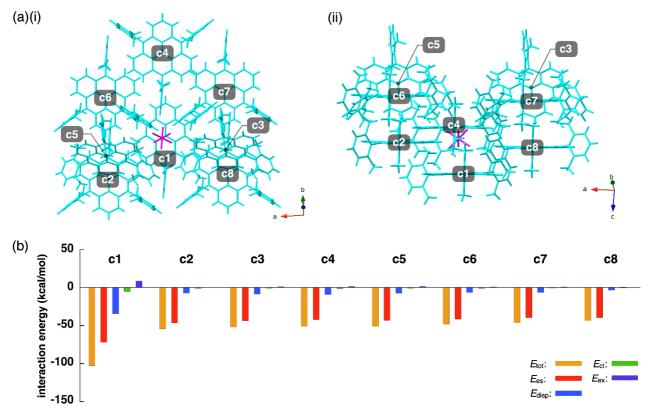

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy $(E_{\rm es})$	energy ($E_{\rm disp}$)	energy ($E_{\text{ct + mix}}$)	interaction energy ($E_{\rm ex}$)
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
Cl-c1	-98.717	-85.178	-12.516	-6.653	5.540
Cl-c2	-52.788	-49.000	-2.3600	-2.259	0.832

Figure S27 Single-crystal X-ray structure of 2^+ -BF $_4^-$ for the EDA calculations (Table S2): (a) packing structures ((i) top and (ii) side views) and (b) intermolecular interaction energies (kcal/mol) between BF $_4^-$ and selected 2^+ estimated at the FMO2-MP2 method using NOSeC-V-DZP with MCP. [S3-5]

Table S2 Energies between selected fragments in 2^+ -BF $_4^-$ (Figure S27) estimated by EDA calculations based on an FMO2-MP2 using the basis set of NOSeC-V-DZP with MCP. [S3-5]

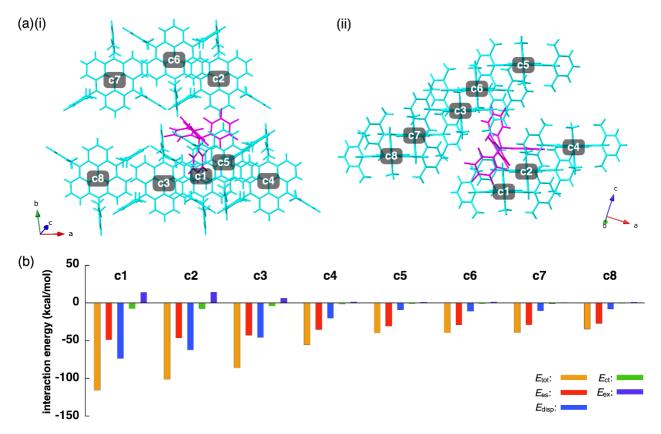
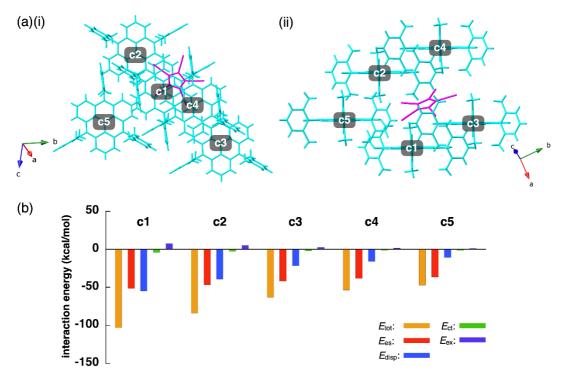

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy $(E_{\rm es})$	energy $(E_{\rm disp})$	energy $(E_{ct + mix})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
BF ₄ c1	-102.928	-76.282	-29.476	-5.649	8.480
BF_4 c2	-55.712	-48.578	-6.877	-1.193	0.935
BF ₄ c3	-53.964	-46.713	-6.808	-1.480	1.041
BF ₄ c4	-49.887	-42.543	-6.886	-1.276	0.818
BF ₄ c5	-54.956	-47.349	-7.743	-2.209	2.165

Figure S28 Single-crystal X-ray structure of 2^+ -PF $_6^-$ for the EDA calculations (Table S3): (a) packing structures ((i) top and (ii) side views) and (b) intermolecular interaction energies (kcal/mol) between PF $_6^-$ and selected 2^+ estimated at the FMO2-MP2 method using NOSeC-V-DZP with MCP.^[S3-5]

