Supporting Information

for

Optimizations of lipid II synthesis: an essential glycolipid precursor in bacterial cell wall synthesis and a validated antibiotic target
Milandip Karak, Cian R. Cloonan, Brad R. Baker, Rachel V. K. Cochrane and Stephen A. Cochrane

Beilstein J. Org. Chem. 2024, 20, 220-227. doi:10.3762/bjoc.20.22

Experimental procedures, characterization data, and selected copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra

Table of contents

General experimental information S3
Experimental procedures and characterization of products S5
2-Deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl-1-(2,2,2-trichloroacetimidoyl)- α-D- glucopyranoside (1a). S5
2-Deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl-1-(2,2,2-trifluoro-N- phenylacetimidoyl)- α-D-glucopyranoside (1b). S7
Phenyl-2-deoxy-1-thio-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl- β-D- glucopyranoside (1c) S8
4-Methylphenyl-2-deoxy-1-thio-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl- β-d- glucopyranoside (1d) S8
2-(Acetylamino)-2-deoxy-3,4,6-triacetyl-1-(2,2,2-trichloroethanimidate)- α-d-glucopyranoside (1e) S9
Phenyl-2-(acetylamino)-2-deoxy-1-thio-3,4,6-triacetyl- β-d-glucopyranoside (1f) S11
2-(Acetylamino)-2-deoxy-3,4,6-triacetyl-1-(2,2,2-trifluoro-N-phenylacetimidoyl)- β-D- glucopyranoside (1g). S11
Alanine-2-(phenylsulfonyl)ethyl ester (S7) S13
N-Acetyl-1-O-(phenylmethyl)-4,6-O-(phenylmethylene)- α-d-muramic acid (S10) S14
Phenylmethyl-2-(acetylamino)-2-deoxy-3-0-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2-
(phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-4,6-O-[(R)-phenylmethylene]- α-д- glucopyranoside (S11). S15
Phenylmethyl-2-(acetylamino)-2-deoxy-3-0-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2- (phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-6-0-(phenylmethyl)- α-д-glucopyranoside (2a). S16
Phenylmethyl-2-(acetylamino)-2-deoxy-3-0-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2- (phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-6-0-(acetyl)- α-ь-glucopyranoside (2b) S17
Phenylmethyl-2-(acetylamino)-2-deoxy-3-0-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2-(phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-6-0-(phenylmethyl)-4-0-[3,4,6-tri-O-acetyl-
2-deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]- β-ь-glucopyranosyl]- α-d-glucopyranoside (3a)... S19
Phenylmethyl 2-(acetylamino)-2-deoxy-3-0-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2- (phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-4-0-[3,4,6-tri-O-acetyl-2-(acetylamino)-2- deoxy- β-D-glucopyranosyl]-6-O-acetyl- α-d-glucopyranoside (4) S21
N-[N-Acetyl-6-O-acetyl-1-hydroxy-4-O-[3,4,6-tri-O-acetyl-2-(acetylamino)-2-deoxy- β-d- glucopyranosyl]- α-muramoyl]-l-alanine-2-(phenylsulfonyl)ethyl ester (5) S22
N-[N-Acetyl-6-O-acetyl-1-O-[bis(phenylmethoxy)phosphinyl]-4-0-[3,4,6-tri-O-acetyl-2-(acetylamino)-2- deoxy- β-d-glucopyranosyl]- α-muramoyl]-l-alanine-2-(phenylsulfonyl)ethyl ester (6). S23
Boc-d-Ala-d-Ala-OMe (S14) S25
Boc-Lys-д-Ala-d-Ala-OMe (S15) S25
 S26
N-[N-Acetyl-6-O-acetyl-1-O-[bis(phenylmethoxy)phosphinyl]-4-O-[3,4,6-tri-O-acetyl-2-(acetylamino)-2-deoxy- β-ь-glucopyranosyl]- α-muramoyl]-alanyl-д- γ-glutamyl-N6-
(2,2,2-trifluoroacetyl)-lysyl-d-alanyl-d-alanyl-2,5-dimethyl ester (7) S28
Undecaprenol (S17). S29
Undecaprenyl phosphate bisammonium salt (Und-P, S18). S30
Farnesyl phosphate (S20) S31
Geranylgeranyl phosphate (S22) S32
Solanesyl phosphate (S24). S32
Lipid II diammonium salt (11) S33
Farnesyl lipid II analogue (8) S35
Geranylgeranyl lipid II analogue (9). S35
Solanesyl lipid II analogue (10) S35
References. S36
Spectroscopic data of synthesized compounds S37

General experimental information

Solvents and reagents

All experiments were conducted using flame-dried glassware under an inert atmosphere unless otherwise indicated. To safeguard against undesired reactions of air and moisturesensitive reagents, they were introduced while maintaining the inert environment. Dry solvents were prepared by adding $20 \mathrm{wt} \% / \mathrm{v}$ freshly activated $3 \AA$ molecular sieves (MS) from HPLC grade solvents within an inert atmosphere, allowing them to stand for $24-48$ hours. All remaining solvents and reagents were sourced directly from commercial suppliers.

Chromatography

Reactions were monitored through the use of thin-layer chromatography (TLC). We employed Merck Kieselgel 60 F254 silica plates with a particle size of 230-400 mesh for TLC. Visualization was achieved through staining with either aqueous potassium permanganate or phosphomolybdic acid solutions, or by employing UV light at wavelengths of 254 or 354 nm .

Spectroscopy

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance (NMR) spectra were recorded at 400 MHz using a Bruker spectrometer with TopSpinTM software. The spectra are quoted in parts per million (ppm) relative to tetramethylsilane, and the samples were prepared by dissolving the material in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$, or DMSO- d_{6}. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were acquired at 298 K and were processed and viewed using MestreNova. The chemical shifts (δ) are given in ppm and coupling constants (J) are given in hertz (Hz). The multiplicity is abbreviated as app = apparent, $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, and $\mathrm{m}=$ multiplet. The ${ }^{13} \mathrm{C}$ NMR spectra are reported in δ / ppm. High-resolution mass spectra
(HRMS) were recorded on a ToF mass spectrometer using the electrospray ionization (ESI) technique.

Purification of compounds using high-performance liquid chromatography (HPLC)

After the final step, all lipid II analogues were purified by reversed-phase high-performance column chromatography (RP-HPLC). Purification was performed on a Perkin Elmer HPLC system composed of a 200 series binary pump, UV-vis detector, vacuum degasser, Rheodyne 7725 i injector equipped with a 2 mL sample loop, and Phenomenex Luna C18 column ($5 \mu \mathrm{~m}$, $250 \times 21.2 \mathrm{~mm}$). The system was operated using ThermoFisher Chromeleon 7.2 software. Runs were performed at a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ with UV detection at 220 nm . Solvent A $=50 \mathrm{mM}$ $\mathrm{NH}_{4} \mathrm{HCO}_{3}(\mathrm{aq})$, solvent $\mathrm{B}=\mathrm{MeOH}$. Gradient $=2$ to 98% B over $30 \mathrm{~min}, 98 \%$ B for 10 min , 98 to 2% B over 1 min and 2% B for 4 min . Product-containing fractions were pooled, concentrated under vacuum to remove MeOH , frozen, and then lyophilized to yield pure lipid II analogues as white flocculent solids.

Experimental procedures and characterization of products

Scheme S1: Synthesis of glycosyl donors 1a-d.

2-Deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl-1-(2,2,2-trichloroacetimidoyl)- $\alpha-$--glucopyranoside (1a)

Compound 1a was synthesized according to a previously reported procedure [1], with modifications. Initially, d-glucosamine hydrochloride (S1, $20.0 \mathrm{~g}, 92.75 \mathrm{mmol}$) and sodium bicarbonate ($15.6 \mathrm{~g}, 185.6 \mathrm{mmol}$) were dissolved in 240 mL of water and stirred vigorously for 5 minutes. Subsequently, 2,2,2-trichloroethoxycarbonyl chloride ($15.3 \mathrm{~mL}, 111.2 \mathrm{mmol}$) was added drop by drop, and the solution was stirred at room temperature for 2 hours, leading to the formation of a white precipitate. The suspension was filtered, washed with water, and coevaporated with toluene ($3 \times 50 \mathrm{~mL}$).

The resulting white powder was then dissolved in dry pyridine (150 mL) and acetic anhydride (75 mL) and stirred at room temperature for 18 hours. The reaction mixture was concentrated under vacuum and co-evaporated with toluene ($3 \times 50 \mathrm{~mL}$). The oily residue obtained was dissolved in $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$. The aqueous
phase was back-extracted with $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$, and the combined organic extracts were washed with brine $(100 \mathrm{~mL})$. The organic phase was dried over anhydrous sodium sulfate and concentrated under vacuum, resulting in the formation of 1,3,4,6-tetra- O-acetyl-2-troc-dglucosamine $\mathbf{S} 2$ as a white solid $(26.2 \mathrm{~g}, 50.22 \mathrm{mmol})$.

Subsequently, compound S2 was dissolved in dry DMF (200 mL), and hydrazine acetate $(5.56 \mathrm{~g}, 60.26 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 40 minutes, then diluted with EtOAc $(300 \mathrm{~mL})$ and washed with water $(300 \mathrm{~mL})$, saturated sodium bicarbonate (200 mL), and water (200 mL). The combined aqueous phases were backextracted with EtOAc $(300 \mathrm{~mL})$, and the combined organic extracts were washed with brine (200 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum.

The resulting white solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, and trichloroacetonitrile $(50.3 \mathrm{~mL}, 502.2 \mathrm{mmol})$ was added. To this mixture, 1,8 -diazabicycloundec-7-ene (1.5 mL , 10 mmol) was introduced, and the reaction mixture was stirred at room temperature for 90 minutes. The crude reaction mixture was then purified via flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, using a $2: 1$ hexane/EtOAc mixture with 0.1% triethylamine) to obtain product 1a as a light-yellow foam (48\% yield over 4 steps). The spectroscopic data were in agreement with those previously reported.[1] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~s}, 1 \mathrm{H}$, acetimidate-NH), 6.43 $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 5.36(\mathrm{dd}, J=10.8,9.5 \mathrm{~Hz}, \mathrm{H} 3), 5.29-5.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4$, Troc-NH), 4.76-4.68 (m, 2H, Troc- $\left.\mathrm{CH}_{2}\right), 4.32-4.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2+\mathrm{H} 6), 4.17-4.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5+\mathrm{H} 6), 2.08$ $(\mathrm{s}, 3 \mathrm{H}, 1 \times \mathrm{Ac}), 2.06(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{Ac}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,170.5,169.3,160.4$, 154.1, $95.2,94.5,90.7,74.7,70.3,67.4,61.4,53.9,20.7,20.6$. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Cl}_{6} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$644.9147, found 644.9172 .

2-Deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl-1-(2,2,2-trifluoro-N-phenylacetimidoyl)- $\alpha-\infty$-glucopyranoside (1b)

Compound 1b was synthesized according to a previously reported procedure[2], with modifications. Dissolve Troc-protected 1,3,4,6-tetra- O-acetyl-d-glucosamine $\mathbf{S 2}$ (1 g, 2.08 mmol) in 20 mL of dry DMF, and add hydrazine acetate ($212 \mathrm{mg}, 2.08 \mathrm{mmol}$). Stir the reaction mixture at room temperature for 40 minutes. Next, dilute the mixture with 30 mL of EtOAc and wash it successively with 30 mL of water, 20 mL of saturated sodium bicarbonate, and 20 mL of water. The combined aqueous phases were back-extracted with 30 mL of EtOAc, and the combined organic extracts were washed with 20 mL of brine, dried using anhydrous sodium sulfate, and concentrated under vacuum. The resulting white solid was then dissolved in 50 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and (N -phenyl)-2,2,2-trifluoroacetimidoyl chloride (0.90 mL , 6.24 mmol) was added to the mixture. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and then 1,8 -diazabicycloundec-7-ene ($0.31 \mathrm{~mL}, 2.08 \mathrm{mmol}$) was added to it. Stir the reaction mixture at room temperature for 6 hours, and concentrate it under vacuum. The crude residue was purified by flash column chromatography using silica gel $\left(\mathrm{SiO}_{2}\right)$ with hexane/EtOAc 3:1 mixture to yield product 1b as a white solid ($361 \mathrm{mg}, 29 \%$ yield over 4 steps). The spectroscopic data were in agreement with those previously reported.[2] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28$ (m, 2H, Ar-H), 7.17-7.10 (m, 1H, Ar-H), $6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 5.40-5.23(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H} 1+\mathrm{H} 3), 5.14(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.81-4.68\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Troc}-\mathrm{CH}_{2}\right), 4.29(\mathrm{dd}, J=12.7,4.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 6), 4.20-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6$ ') , 2.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 2.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{AC}$), 2.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}) .{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.6,169.3,142.9,128.9,124.7,119.2,94.6,76.7,74.6,72.9$, 71.6, 68.0, 61.6, 55.3, 20.7, 20.6, 20.5. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$ 651.0521, found 651.0436.

Phenyl-2-deoxy-1-thio-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl- β-Dglucopyranoside (1c)

Compound 1c was synthesized according to a previously reported procedure[3], with modifications. Compound $\mathbf{S 2}(3.0 \mathrm{~g}, 5.75 \mathrm{mmol})$ was dissolved in 20 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then, thiophenol ($0.88 \mathrm{~mL}, 8.62 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.45 \mathrm{~mL}, 11.3 \mathrm{mmol})$ were added to the solution. Stir the reaction mixture at room temperature for 24 hours. Afterward, dilute the reaction mixture with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then wash it with saturated NaHCO_{3} solution $(2 \times 20$ mL), and dry it over MgSO_{4}. Filter the mixture and concentrate it under vacuum. The resulting crude residue was purified through flash column chromatography on silica gel, using a gradient of $8: 2$ to $7: 3$ hexane/EtOAc, yielding product 1 c as a white solid ($1.51 \mathrm{~g}, 46 \%$ over 4 steps). The spectroscopic data were in agreement with those previously reported.[3] ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31(\mathrm{dd}, J=4.9,1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.29(\mathrm{t}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 1), 5.03(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 4.87(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.84-4.69(\mathrm{~m}, 2 \mathrm{H}$, Troc- CH_{2}), $4.20(\mathrm{qd}, J=12.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2+\mathrm{H} 6), 3.78-3.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5+\mathrm{H} 6$ '), $2.08(\mathrm{~s}$, $3 \mathrm{H}, 1 \times \mathrm{Ac}), 2.01(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Ac}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,169.4,153.9,133.0$, $132.0,129.0,128.4,95.4,86.6,75.9,74.6,73.2,68.6,62.3,60.4,55.2,21.0,20.7,20.6,20.5$, 14.2. HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{NO}_{9} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 594.0135$, found 594.0123 .

4-Methylphenyl-2-deoxy-1-thio-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4,6-triacetyl-β-D-glucopyranoside (ld)

Compound 1d was synthesized according to a previously reported procedure[4], with modifications. Compound $\mathbf{S} \mathbf{2}(3 \mathrm{~g}, 5.75 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. p-Toluenethiol ($1.07 \mathrm{~g}, 8.62 \mathrm{mmol}$) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(1.3 \mathrm{~mL})$ were added, and the reaction mixture was stirred at room temperature for 24 h . Then, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, dried over MgSO_{4},
filtered, and concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel using a gradient of $8: 2$ to 7:3 hexane/EtOAc, yielding thioglycoside $\mathbf{1 d}$ as a white solid ($1.65 \mathrm{~g}, 49 \%$ yield over 4 steps). The spectroscopic data were in agreement with those previously reported.[4] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.38(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.26(\mathrm{td}, J=13.2,11.4,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1+\mathrm{H} 3), 5.01$ (t, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.86-4.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Troc}-\mathrm{CH} 2), 4.73(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.20$ $(\mathrm{qd}, J=12.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6+\mathrm{H} 6$ '), $3.74-3.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5+\mathrm{H} 2), 2.35(\mathrm{~s}, 3 \mathrm{H}$ Tol-CH 3$), 2.08$ (s, $3 \mathrm{H} 1 \times \mathrm{Ac}$), $2.00(\mathrm{~s}, 6 \mathrm{H} 2 \times \mathrm{Ac}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.5,169.4,153.8$, 138.7, 133.7, 129.7, 127.9, 95.4, 86.7, 75.8, 74.6, 73.2, 68.6, 62.3, 55.1, 21.2, 20.7, 20.6, 20.5. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{NO}_{9} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$608.0286, found: 608.0312.

Scheme S2: Synthesis of glycosyl donors 1e-g.

2-(Acetylamino)-2-deoxy-3,4,6-triacetyl-1-(2,2,2-trichloroethanimidate)- α-d-glucopyranoside (1e)

Compound 1e was synthesized according to a previously reported procedure[5], with modifications. d-Glucosamine hydrochloride ($\mathbf{S 1}, 20 \mathrm{~g}, 92.75 \mathrm{mmol}$) was dissolved in 150 mL
of dry pyridine and 75 mL of acetic anhydride, and the mixture was stirred at room temperature for 18 hours. The resulting reaction mixture was concentrated under vacuum and co-evaporated with toluene $(3 \times 50 \mathrm{~mL})$. The oily residue obtained was dissolved in 200 mL of CHCl_{3} and washed with 100 mL of 1 M HCl . The aqueous phase was back-extracted with 200 mL of CHCl_{3}, and the combined organic extracts were washed with 100 mL of brine. After drying the organic phase with anhydrous sodium sulfate, it was concentrated under vacuum to yield 1,3,4,6-tetra- O-acetyl-2-acetyl-d-glucosamine ($\mathbf{(S 3)}$ as a white solid.

Compound $\mathbf{S 3}$ ($6 \mathrm{~g}, 15.41 \mathrm{mmol}$) was then dissolved in 40 mL of dry DMF, and hydrazine acetate ($1.7 \mathrm{~g}, 18.4 \mathrm{mmol}$) was added to it. The reaction mixture was stirred at room temperature for 40 minutes, diluted with 100 mL of EtOAc , and washed with 100 mL of water, saturated sodium bicarbonate, and water. The combined aqueous phases were back-extracted with 100 mL of EtOAc, and the combined organic extracts were washed with 100 mL of brine. After drying with anhydrous sodium sulfate, the organic phase was concentrated under vacuum.

The resulting white solid was dissolved in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and trichloroacetonitrile ($15.5 \mathrm{~mL}, 154.1 \mathrm{mmol}$) was added to it. Then, 1,8 -diazabicycloundec-7-ene (0.46 mL , 3.08 mmol) was added, and the reaction mixture was stirred at room temperature for 90 minutes and concentrated under vacuum. The crude reaction mixture was purified via flash column chromatography on silica gel, using a $2: 1$ hexane/EtOAc mixture with 0.1% triethylamine, to obtain product $\mathbf{1 e}$ as a light-yellow foam ($3.4 \mathrm{~g}, 45 \%$ yield in 3 steps). The spectroscopic data were in agreement with those previously reported.[5] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.80(\mathrm{~s}$, 1 H , acetimidate NH), $6.37(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 5.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 5.37-5.21(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H} 4+\mathrm{NH}$), 4.56 (ddd, $J=10.5,8.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 4.25(\mathrm{dd}, J=12.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6)$, $4.12\left(\mathrm{dq}, J=11.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6^{\prime}+\mathrm{H} 5\right), 2.16-2.02(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{Ac}), 1.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) .{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,170.6,170.0,169.2,160.3,94.8,75.6,75.3,75.0,74.3,74.0$,
73.6, 70.7, 70.3, 67.3, 61.5, 51.8, 23.1, 20.8, 20.7, 20.6. HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}_{3} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 513.0205$, found 513.0218.