Table S3 Energies between selected fragments in 2^+ -PF $_6^-$ (Figure S28) estimated by EDA calculations based on an FMO2-MP2 using the basis set of NOSeC-V-DZP with MCP. [S3-5]


fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (E_{es})	energy $(E_{\rm disp})$	energy ($E_{\text{ct + mix}}$)	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
PF ₆ ⁻ -c1	-102.489	-71.920	-34.234	-5.012	8.677
PF ₆ ⁻ -c2	-54.268	-46.632	-7.228	-0.955	0.547
PF ₆ c3	-51.968	-43.416	-8.455	-1.285	1.187
PF_6^- -c4	-51.127	-42.181	-8.916	-1.402	1.372
PF_6^- -c5	-50.816	-43.287	-7.578	-1.292	1.341
PF ₆ ⁻ -c6	-48.140	-41.555	-6.562	-1.018	0.995
PF ₆ ⁻ -c7	-46.091	-39.493	-6.551	-0.901	0.853
PF ₆ ⁻ -c8	-43.390	-39.541	-3.505	-0.404	0.060

 $\textbf{Figure S29} \ \text{Single-crystal X-ray structure of } \textbf{2}^{\scriptscriptstyle +} - B(C_6F_5)_4^{\scriptscriptstyle -} \ \text{for the EDA calculations (Table S4): (a) packing structures ((i) top and (ii) side views) and (b) intermolecular interaction energies (kcal/mol) between $B(C_6F_5)_4^{\scriptscriptstyle -}$ and selected $\textbf{2}^{\scriptscriptstyle +}$ estimated at the FMO2-MP2 method using NOSeC-V-DZP with MCP.$^{[S3-5]}$ }$

Table S4 Energies between selected fragments in 2^+ -B(C₆F₅)₄ $^-$ (Figure S29) estimated by EDA calculations based on an FMO2-MP2 using basis set of NOSeC-V-DZP with MCP. [S3-5]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	$(E_{\rm tot})$	energy (E_{es})	energy $(E_{\rm disp})$	energy $(E_{\text{ct + mix}})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
$B(C_6F_5)_4$ c1	-115.698	-48.551	-73.682	-7.517	14.052
$B(C_6F_5)_4$ c2	-101.241	-46.392	-62.150	-7.259	14.560
$B(C_6F_5)_4$ c3	-86.012	-42.719	-45.520	-4.067	6.935
$B(C_6F_5)_4^c4$	-55.396	-35.217	-20.276	-1.282	1.379
$B(C_6F_5)_4^c_5$	-39.621	-30.683	-9.194	-0.945	1.210
$B(C_6F_5)_4^c6$	-39.425	-28.828	-10.850	-1.103	1.357
$B(C_6F_5)_4^c7$	-39.302	-28.890	-10.229	-0.835	0.652
$B(C_6F_5)_4^c8$	-34.495	-27.114	-7.905	-0.676	1.199

Figure S30 Single-crystal X-ray structure of 2^+ -PCCp $^-$ for the EDA calculations (Table S5): (a) packing structures ((i) top and (ii) side views) and (b) intermolecular interaction energies (kcal/mol) between PCCp $^-$ and selected 2^+ estimated at the FMO2-MP2 method using NOSeC-V-DZP with MCP. [S3-5]

Table S5 Energies between selected fragments in 2^+ -PCCp $^-$ (Figure S30) estimated by EDA calculations based on an FMO2-MP2 using the basis set of NOSeC-V-DZP with MCP. [S3-5]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	$(E_{\rm tot})$	energy $(E_{\rm es})$	energy $(E_{\rm disp})$	energy ($E_{\text{ct}+\text{mix}}$)	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
PCCpc1	-103.180	-51.513	-54.901	-4.109	7.344
PCCpc2	-83.820	-46.847	-39.318	-2.683	5.028
PCCpc3	-63.111	-41.779	-21.707	-2.214	2.589
PCCpc4	-53.593	-38.366	-15.768	-1.126	1.667
PCCpc5	-46.988	-36.286	-10.655	-1.137	1.090