Phenyl-2-(acetylamino)-2-deoxy-1-thio-3,4,6-triacetyl- β-d-glucopyranoside (1f)
Compound 1f was synthesized according to a previously reported procedure[6], with modifications. Compound $\mathbf{S 3}(2 \mathrm{~g}, 5.14 \mathrm{mmol})$ was dissolved in 30 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then, thiophenol $(0.80 \mathrm{~mL}, 7.71 \mathrm{mmol})$ and 1.3 mL of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ were added to it. Stir the reaction mixture at room temperature for 24 h . Following this, dilute the reaction mixture with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then wash with saturated aqueous NaHCO_{3} ($2 \times 50 \mathrm{~mL}$), dry over MgSO_{4}, filtered, and concentrate under vacuum. Purify the compound by column chromatography using a gradient of 8:2 to 7:3 hexane/EtOAc, to yield thioglycoside $\mathbf{1 f}$ as a white solid (1.28 g , 57% in 2 steps). The spectroscopic data were in agreement with those previously reported.[6] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.59(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=10.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=12.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=12.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{td}, J=10.3,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=10.0,5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{x}$ Ac). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,170.6,170.0,169.3,132.5,128.9,128.1,86.7,75.9$, 73.7, 68.4, 62.4, 53.5, 23.3, 20.8, 20.7, 20.6. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 440.1374, found 440.1396 .

2-(Acetylamino)-2-deoxy-3,4,6-triacetyl-1-(2,2,2-trifluoro- N-phenylacetimidoyl)- β-Dglucopyranoside (lg)

Compound $\mathbf{1 g}$ was synthesized according to a previously reported procedure[7], with modifications. Compound $\mathbf{S 3}(1 \mathrm{~g}, 2.57 \mathrm{mmol})$ was dissolved in dry DMF (10 mL), along with hydrazine acetate ($284 \mathrm{mg}, 3.08 \mathrm{mmol}$). The reaction mixture was stirred at room temperature
for 40 minutes, then diluted with EtOAc (20 mL) and washed with water $(20 \mathrm{~mL})$, saturated sodium bicarbonate (10 mL), and water (20 mL). The combined aqueous phases were subsequently back-extracted with EtOAc (20 mL), and the combined organic extracts were washed with brine (20 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum.

The resulting white solid was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), and (N-phenyl)-2,2,2trifluoroacetimidoyl chloride ($1.22 \mathrm{~mL}, 7.71 \mathrm{mmol}$) was added after cooling the reaction mixture to $0{ }^{\circ} \mathrm{C}$. Then, 1,8 -diazabicycloundec- 7 -ene ($0.31 \mathrm{ml}, 2.08 \mathrm{mmol}$) was added, and the reaction mixture was stirred at room temperature for 12 hours, then concentrated under vacuum. The crude residue was purified by chromatography on silica gel, using a gradient of 8:2 to 3:2 hexane/EtOAc, resulting in the isolation of product $\mathbf{1 g}$ as a light-yellow solid (453 $\mathrm{mg}, 34 \%$ in 3 steps). The spectroscopic data were in agreement with those previously reported.[7] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 6.81 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1+\mathrm{H} 3), 5.34-$ $5.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 2), 4.50(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 4.10(\mathrm{dd}$, $J=12.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ '), $4.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AC}), 2.06(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Ac})$, 1.97 (s, 3H, Ac). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 171.6,170.5,170.1,169.1,142.8,128.9$, $124.9,119.3,70.5,70.0,67.3,61.5,51.6,49.8,37.0,30.3,29.9,29.7,28.5,23.4,23.0,20.7$, 20.6, 20.5. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$541.1404, found 541.1398.

Scheme S3: Synthesis of alanine ester $\mathbf{S 7}$. Compound \mathbf{S} 7 was synthesized using our previously established synthetic method.[1]

In an inert atmosphere, Boc-alanine ($\mathbf{S 4}, 4.0 \mathrm{~g}, 21.1 \mathrm{mmol}$), 2-phenylsulfonylethanol ($\mathbf{S 5}, 3.93 \mathrm{~g}, 21.1 \mathrm{mmol}$), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($4.1 \mathrm{~g}, 21.1 \mathrm{mmol}$), and 4-dimethylaminopyridine ($258 \mathrm{mg}, 0.21 \mathrm{mmol}$) were dissolved in 120 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at room temperature for 18 hours. The reaction mixture was subsequently treated with $1 \mathrm{M} \mathrm{HCl}(80 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$. Each aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the combined organic extracts were washed with brine (100 mL). The organic extracts were then dried using anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting impure product underwent purification through silica gel column chromatography ($3: 7 \mathrm{EtOAc} / \mathrm{hexane}$), resulting in the isolation of Boc-alanine ester S6 as a white solid. ($5.97 \mathrm{~g}, 79 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 87.95-7.89$ $(\mathrm{m}, 2 \mathrm{H}, o-\mathrm{ArH}), 7.72-7.65(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{ArH}), 7.63-7.55(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{ArH}), 4.87(\mathrm{~d}, J=2.8$, BocNH), 4.46 (t, 2H, $J=5.8 \mathrm{~Hz}, \mathrm{O}_{2} \mathrm{CH}_{2}$), $4.05(\mathrm{q}, 1 \mathrm{H}, J=6.7,6.1 \mathrm{~Hz}, \mathrm{Ha}) ; 3.46(\mathrm{td}, J=6.1$, $\left.2.3,2 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{2}\right), 1.42(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} \beta) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 171.7,154.0,138.2,133.1,128.5,127.1,79.0,57.2,54.0,48.0,27.3,17.2$. Compound S6 was dissolved in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. Trifluoroacetic acid (30 mL) was gradually added, and the solution was allowed to warm to room temperature, where it was stirred for 2 h . The resulting solution, appearing in an orange hue, was then concentrated under reduced pressure, employing azeotropes with toluene ($3 \times 10 \mathrm{~mL}$) to yield product $\mathbf{S 7}$ as a colourless oil in a quantitative yield.

Scheme S4: Synthesis of glycosyl acceptors 2a and 2b. Compound 2a was synthesized using our previously established synthetic method.[1]

N-Acetyl-1-O-(phenylmethyl)-4,6-O-(phenylmethylene)- α-d-muramic acid (S10)

Glycol S8 ($10.0 \mathrm{~g}, 25.03 \mathrm{mmol}$) was suspended in 400 mL of dry dioxane under an argon atmosphere and stirred at $60^{\circ} \mathrm{C}$. A 60% dispersion of NaH in mineral oil $(2.0 \mathrm{~g}, 50.06$ mmol) was added portion-wise, and the mixture was stirred for 5 minutes. Subsequently, S-2chloropropionic acid ($\mathbf{S 9}, 4.08 \mathrm{~g}, 37.55 \mathrm{mmol}$) was added, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for an additional 10 minutes. Another portion of a 60% dispersion of NaH in mineral oil (5.0 g , 125.15 mmol) was added, and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was then cooled to room temperature, and 100 mL of water was slowly added with stirring. The volume of the reaction mixture was reduced to $\approx 100 \mathrm{~mL}$ using a rotary evaporator. The resulting yellow solution was subjected to extraction with 150 mL of CHCl_{3}, cooled on ice water, acidified to a pH of 1 with 6 M HCl , and then extracted with $\mathrm{CHCl}_{3}(3 \times 150 \mathrm{~mL})$. The combined organic extracts were washed with 200 mL of $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting yellow solid was washed with a mixture of hexane and diethyl ether $(1: 1,3 \times 50 \mathrm{~mL})$ to obtain product $\mathbf{S 1 0}$ as an off-white solid (7.68 g, 65\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right) \delta 12.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}), 8.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$,

NHAc), 7.50-7.24 (m, 10H, Ar-H), 5.71 (s, 1H, PhCH), $5.05(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}, \mathrm{H} 1), 4.70(\mathrm{~d}$, $1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \operatorname{PhC} \underline{H} H), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \operatorname{PhC} \underline{H} H), 4.28(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}$, Ala1$\mathrm{H} \alpha), 4.15(\mathrm{dd}, 1 \mathrm{H}, J=9.7,3.8 \mathrm{~Hz}, \mathrm{H} 6), 3.83-3.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 6^{\prime}+\mathrm{H} 2+\mathrm{H} 3+\mathrm{H} 5\right), 1.85(\mathrm{~s}, 3 \mathrm{H}$, NHAc $), 1.27\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Ala1-HB). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 175.7, 169.8, 138.1, 138.0, 129.3, 128.7, 128.6, 128.1, 128.0, 126.3, 100.7, 97.3, 82.0, 75.7, 75.5, 69.4, 68.3, 63.4, 54.0, 23.1, 19.2. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 494.1791$, found 494.1774 .

Phenylmethyl-2-(acetylamino)-2-deoxy-3-O-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2-(phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-4,6-O-[(R)-phenylmethylene]- α-Dglucopyranoside (S11)

Compound $\mathbf{S 1 0}(5.5 \mathrm{~g}, 11.66 \mathrm{mmol})$ was suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NMM}(1.28 \mathrm{~mL}, 11.66 \mathrm{mmol})$ and CDMT $(2.46 \mathrm{~g}, 13.99 \mathrm{mmol})$ were added, and the resulting cloudy mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 minutes. A solution of amine $\mathbf{S 7}(3.3 \mathrm{~g}$, $12.82 \mathrm{mmol})$ and $\mathrm{NMM}(1.28 \mathrm{~mL}, 11.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was then added, and the solution was stirred at room temperature. After 6 hours, DIPEA ($2.3 \mathrm{~mL}, 23.32 \mathrm{mmol}$) was added to the reaction mixture and stirred overnight. The reaction mixture was subsequently filtered, and the filtrate was washed with $1 \mathrm{M} \mathrm{HCl}(80 \mathrm{~mL})$ and brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting solid was subjected to azeotropic distillation with toluene $(2 \times 50 \mathrm{~mL})$ and $\mathbf{C H C l}_{3}(2 \times 50 \mathrm{~mL})$ to yield product $\mathbf{S 1 1}$ as a white solid ($8.1 \mathrm{~g}, 98 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.70-$ $7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.63-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.41-7.27(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH})$, $6.94\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ala1-NH), $6.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AcNH}), 5.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CH}\right), 4.95$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.71(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H} \mathrm{H}), 4.56-4.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH} \underline{H}+$ $\left.\mathrm{OCH}_{2}\right), 4.34-4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2+\mathrm{H} 6), 4.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ala1}-\mathrm{H} \alpha), 4.07(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}), 3.91-3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 3.80-3.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 6^{\prime}+\mathrm{H} 3+\mathrm{H} 4\right), 3.49-3.34(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{SCH}_{2}\right), 1.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.37\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MurNAc}-\mathrm{CH}_{3}\right), 1.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, Ala1$\mathrm{H} \beta) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.0,171.8,170.5,137.1,136.7,134.1,129.5,128.7$, $128.4,128.3,128.2,128.1,125.9,101.5,97.6,81.5,78.5,78.2,70.2,68.9,63.2,58.0,55.0$, 53.0, 48.0, 23.4, 19.4, 17.2. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{11} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 733.2402$, found 733.2403.

Phenylmethyl-2-(acetylamino)-2-deoxy-3-O-[(IR)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2-(phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-6-O-(phenylmethyl)- $\alpha-$--glucopyranoside (2a)

Benzylidene $\mathbf{S 1 1}$ ($8.00 \mathrm{~g}, 11.25 \mathrm{mmol}$) was initially dissolved in 100 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then cooled to $0{ }^{\circ} \mathrm{C}$. Following this, triethylsilane ($8.98 \mathrm{~mL}, 56.27 \mathrm{mmol}$) was slowly added, and the solution was stirred for 5 minutes. Over 5 minutes, 4.31 mL of trifluoroacetic acid (56.27 mmol) were added, and the reaction mixture was maintained at $0^{\circ} \mathrm{C}$ for 6 h . Another portion of TFA ($2.6 \mathrm{~mL}, 33.75 \mathrm{mmol}$) was added, and the reaction mixture was stirred for an additional 18 hours at $0{ }^{\circ} \mathrm{C}$. Subsequently, the reaction mixture was diluted with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 100 mL of saturated aqueous NaHCO_{3}. The aqueous phase was then back-extracted using $2 \times 100 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were washed with 100 mL of brine. The organic phase was subsequently dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by concentration under reduced pressure. The resulting crude product was further purified using column chromatography on silica gel, employing an eluent mixture of 8:2 to 10:0 EtOAc/hexane, resulting in the isolation of glycosyl acceptor 2a as a white solid ($5.1 \mathrm{~g}, 63 \%$) and $\mathbf{S 1 2}$ as an orange solid ($1.1 \mathrm{~g}, 16 \%$). Characteristic data for $\mathbf{2 a}:{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.94-7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.39-7.28 (m, 10H, ArH), 6.92 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ala1-NH), $6.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc$\mathrm{NH}), 4.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.70(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHH}), 4.65-4.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHH}$
$+\mathrm{OCHH}), 4.49-4.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCHH}+\mathrm{OCH}_{2}\right), 4.27-4.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2+\mathrm{Ala} 1-\mathrm{H} \alpha), 4.14(\mathrm{q}, J=$ 6.7 Hz, 1H, MurNAc-OCH), 3.81 (dt, $J=9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), $3.75(\mathrm{dd}, J=10.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, H6), 3.72-3.66 (m, 2H, H3 + H4), $3.53(\mathrm{dd}, J=10.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 3.47-3.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{S}-$ $\left.\mathrm{CH}_{2}\right), 2.98(\mathrm{~d}, J=3.1,1 \mathrm{H}, \mathrm{OH}), 1.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHAc}), 1.41\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MurNAc}-\mathrm{CH}_{3}\right)$, $1.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} 1-\mathrm{H} \beta) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.0,171.9,170.3,139.1$, $137.8,137.0,134.1,129.5,128.6,128.5,128.2,128.1,127.8,127.7,97.1,80.5,77.8,73.7$, 71.6, 70.4, 70.2, 69.9, 58.0, 54.9, 52.5, 47.9, 23.4, 19.0, 17.1. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 735.2558$, found 735.2566. Characteristic data for $\boldsymbol{S 1 2}:$: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ ס 7.93-7.89 (m, 2H, Ar-H), 7.70-7.65 (m, 1H, Ar-H), 7.61-7.56 (m, 2H, ArH), 7.36-7.28 (m, 5H, Ar-H), 7.11 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ala-NH), $6.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, AcNH), 4.95 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.68(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8), 4.48-4.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 8{ }^{\prime}+\right.$ H15 + H15'), 4.31-4.20 (m, 2H, H6 + H6'), 4.15 (ddd, $J=10.4,8.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9), 3.89-$ $3.54(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4+\mathrm{H} 5+\mathrm{H} 2), 3.49-3.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 16+\mathrm{H} 16$ '), $1.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH} \underline{\mathrm{Ac}), 1.40}$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 11$), 1.31 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 10) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.5$, 172.1, 170.7, 139.1, 137.1, 134.2, 129.5, 128.6, 128.2, 128.1, 128.0, 97.1, 79.9, 77.2, 72.0, 70.1, 69.7, 61.9, 58.1, 54.9, 52.7, 47.9, 23.3, 19.2, 17.0. HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 623.2269$, found 623.2298 .

Phenylmethyl-2-(acetylamino)-2-deoxy-3-O-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2-(phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-6-O-(acetyl)- α-D-glucopyranoside (2b)

800 mg (1.29 mmol) of diol $\mathbf{S 1 2}$ was dissolved in 20 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $-40^{\circ} \mathrm{C}$. Subsequently, 0.1 mL of pyridine (1.29 mmol) was added, and the solution was stirred for 5 minutes, after which 0.09 mL of acetyl chloride (1.29 mmol) was added dropwise. The reaction mixture was allowed to stir for 40 minutes at the same temperature. Following this, the reaction mixture was diluted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 20 mL
of saturated aqueous NaHCO_{3}. The aqueous phase underwent back-extraction with $2 \times 10 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were further washed with 20 mL of brine. After drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic phase was concentrated under reduced pressure. The resulting crude product was subsequently purified through column chromatography using silica gel with an eluent mixture ranging from 3:7 to 3:2 EtOAc/hexane, yielding glycosyl acceptor $\mathbf{2 b}$ as a white solid ($780 \mathrm{mg}, 73 \%$). The spectroscopic data were in agreement with those previously reported.[8] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 7.93-7.90 (m, 2H, $\left.\mathrm{Ar}-\mathrm{H}\right)$, 7.717.67 (m, 1H, Ar-H), 7.61-7.57 (m, 2H, Ar-H), 7.38-7.30 (m, 5H, Ar-H), 6.92 (d, J=7.4 Hz, 1 H, Ala-NH$), 6.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AcNH}), 4.93(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.69(\mathrm{~d}, J=11.7$ Hz, 1H, H8), 4.54-4.39 (m, 4H, H8’ + H15 + H15’ + H9), 4.30-4.09 (m, 5H, H3 + H4 + H5 + H2), $3.80(\mathrm{ddd}, J=9.6,3.8,2.1,1 \mathrm{H}), 3.59-3.33(\mathrm{~m}, 5 \mathrm{H},+\mathrm{H} 16+\mathrm{H} 16$ '), $3.15(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13$ ($\mathrm{s}, 3 \mathrm{H}$ OAc), 1.92 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NHAc}$), 1.42 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 13$), 1.33 (d, $J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H} 10) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.6,171.9,171.8,170.4,139.1,136.9,134.2$, $129.5,128.7,128.3,128.2,128.1,97.3,80.0,77.9,70.5,70.1,69.7,63.0,58.0,54.9,52.6,47.9$, 23.4, 20.9, 19.0, 17.1 HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$665.2375, found 665.2346.

Scheme S5: Optimized glycosylation reaction 3a.

Phenylmethyl-2-(acetylamino)-2-deoxy-3-O-[(1R)-1-methyl-2-[[(1S)-1-methyl-2-oxo-2-[2-(phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-6-O-(phenylmethyl)-4-O-[3,4,6-tri-O-acetyl-2-deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]- β-D-glucopyranosyl]- $\alpha-$ D- $^{-}$ glucopyranoside (3a)

Compound 3a was synthesized according to optimized literature procedure.[1] 25 g of $4 \AA$ Åolecular sieves were placed in a round-bottomed flask and heated under vacuum using a heat gun for 5 minutes before cooling to ambient temperature. The flask was then depressurized with argon and directly employed in the subsequent reaction. A solution of acceptor $\mathbf{1 a}$ (3.0 g , $4.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added into this flask under an argon atmosphere, and the suspension was gently stirred. TMSOTf ($0.91 \mathrm{~mL}, 5.04 \mathrm{mmol}$) was added, followed by a solution of acetimidate donor $2 \mathbf{2 a}(7.9 \mathrm{~g}, 12.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 3 hours. Subsequently, another portion of donor $\mathbf{2 a}(5.25 \mathrm{~g}$, $8.4 \mathrm{mmol})$ and TMSOTf ($0.76 \mathrm{~mL}, 4.2 \mathrm{mmol}$) were added, and the reaction continued to be stirred for an additional 3 hours at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was filtered, and the filtrate was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic part was washed with 100 mL of saturated sodium bicarbonate and 100 mL of brine and then dried over anhydrous sodium sulfate. The crude was concentrated under vacuum and subjected to purification through column chromatography using silica gel with a gradient eluent mixture of 3:2 EtOAc/hexane to yield product 3a in the form of a white foam ($3.3 \mathrm{~g}, 68 \%$). The spectroscopic data were in agreement with our previously reported data.[1] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 7.95-7.88 (m, 2H, ArH), 7.69-7.63 (m, 1H, ArH), 7.59-7.41 (m, 6H, ArH), 7.37-7.24 (m, 6H, ArH), $6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ala} 1 \mathrm{NH}), 6.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc-NH$), 5.11(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc-H1), $4.98(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{GlcNAc}-\mathrm{H} 4), 4.87(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MurNAc}-1-\mathrm{CHHPh}), 4.81-4.74$
 $4.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OC} \underline{H} H+\mathrm{MurNAc}-6-\mathrm{CHHPh}+\mathrm{OCH} \underline{H}+\mathrm{MurNAc}-1-\mathrm{C} \underline{H} H P h), 4.27-4.06(\mathrm{~m}$,

5H, MurNAc-H2 + MurNAc-CHO + GlcNAc-H1 + GlcNAc-H6 + Ala1H α), $3.98(\mathrm{dd}, J=12.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{GlcNAc}-\mathrm{H} 6$), 3.92 (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc-H3), 3.71-3.52 (m, 3H, MurNAc$\mathrm{H} 6+$ MurNAc-H4 + MurNAc-H5), 3.47-3.37 (m, 4H, CH2 $2 \mathrm{~S}+\mathrm{GlcNAc}-\mathrm{H} 2+\mathrm{GlcNAc}-\mathrm{H} 5)$, $2.06-1.94(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{Ac}), 1.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.34(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} 1 \mathrm{H} \beta), 1.27-1.23$ (m, $\left.3 \mathrm{H}, \mathrm{MurNAc}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.5,171.8,170.7,170.4,170.3,169.4$, $154.2,139.2,137.4,137.2,134.1,129.4,129.3,129.1,129.0,128.5,128.1,128.0,99.9,97.1$, $95.6,77.5,77.3,76.6,75.6,74.4,73.7,72.1,71.2,70.4,70.2,68.3,67.2,61.4,58.1,56.2,54.9$, 53.6, 47.7, 23.2, 20.6, 20.6, 18.3, 17.4; HRMS (ESI) Calcd for $\mathrm{C}_{51} \mathrm{H}_{62} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{20} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 1196.2604$, found 1196.2579 .