Cartesian Coordination of 2+

-1824.5377133 hartree

C,-0.3280394164,-0.2081893775,0.6435716534 C.-1.2469212786.0.5787239715.1.3751901435 C,-2.2069791359,-0.0535496247,2.2220161073 C,-1.2101006892,2.0016521517,1.2634834181 C.-3.1115041463.0.737894834.2.941329104 $C,\!-2.1261063566,\!2.7694192096,\!1.9938471736$ C,-3.0523887458,2.1250015044,2.8128618621 H,-3.8475951236,0.2807882917,3.5890367782 H -2.1167740751.3.8489780644.1.9248355989 H,-3.7580028886,2.729320035,3.3747551758 C,-0.3613116145,-1.617475456,0.7515256347 C,-1.3244292482,-2.2422341587,1.6004652429 C,0.5683632174,-2.4086825025,0.0110668496 C,-1.3464868964,-3.639345043,1.6982462171 C,0.5245096705,-3.8038736505,0.1271718046 C.-0.4266918242.-4.3866340294.0.9636492971 H,-2.0672787743,-4.1344659162,2.3351284151 H.1.2190022258.-4.4234033599.-0.424334791 H,-0.4522459178,-5.4688949193,1.0465580742 C,0.6241316708,0.4141770056,-0.1960076247 C,0.6545070561,1.8376829402,-0.3023502105 C,1.5504165633,-0.3840054494,-0.9332273015 C,1.6029284464,2.4414509916,-1.1377816219 C,2.4885234653,0.245367819,-1.7613811967 C,2.4950148621,1.6370919491,-1.8457830311 H,1.6445949703,3.518164098,-1.2340412871 H.3.2000439343.-0.3390356414.-2.3293064961 H,3.2261988455,2.1150424728,-2.4905685629 N.-0.2620185643.2.5884996428.0.4293243706 N.1.4955133755.-1.7698027937.-0.8082897859 N,-2.2176172842,-1.4432671994,2.3096857137 C,-1.0085688638,4.6542734005,-0.6757957358 C,-0.22791574,4.0378983413,0.3182751733 C,0.5841311454,4.7612795203,1.2097986514 C, 0.6005020176, 6.1566113653, 1.0835107383C.-0.1632329592.6.7965791559.0.107087402 C,-0.9594573127,6.0518051935,-0.7633100905 H.1.2185101189.6.7414077.1.758443492 H,-0.1378590906,7.8788600345,0.0242351259 H,-1.5519773456,6.5552715656,-1.5215296193 C,-5.0613070607,-3.3009404025,4.8165461577 C,-3.8134072174,-2.9432475498,5.3274742521 C,-2.8533297897,-2.3258171824,4.5149448995 C,-3.196997323,-2.083328139,3.1730787556 C.-4.4460155139,-2.4323253216,2.6293260567 C,-5.3733490406,-3.0475527156,3.4806296632

H,-5.792707515,-3.7786223239,5.4613034923

H.-3.5758320412.-3.1429953338.6.3682033116 H,-6.3463129961,-3.3282408241,3.0881842064 C,2.0811365634,-3.0065579953,-2.8512226256 C,3.0081474868,-3.7850342534,-3.5567726884 C,4.2395681987,-4.1192748504,-2.9927325412 C,4.5679484039,-3.6804998267,-1.709806949 C,3.6736787979,-2.8998283006,-0.9654892183 C, 2.4406074733, -2.5791487106, -1.560639434H,2.7577325959,-4.1294351361,-4.5558405475 H,4.9453249355,-4.7235087071,-3.5545595466 H 5 5279520646 -3 9437886696 -1 2756084391 C,1.411077798,4.0687950647,2.2672072895 H,2.1331431379,3.373621747,1.8244840163 H.1.9699583796.4.7992879092.2.8561330784 H,0.7844117951,3.4924728617,2.9569977367 C,-1.8709294306,3.8483004924,-1.6182536998 H,-1.2746910403,3.1442360956,-2.2093801176 H.-2.6236964388.3.2640222788.-1.0772913698 H,-2.396505215,4.5058676641,-2.3140817327 C.-4.7843127183.-2.1582320042.1.1829786772 H,-5.7956285282,-2.5012845591,0.9541601298 H,-4.7341018459,-1.0882842258,0.952013838 H,-4.0954292653,-2.6713060599,0.5026477755 C,-1.5023157758,-1.9388135055,5.0685560955 H,-0.6880552396,-2.4436265895,4.5367635714 H,-1.3259262736,-0.8604607061,4.9867527918 H.-1.4288057734.-2.2092241039.6.1241490971 C,4.0295210811,-2.4252450224,0.4236252056 H,4.0298625771,-1.3314757608,0.4892756391 H,3.3199839309,-2.7965191199,1.1715462902 H.5.0246180512.-2.7761864396.0.7054482145 C.0.7478767558.-2.6451483164.-3.4622011187 H,-0.0873235719,-3.0248968988,-2.863114689 H,0.6224021598,-1.5598057218,-3.5454398553 H,0.6582468648,-3.0687164339,-4.4648768616

[S3] Articles for GAMESS: (a) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347-1363. (b) Gordon, M. S.; Schmidt, M. W. In Theory and Applications of Computational Chemistry: the first forty years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E. Eds.; Elsevier, 2005, pp. 1167-1189. [S4] Report for FMO: Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.;

Uebayasi, M. Chem. Phys. Lett. 1999, 313, 701-706.

[S5] Report for pair interaction energy decomposition analysis (PIEDA): Fedorov, D. G.; Kitaura, K. J. Comput. Chem. 2007, 28, 222-237.