1) ZnCl_{2}, $\mathrm{AcOH}: \mathrm{Ac}_{2} \mathrm{O}$ $\xrightarrow[\substack{\text { 2) } \mathrm{Zn}, \\ \text { THF: } \mathrm{AcOH}: \mathrm{Ac}_{2} \mathrm{O}}]{\text { (1:3), } 24 \mathrm{~h}, \mathrm{rt}}$ (3:2:1), $24 \mathrm{~h}, \mathrm{rt}$

Conditions A:

 H_{2}, Pd/C, $\mathrm{MeOH}, 6$ h, rt 96\%Conditions B: $\mathrm{NaBrO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ EtOAc: $\mathrm{H}_{2} \mathrm{O}$ (1:1) $24 \mathrm{~h}, \mathrm{rt}$ 51\%

Scheme S6. Synthesis of GlcNAc-MurNAc disaccharide phosphate core 6. Compound $\mathbf{6}$ was synthesized using our previously established synthetic method.[] (phenylsulfonyl)ethoxy]ethyl]amino]-2-oxoethyl]-4-O-[3,4,6-tri-O-acetyl-2-(acetylamino)-2-deoxy- β-D-glucopyranosyl]-6-O-acetyl- $\alpha-$--glucopyranoside (4)

The Troc-disaccharide 3a(2.0 g, 1.70 mmol$)$ was dissolved in $\mathrm{Ac}_{2} \mathrm{O}(9 \mathrm{~mL})$ and AcOH $(4 \mathrm{~mL})$, and to this solution, a solution of anhydrous $\mathrm{ZnCl}_{2}(2.3 \mathrm{~g}, 17.0 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{~mL})$ and $\mathrm{AcOH}(2 \mathrm{~mL})$ was added. The reaction mixture was stirred for 24 hours at room temperature, after which zinc dust ($4.45 \mathrm{~g}, 68.0 \mathrm{mmol}$) and a mixture of THF (18 mL), $\mathrm{Ac}_{2} \mathrm{O}$ (10 mL), and AcOH (5 mL) were added. The reaction mixture was further stirred for 24 h at room temperature, filtered through celite, washed with 200 mL of EtOAc, and concentrated under reduced pressure. The resulting residue was co-evaporated with toluene $(2 \times 30 \mathrm{~mL})$ and re-dissolved in EtOAc (200 mL). The organic layer was washed with saturated sodium bicarbonate ($2 \times 10 \mathrm{~mL}$), which was then back-extracted with EtOAc $(100 \mathrm{~mL})$. The combined organic phases were washed with 100 mL of water and 100 mL of brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product underwent purification by silica gel column chromatography using an eluent mixture of $\mathrm{EtOAc} / \mathrm{MeOH}$ ranging from 100:0 to $98: 2$, resulting in the isolation of product $\mathbf{4}$ as a white foam (1.27 grams, 75% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{ArH}), 7.71-7.63(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{ArH}), 7.61-7.54$ (m, 2H, $m-\mathrm{ArH}$), 7.36-7.27 (m, 5H, ArH), $7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{MurNAc-NH}), 6.88(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ala} 1 \mathrm{NH}$), 6.10 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{GlcNAc}-\mathrm{NH}), 5.16-5.09$ (m, 2H, MurNAc-H1 + GlcNAc-H3), $4.65(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MurNAc}-1-\mathrm{CHHPh}), 4.50(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc-1-CㅐHPh $)$, 4.45-4.24 (m, 7H, $\mathrm{OCH}_{2}+\mathrm{MurNAc}-\mathrm{CHO}+\mathrm{GlcNAc}-\mathrm{H} 1+\mathrm{GlcNAc}-\mathrm{H} 6$ + MurNAc-H6 2H), 4.16 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, GlcNAc-H6), 4.11-3.96 (m, 3H, GlcNAc-H2 + MurNAc-H2 + MurNAc-H3), 3.78 (d, $J=5.2 \mathrm{~Hz}$, MurNAc-H5), 3.63-3.49 (m, 2H, GlcNAcH5 + MurNAc-H4), 3.40-3.30 (m, 2H, Cㅐㅏㄴ S), $2.15(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}$, $3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.37\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MurNAc}-\mathrm{CH}_{3}\right), 1.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}$,
$3 \mathrm{H}, \mathrm{Ala} 1 \mathrm{H} \beta) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 173.8,171.9,171.3,170.9,170.8,170.6,170.6$, $169.3,139.2,137.3,134.1,129.4,128.5,128.1,128.0,127.9,100.3,96.9,76.0,75.6,72.5$, $71.9,70.3,69.5,68.1,62.3,61.6,58.0,54.9,54.6,53.6,47.9,23.2,23.2,21.0,20.6,20.6,20.6$, 18.4, 17.3. HRMS (ESI) Calcd for $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{~N}_{3} \mathrm{O}_{20} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 994.3491$, found 994.3489 .

N-[N-Acetyl-6-O-acetyl-1-hydroxy-4-O-[3,4,6-tri-O-acetyl-2-(acetylamino)-2-deoxy- β-D-glucopyranosyl]- α-muramoyl]-l-alanine-2-(phenylsulfonyl)ethyl ester (5)

Conditions A: The benzylated sugar $4(1.1 \mathrm{~g}, 1.11 \mathrm{mmol})$ was dissolved in a mixture of 32 mL of THF and 8 mL of MeOH , and the solution was degassed using an argon balloon. Then, 10% palladium on charcoal ($2.3 \mathrm{~g}, 2.22 \mathrm{mmol}$) was portion-wise added to the solution. The reaction mixture was stirred under a hydrogen balloon at room temperature and atmospheric pressure overnight and subsequently filtered through a thin layer of celite. The celite was washed with $2 \times 50 \mathrm{~mL}$ of MeOH , and the filtrate was concentrated under reduced pressure. The resulting solid was washed with a mixture of ether and hexanes (1:2) and dried under reduced pressure to obtain lactol 5 as a white solid ($960 \mathrm{mg}, 96 \%$).

Conditions B: The benzylated sugar $4(0.11$ grams, 0.11 mmol$)$ was first dissolved in 2 mL of ethyl acetate, and then a solution of $\mathrm{NaBrO}_{3}(17 \mathrm{mg}, 0.9 \mathrm{mmol})$ in 1 mL of water was added. To the vigorously stirred two-phase system, an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(15 \mathrm{mg}$, dissolved in 1 mL of water) was added drop-wise over 2 minutes at room temperature. Upon completion of the reaction, the reaction mixture was diluted with ethyl acetate, and the organic phase was washed with an aqueous solution of sodium thiosulfate. The crude product was subsequently purified through silica gel chromatography to obtain $\mathbf{5}$ as a white solid (51 mg , $51 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,400 \mathrm{MHz}) \delta 8.40(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc-NH), 8.16-8.06 (m, 2H, Ala1NH and GlcNAc-NH), 8.03-7.94 (m, 2H, o-ArH), 7.88-7.79 (m, 1H, p-ArH), 7.78$7.68(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{ArH}), 6.81(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MurNAc}-\mathrm{OH}), 5.27(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}$,
$J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.25(\mathrm{~m}, 5 \mathrm{H}), 4.14-$ $3.99(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.76(\mathrm{~m}, 5 \mathrm{H}), 3.72(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}$, $2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MurNAc}-\mathrm{CH}_{3}\right), 1.15\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Ala1 H β); ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,100$ MHz) $\delta 174.4,172.0,170.5,170.4,170.1,170.0,169.9,169.8,139.8,134.5,129.9,128.2$, $100.1,90.2,77.2,76.3,75.4,72.9,70.8,68.9,68.5,63.0,62.1,58.6,54.6,54.5,54.2,47.7$, 23.2, 23.1, 21.2, 20.9, 20.8, 20.8, 19.1, 17.2.

N-[N-Acetyl-6-O-acetyl-1-O-[bis(phenylmethoxy)phosphinyl]-4-O-[3,4,6-tri-O-acetyl-2-(acetylamino)-2-deoxy- β-D-glucopyranosyl]- α-muramoyl]-l-alanine-2-(phenylsulfonyl)ethyl ester (6)

Compound 5 ($900 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in 10 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and rapidly added via syringe to a vigorously stirred mixture of 5-ethylthio-1H-tetrazole (586 mg , 4.5 mmol) and dibenzyl- N, N^{\prime} '-diisopropylphosphoramidite ($1.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under an argon atmosphere at room temperature. After 2 hours, the reaction mixture was diluted with 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to washing with saturated sodium bicarbonate (50 mL), water (50 mL), and brine (50 mL). The organic solution was dried over anhydrous sodium sulfate and concentrated under reduced pressure to yield a colourless oil, which was then precipitated from a mixture of diethyl ether and hexanes (1:1), resulting in the formation of the phosphite as a light-yellow solid. The product was then dissolved in 20 mL of THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Hydrogen peroxide ($30 \%, 2.0 \mathrm{~mL}$) was added dropwise via a syringe into the vigorously stirred solution. After the addition was complete, the cooling bath was removed, and the mixture was allowed to warm to room temperature for over 2 h . The reaction mixture was subsequently diluted with ice-cold saturated sodium sulfite (5 mL), followed by the addition of 50 mL of EtOAc, and stirred for 5 minutes. The organic layer was
washed with 20 mL of saturated NaHCO_{3} and 20 mL of brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, yielding phosphate $\mathbf{6}$ as a light-yellow solid. $(1.0 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right) \delta 8.70(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHAc}), 8.43(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHAc}), 8.09(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHAc}), 7.90-7.83$ (m, 2H, o-ArH), 7.79-7.71 (m, $1 \mathrm{H}, p-\mathrm{ArH}$), 7.68-7.60 (m, 2H, m-ArH), 7.43-7.30 (m, 10H, $2 \times \operatorname{Bn}-\mathrm{ArH}$), 5.82 (dd, $J=6.5$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc-H1), $5.24(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{GlcNAc}-\mathrm{H} 3), 5.05-4.96\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.92(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{GlcNAc}-\mathrm{H} 4), 4.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{GlcNAc}-\mathrm{H} 1), 4.61(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{MurNAc}-\mathrm{CHO}$), 4.35-4.19 (m, 3H, MurNAc-H6 + GlcNAc-H6 + OCHH), 4.11-3.96 (m, 4H, MurNAc-H6 + GlcNAc-H6 + OCHH + Ala1H $)$, 3.88-3.73 (m, 4H, GlcNAc-H2 + GlcNAc-H5 + MurNAc-H3 + MurNAc-H5), 3.68-3.52 (m, 3H, MurNAc-H2 $+\mathrm{SCH}_{2}$), 3.43 (dd, $J=9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, MurNAc-H4), 1.98 (s, 3H), 1.97 (s, 3H), 1.96 (s, 3H), 1.93 ($\mathrm{s}, 3 \mathrm{H}$), $1.76(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.30\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MurNAc}-\mathrm{CH}_{3}\right), 1.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, AlaH β) ; ${ }^{13}$ C-NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$) δ 175.0, 171.9, 170.4, 170.3, 170.1, 169.8, 139.8, $136.3,134.4,129.9,129.0,128.9,128.9,128.8,128.3,128.2,128.2,128.1,100.1,76.5,76.3$, $74.4,72.9,71.2,70.9,69.2,69.2,69.0,68.9,68.8,62.1,58.4,54.6,47.9,23.1,22.9,22.5,21.0$, 20.9, 20.8, 19.5, 17.0; ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 162 \mathrm{MHz}\right) \delta-2.76$; HRMS (ESI) Calcd for $\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{~N}_{3} \mathrm{NaO}_{23} \mathrm{PS}[\mathrm{M}+\mathrm{Na}]^{+}$1186.3443, found 1186.3456.

Scheme S7. Synthesis of tetrapeptide S16. Compound S16 was synthesized using our previously established synthetic method.[1]

Boc-d-Ala-d-Ala-OMe (S14)

H-d-Ala-OMe•HCl S13 (5.0 g, 35.8 mmol), Boc-d-Ala-OH ($6.78 \mathrm{~g}, 35.8 \mathrm{mmol}$), and HATU ($13.6 \mathrm{~g}, 35.8 \mathrm{mmol}$) were dissolved in 100 mL of dry DMF and cooled to $0{ }^{\circ} \mathrm{C}$. Subsequently, 6.25 mL of DIPEA (107.4 mmol) was added, and the reaction mixture was stirred at room temperature for 18 h . The solution was then concentrated under reduced pressure, re-dissolved in 200 mL of EtOAc, and washed with 100 mL of $1 \mathrm{M} \mathrm{HCl}, 100 \mathrm{~mL}$ of saturated sodium bicarbonate, and 100 mL of brine. The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material was dissolved in 100 mL of CHCl_{3}, filtered through celite, and concentrated under reduced pressure to obtain Boc-dipeptide $\mathbf{S 1 4}$ as a white foam ($7.86 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 6.70 (br, 1H, d-Ala5NH), 5.07 (br, 1H, d-Ala4NH), 4.57 (pentet, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}-\mathrm{Ala} 5 \mathrm{H} \alpha$), 4.18 (br, 1H, d-Ala4H α), 3.75 (s, 3H, D-Ala5-OMe), 1.45 (m, 9H, Boc), 1.41 (d, $J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{D}-\mathrm{Ala} 5 \mathrm{H} \beta), 1.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{D}-\mathrm{Ala} 4 \mathrm{H} \beta) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.2$, 172.2, 52.5, 48.0, 28.3, 18.3, 18.2.

Boc-Lys-d-Ala-d-Ala-OMe (S15)

Boc-dipeptide $\mathbf{S 1 4}(2.1 \mathrm{~g}, 7.66 \mathrm{mmol})$ was dissolved in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$. Subsequently, 30 mL of TFA was added, and the reaction mixture was stirred at room temperature for 2 h . The reaction mixture was then concentrated under reduced pressure, azeotroped with toluene, and dried under a high vacuum for 1 h . Simultaneously, in a separate flask, Boc-Lys(TFA)-OH ($2.6 \mathrm{~g}, 7.66 \mathrm{mmol}$) and HATU ($2.9 \mathrm{~g}, 7.66 \mathrm{mmol}$) were dissolved in 30 mL of dry DMF and cooled to $0^{\circ} \mathrm{C} .4 .0 \mathrm{~mL}$ of DIPEA (22.98 mmol) was added, and the
resulting yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes. The deprotected dipeptide was dissolved in 7 mL of DMF and added to the activated acid solution. The resulting reaction mixture was stirred at room temperature for 18 h and then concentrated under reduced pressure. The resulting oil was redissolved in 100 mL of EtOAc, washed with 100 mL of 1 M HCl , 100 mL of saturated aqueous NaHCO_{3}, and 100 mL of brine. After drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and subsequent concentration under reduced pressure, the Boc-tripeptide $\mathbf{S 1 5}$ was obtained as a white foam ($3.5 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right) \delta 9.38(\mathrm{t}, 1 \mathrm{H}, J=5.8$ Hz, Lys3-NHTFA), 8.20 (d, 1H, $J=7.1 \mathrm{~Hz}$, D-Ala4-NH), 8.01 (d, 1H, $J=8.0 \mathrm{~Hz}$, D-Ala5NH), 6.92 (d, 1H, $J=7.5 \mathrm{~Hz}$, Lys3-NH), 4.37-4.22 (m, 2H, Lys3-H + D-Ala4-H α), 3.87 (q, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}-\mathrm{Ala5} 5-\mathrm{H} \alpha), 3.61(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.15(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Lys} 3-\mathrm{He})$, , 1.61-1.42 (m, 4H, Lys3-H β + Lys3-H δ), 1.37 ($\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}$), 1.31-1.13 (m, 8H, Lys3-H $\gamma+\mathrm{D}-\mathrm{Ala} 4-\mathrm{H} \beta+\mathrm{D}-$ Ala5-H β); ${ }^{13}$ C-NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta 173.2,172.4,172.2,156.6(\mathrm{~d}, J=35.9), 155.9$, $116.5(\mathrm{q}, ~ J=288.3), 78.6,54.7,52.3,48.0,47.9,39.5,31.7,28.6,28.4,23.1,18.6,17.2$.

H- $\gamma-\mathrm{D}-\mathrm{Glu}(\alpha-\mathrm{OMe})-$ Lys(TFA)-д-Ala-d-Ala-OMe trifluoroacetate salt (S16)

Boc-Tripeptide $\mathbf{S 1 5}$ ($2.7 \mathrm{~g}, 5.42 \mathrm{mmol}$) was dissolved in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. Subsequently, 15 mL of TFA was added, and the solution was stirred at room temperature for 2 h . The reaction mixture was then concentrated under reduced pressure, azeotroped with toluene, and dried under a high vacuum for 1 h . Concurrently, in a separate flask, Boc- γ-d-Glu($\alpha-\mathrm{OMe}$)-OH ($1.45 \mathrm{~g}, 5.42 \mathrm{mmol}$) and HATU ($2.1 \mathrm{~g}, 5.42 \mathrm{mmol}$) were dissolved in 20 mL of dry DMF and cooled to $0{ }^{\circ} \mathrm{C}$. Then, 2.83 mL of DIPEA (16.26 mmol) was added, and the resulting yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. The deprotected tripeptide was dissolved in 8 mL of DMF and added to the activated acid solution. The resulting reaction mixture was stirred at room temperature for 18 h and then concentrated under reduced pressure. The resulting oil was redissolved in 50 mL of EtOAc and 2 mL of DMF, washed with 50 mL of $1 \mathrm{M} \mathrm{HCl}, 50 \mathrm{~mL}$ of saturated aqueous NaHCO_{3}, and 100 mL of brine. After drying
over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and subsequent concentration under reduced pressure, the Boctetrapeptide was obtained as a white powder. The crude Boc-tetrapeptide was suspended in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 10 mL of TFA was added. The reaction mixture was stirred for 2 hours at room temperature, concentrated under reduced pressure, and subjected to azeotroping with $\mathrm{MeOH}(2 \times 8 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, resulting in the formation of the tetrapeptide $\mathbf{S 1 6}$ as an off-white solid ($2.91 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right) \delta 9.42(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}$, Lys3-NHTFA), 8.46 (br. s, 3H, D-Glu2-H3 ${ }^{+}$), 8.26 (d, 1H, J=7.0 Hz, D-Ala4-NH), 8.21 (d, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Ala5-NH}$), 8.13 (d, 1H, $J=7.7 \mathrm{~Hz}$, Lys3-NH), 4.35-4.19 (m, 4H, D-Glu2$\mathrm{H} \alpha+$ Lys3-H $\alpha+\mathrm{D}-\mathrm{Ala} 4-\mathrm{H} \alpha+\mathrm{D}-\mathrm{Ala} 5-\mathrm{H} \alpha$), 3.73 (s, 3H, D-Glu2-OMe), 3.61 (s, 3H, D-Ala5OMe), 3.15 (q, 2H, $J=6.6 \mathrm{~Hz}$, Lys3-Hz), 2.41-2.23 (m, 2H, D-Glu-H γ), 2.06-1.91 (m, 2H D-Glu-H β), 1.67-1.39 (m, 4H, Lys3-H β + Lys3-H δ), 1.31-1.14 (m, 8H, Lys3-H $\gamma+$ Ala4-H $\beta+$ Ala5-H β); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right) \delta 173.3,172.5,171.7,171.3,170.2,158.8(\mathrm{q}, J=$ $33.6), 156.6(\mathrm{q}, J=35.8), 117.0(\mathrm{q}, J=296.4), 116.4(\mathrm{q}, J=288.2), 53.2,53.0,52.3,52.1,48.0$, 39.5, 32.1, 30.7, 28.4, 26.4, 23.0, 18.5, 17.2.

Scheme S8. Synthesis of GlcNAc-MurNAc disaccharide pentapeptide core 7. Compound 7 was synthesized using our previously established synthetic method.[1]

N-[N-Acetyl-6-O-acetyl-1-O-[bis(phenylmethoxy)phosphinyl]-4-O-[3,4,6-tri-O-acetyl-2-(acetylamino)-2-deoxy- β-D-glucopyranosyl]- α-muramoyl]-alanyl-D- γ-glutamyl-N6-(2,2,2-trifluoroacetyl)-lysyl-D-alanyl-D-alanyl-2,5-dimethyl ester (7)

Disaccharide 6 ($700 \mathrm{mg}, 0.6 \mathrm{mmol}$) was dissolved in 6 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at room temperature under argon. A solution of diazabicycloundec-7-ene ($90 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was added, and the resulting solution was stirred for 30 minutes. The reaction mixture was then diluted with 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 10 mL of 1 M HCl and 15 mL of brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude oil was precipitated with $\mathrm{Et}_{2} \mathrm{O}$ and dried under a high vacuum for 2 h , resulting in the formation of the corresponding acid as a white solid. The acid was dissolved in 10 mL of dry DMF and cooled to $0{ }^{\circ} \mathrm{C}$ using an ice bath. Next, HATU ($228 \mathrm{mg}, 0.6 \mathrm{mmol}$), followed by $314 \mu \mathrm{~L}$ of DIPEA (1.8 mmol), was added, and the resulting yellow solution was stirred for 15 minutes. Subsequently, tetrapeptide $\mathbf{S 1 6}$ ($382 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added, and the resulting solution was stirred at room temperature for 24 h . The reaction mixture was then concentrated under reduced pressure and re-dissolved in a mixture of CHCl_{3} and IPA (9:1, 20 mL), washed with 10 mL of 1 M HCl and 10 mL of saturated sodium bicarbonate. Both aqueous washes were backextracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$, and the combined organic extracts were washed with $2 \times$ 5 mL of brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product precipitated from $\mathrm{Et}_{2} \mathrm{O}$, yielding the pentapeptide disaccharide $\mathbf{7}$ as an offwhite solid (628 mg , 69%), which was used directly in the next step without further purification. HRMS (ESI) Calcd for $\mathrm{C}_{65} \mathrm{H}_{91} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{PO}_{2}[\mathrm{M}+\mathrm{H}]{ }^{+} 1519.5632$, found 1519.5546.

Scheme S9. Synthesis of undecaprenyl phosphate bisammonium salt (S18). Alcohol S17 was isolated using a protocol previously established by our research group.[9] Phosphate $\mathbf{S 1 8}$ was synthesized using our previously established synthetic method.[1]

Undecaprenol (S17)

Ground bay leaves (500 g, Laurus nobilis) were subjected to soxhlet extraction using 1200 mL of refluxing petroleum ether for 2 days. After this, methanol (300 mL) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~g})$ were added, and the resulting mixture was stirred at room temperature for 3 days. Filtration through glass wool separated solids from the extract solution, resulting in the concentration of the extract to a sticky green tar. This crude extract was then dissolved in approximately 200 mL of a 5:95 mixture of EtOAc and hexanes. The entire solution was loaded onto a glass column containing 1 kg of silica gel, pre-wetted with a 5:95 EtOAc/hexanes mixture, for further purification. Fractions containing undecaprenol were isolated by comparison with a commercial standard from American Radiolabeled Chemicals, combined, and concentrated under reduced pressure to obtain crude undecaprenol in the form of orange oil. The crude undecaprenol was dissolved in pyridine (5 mL) and acetic anhydride (10 mL), and the mixture was stirred at room temperature for 6 h . The resulting solution was diluted with brine (50 mL) and extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The organic phase underwent washing with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine (50 mL), followed by drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration under reduced pressure. The crude material was subsequently subjected to flash column chromatography using silica gel and a 3:97 mixture of EtOAc and hexanes as the eluent, leading to the isolation of undecaprenyl acetate as a light-yellow oil. Undecaprenyl acetate was dissolved in a mixture of 3:2 THF and $\mathrm{MeOH}(72 \mathrm{~mL})$, and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(5.0 \mathrm{~g})$ was added. The resulting suspension was stirred for 18 h at room temperature, then diluted with hexanes (100 mL), and washed with water
$(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, yielding pure undecaprenol $\mathbf{S 1 7}(1.1 \mathrm{~g})$ as a light-yellow oil. The spectroscopic data were in agreement with our previously reported data.[9] ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.44\left(\mathrm{td}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 5.17-5.06(\mathrm{~m}, 10 \mathrm{H}$, prenyl alkene protons); $4.09\left(\mathrm{t}, 2 \mathrm{H}, J=6.2, \mathrm{CH}_{2} \mathrm{OH}\right), 2.11-1.94(\mathrm{~m}, 40 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.70-$ $1.66(\mathrm{~m}, 21 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 12 \mathrm{H})$; HRMS (ESI) Calcd for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 789.6884$, found 789.6851 .

Undecaprenyl phosphate bisammonium salt (Und-P, S18)

Undecaprenol ($\mathbf{S 1 7}, 356 \mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and rapidly added via a syringe into a vigorously stirred suspension of 5-ethylthio- 1 H -tetrazole ($285 \mathrm{mg}, 2.21 \mathrm{mmol}$) and bis(2-cyanoethyl)- N, N '-diisopropylphosphoramidite ($0.37 \mathrm{~mL}, 1.43$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under argon at room temperature. After 3 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and washed with saturated sodium bicarbonate (20 mL), water (20 mL), and brine (25 mL). The organic solution was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain the phosphite in the form of a yellow oil. This product was dissolved in THF (10 mL) and cooled to $-78^{\circ} \mathrm{C}$. Hydrogen peroxide $(30 \%, 1.0 \mathrm{~mL})$ was slowly added dropwise via a syringe into the vigorously stirred solution. After the completion of the addition, the ice bath was removed, and the mixture was allowed to warm to room temperature over 2 h . The reaction mixture was then diluted with ice-cold saturated sodium sulfite (5 mL) and stirred at $0^{\circ} \mathrm{C}$ for 5 minutes. After this, the reaction mixture was extracted with EtOAc (40 mL), and the organic layer was washed with saturated NaHCO_{3} $(30 \mathrm{~mL})$, water (30 mL), and brine (50 mL). Subsequently, it was dried over anhydrous sodium sulfate and concentrated under reduced pressure, resulting the phosphate as a yellow oil. The crude phosphate was suspended in anhydrous $\mathrm{MeOH}(8 \mathrm{~mL}$), and a $25 \% \mathrm{NaOMe}$ in MeOH
solution (0.35 mL) was added. The mixture was stirred at room temperature for 16 hours, and then further diluted with $\mathrm{MeOH}(15 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$. To neutralize it, DOWEX 50WX8 H+ form resin was used. After filtering the resin, the filtrate was concentrated under reduced pressure. The resulting yellow oil was subjected to purification through silica gel column chromatography using a gradient solvent system of $\mathrm{CHCl}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{NH}_{4} \mathrm{OH}$ (90:10:0:0.1 to 65:25:5:0.1), resulting in the formation of Und-P S18 as a light-yellow oil. The spectroscopic data are consistent with our previous findings documented in scientific literature.[1] HRMS (ESI) Calcd for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{O}_{4} \mathrm{P}$ [M-H] ${ }^{-845.6577}$, found 845.6598.

Scheme S10. Synthesis of farnesyl (S20), geranylgeranyl (S22), and solanesyl (S24) phosphates. The aforementioned phosphates were synthesized following established protocols outlined in the literature.[10]

Farnesyl phosphate (S20)

Farnesol (S19, $200 \mathrm{mg}, 0.9 \mathrm{mmol}$) is dissolved in acetonitrile (1 mL), and trichloroacetonitrile $(0.23 \mathrm{~mL}, 2.25 \mathrm{mmol})$ is added, followed by the dropwise addition of tetrabutylammonium dihydrogenphosphate ($611 \mathrm{mg}, 1.8 \mathrm{mmol}$) in acetonitrile (5 mL). The reaction mixture is stirred at room temperature for 8 h . After removing the solvent under
vacuum, the crude material is preliminarily purified using silica gel flash chromatography (isopropanol/ $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O} 7: 2: 1$). The fractions from the column, showing the presence of phosphate via TLC (with PMA), are combined and concentrated under reduced pressure. For further purification, a Dowex 50WX8 ion-exchange column is loaded and equilibrated with a mixture of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ in a 3:1 ratio. The residue left on the silica column is percolated through the DOWEX column using the same $\mathrm{NH}_{4} \mathrm{OH}$ buffer, collected, and subsequently dried via lyophilization to obtain farnesyl phosphate $\mathbf{S 2 0}$ as a fluffy white solid ($138 \mathrm{mg}, 51 \%$). The spectroscopic data were in agreement with those previously reported.[10] ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $162 \mathrm{MHz}) \delta 0.46$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-3} 301.1569$, found 301.1578.

Geranylgeranyl phosphate (S22)

Geranylgeranyl phosphate $\mathbf{S 2 2}$ was synthesized using a method like that described for farnesyl phosphate and isolated as a fluffy off-white solid ($75 \mathrm{mg}, 59 \%$). The spectroscopic data were in agreement with those previously reported.[11] ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$ 0.46; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{P}$ [M-H] 369.2195 , found 369.2190 .

Solanesyl phosphate (S24)

Solanesyl phosphate S24 was synthesized using a method like that described for farnesyl phosphate and isolated as a fluffy light-yellow solid ($94 \mathrm{mg}, 42 \%$). The spectroscopic data were in agreement with those previously reported.[12] ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$ 1.72; HRMS (ESI) Calcd for $\mathrm{C}_{45} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 709.5325$, found 709.5425 .

Scheme S11: Synthesis of lipid II diammonium salt (11). Lipid II (11) was synthesized using our previously established method.[1]

Lipid II diammonium salt (11)

In a sequential process, dibenzyl phosphate $7(75 \mathrm{mg}, 50 \mu \mathrm{~mol})$ was dissolved in anhydrous $\mathrm{MeOH}(8 \mathrm{~mL})$ with the flask purged using an argon balloon. $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \% / \mathrm{w}, 159$ $\mathrm{mg}, 149 \mu \mathrm{~mol}$) was introduced, and the resulting suspension was stirred under an H_{2} atmosphere for 3 h . After filtration through celite, with MeOH washes $(2 \times 4 \mathrm{~mL})$, pyridine $(0.5 \mathrm{~mL})$ was added to the filtrate, which was then concentrated in vacuo and subjected to high vacuum for 1 h to obtain the sugar-phosphate salt as a white solid. This salt was dissolved in dry DMF (1.5 mL) and dry THF (1.5 mL), followed by the addition of carbonyl diimidazole $(40.2 \mathrm{mg}, 247 \mu \mathrm{~mol})$. The clear solution was stirred at room temperature for 3 h . Excess carbonyl diimidazole was quenched with dry $\mathrm{MeOH}(10.7 \mu \mathrm{~L}, 264 \mu \mathrm{~mol})$, and stirring continued for 45 minutes. After concentration in vacuo and drying under high vacuum for 1 h , the resulting activated phosphate was combined with a solution of Und-P (S18) (45 mg, 50 $\mu \mathrm{mol}$) in THF (2 mL) and 5-ethylthio- 1 H -tetrazole ($6.4 \mathrm{mg}, 50 \mu \mathrm{~mol}$). The mixture was stirred under argon at room temperature for 96 h , followed by concentration in vacuo. To this crude mixture, 1,4-dioxane (2 mL) and a solution of sodium hydroxide ($60 \mathrm{mg}, 1 \mathrm{mmol}$) in water $(2 \mathrm{~mL})$ were added. The resulting mixture was stirred at $38^{\circ} \mathrm{C}$ for 2 h , and filtered through an aqueous filter disc with a wash of $1: 1 \mathrm{H}_{2} \mathrm{O} / 1,4$-dioxane (2 mL). The crude lipid II was
subsequently purified by HPLC using a Phenomenex Luna $\mathrm{C}_{18}(2) 100 \AA$ prep-scale column with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm , and a gradient of solvent $\mathrm{A}(50 \mathrm{mM}$ aqs. $\mathrm{NH}_{4} \mathrm{HCO}_{3}$) and solvent $\mathrm{B}(\mathrm{MeOH})$. The eluted product-containing fractions were concentrated by rotary evaporation, diluted with $\mathrm{H}_{2} \mathrm{O}$, frozen, and lyophilized to yield Grampositive lipid II (11) as a fluffy white powder ($20.1 \mathrm{mg}, 16 \%$ over 4 steps). Retention time (tR): 31.049 min ; The spectroscopic data were in agreement with our previously reported data.[1] ${ }^{31}$ P-NMR $\left(\mathrm{CD}_{3} \mathrm{OD}: \mathrm{CDCl}_{3} 1: 1 \quad 162 \mathrm{MHz}\right) \delta-12.86,-10.44$; HRMS (ESI) Calcd for $\mathrm{C}_{94} \mathrm{H}_{154} \mathrm{~N}_{8} \mathrm{O}_{26} \mathrm{P}_{2}[\mathrm{M}-2 \mathrm{H}]^{2-} 936.5225$, found 936.5221 .

2) CDI, DMF/THF, rt, 2 h
3) S22, THF, rt, 4 days

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 3 \mathrm{~h}$; pyridine
2) CDI, DMF/THF, rt, 2 h
3) $\mathbf{S} 24$, THF, rt, 4 days

Scheme S12: Synthesis of farnesyl (8) geranylgeranyl (9), and solanesyl (10) analogues of lipid II. The aforementioned lipid II analogues were synthesized using our previously
established method.[1] Note, the final products $\mathbf{8}-\mathbf{1 1}$ proved too insoluble to obtain suitable ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR data. This difficulty in NMR analysis of polyprenyl-linked glycosyl diphosphates has been reported by several other groups.[13-15] Characterization is therefore limited to ${ }^{31} \mathrm{P}$ NMR and HRMS.

Farnesyl lipid II analogue (8)

Compound $\mathbf{8}$ was synthesized using a method like that described for lipid II 11 and isolated as a fluffy white powder ($9.5 \mathrm{mg}, 13 \%$ over 4 steps). Retention time (tR): 28.329 min . The spectroscopic data were in agreement with those previously reported.[16] HRMS (ESI) Calcd for $\mathrm{C}_{54} \mathrm{H}_{92} \mathrm{~N}_{8} \mathrm{O}_{26} \mathrm{P}_{2}[\mathrm{M}-\mathrm{H}]^{-}$1329.5520, found 1329.5251; [M-2H $]^{2-}$ 664.2721, found 664.2598.

Geranylgeranyl lipid II analogue (9)

Compound 9 was synthesized using a method like that described for lipid II 11 and isolated as a fluffy white powder ($17.8 \mathrm{mg}, 21 \%$ over 4 steps). Retention time (tR): 32.409 min . The spectroscopic data were in agreement with those previously reported.[17] ${ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}: \mathrm{CDCl}_{3} 1: 1162 \mathrm{MHz}\right) \delta-12.66,-10.38$; HRMS (ESI) Calcd for $\mathrm{C}_{59} \mathrm{H}_{100} \mathrm{~N}_{8} \mathrm{O}_{26} \mathrm{P}_{2}$ [MH] ${ }^{-}$1397.6164, found 1397.5920; [M-2H $]^{2-}$ 698.3034, found 698.2925.

Solanesyl lipid II analogue (10)

Compound $\mathbf{1 0}$ was synthesized using a method like that described for lipid II 11 and isolated as a fluffy white powder ($14.6 \mathrm{mg}, 11 \%$ over 4 steps). Retention time (tR): 32.863 min . The spectroscopic data were in agreement with those previously reported.[18] ${ }^{31} \mathrm{P}-\mathrm{NMR}$
$\left(\mathrm{CD}_{3} \mathrm{OD}: \mathrm{CDCl}_{3} 1: 1162 \mathrm{MHz}\right) \delta-12.58,-10.42 ; \mathrm{HRMS}$ (ESI) Calcd for $\mathrm{C}_{84} \mathrm{H}_{140} \mathrm{~N}_{8} \mathrm{O}_{26} \mathrm{P}_{2}[\mathrm{M}-$
H] 1737.9276, found 1737.9263; [M-2H $]^{2-} 868.4599$, found 868.4505.

References

1. Dong, Y. Y.; Wang, H.; Pike, A. C. W.; Cochrane, S. A.; Hamedzadeh, S.; Wyszyński, F. J.; Bushell, S. R.; Royer, S. F.; Widdick, D. A.; Sajid, A.; Boshoff, H. I.; Park, Y.; Lucas, R.; Liu, W.-M.; Lee, S. S.; Machida, T.; Minall, L.; Mehmood, S.; Belaya, K.; Liu, W.-W.; Chu, A.; Shrestha, L.; Mukhopadhyay, S. M. M.; Strain-Damerell, C.; Chalk, R.; Burgess-Brown, N. A.; Bibb, M. J.; Barry Iii, C. E.; Robinson, C. V.; Beeson, D.; Davis, B. G.; Carpenter, E. P. Cell 2018, 175, 1045-1058.e16.
2. Walczewska, A.; Grzywacz, D.; Bednarczyk, D.; Dawgul, M.; Nowacki, A.; Kamysz, W.; Liberek, B.; Myszka, H. Beilstein J. Org. Chem. 2015, 11, 869-874.
3. Balmond, E. I.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C. Angew. Chem. Int. Ed. 2014, 53, 8190-8194.
4. Grann Hansen, S.; Skrydstrup, T. Eur. J. Org. Chem. 2007, 2007, 3392-3401.
5. Sudibya, H. G.; Ma, J.; Dong, X.; Ng, S.; Li, L. J.; Liu, X. W.; Chen, P. Angew. Chem. Int. Ed. 2009, 48, 2723-2726.
6. Deng, S.; Gangadharmath, U.; Chang, C.-W. T. J. Org. Chem. 2006, 71, 5179-5185.
7. Sun, J.; Han, X.; Yu, B. Carb. Res. 2003, 338, 827-833.
8. Wang, Y.; Aleiwi, B. A.; Wang, Q.; Kurosu, M. Organic Letters 2012, 14, 4910-4913.
9. Cochrane, R. V. K.; Alexander, F. M.; Boland, C.; Fetics, S. K.; Caffrey, M.; Cochrane, S. A. Chem. Commun. 2020, 56, 8603-8606.
10. Lira, L. M.; Vasilev, D.; Pilli, R. A.; Wessjohann, L. A. Tetrahedron Lett. 2013, 54, 1690-1692.
11. Huang, L. Y.; Huang, S. H.; Chang, Y. C.; Cheng, W. C.; Cheng, T. J. R.; Wong, C. H. Angew. Chem. Int. Ed. 2014, 53, 8060-8065.
12. Hsu, T.-W.; Hsu, H.-C.; Chan, H.-Y.; Fang, J.-M. J. Org. Chem. 2020, 85, 1274712753.
13. Gale, R. T.; Sewell, E. W.; Garrett, T. A.; Brown, E. D. Chem. Sci. 2014, 5, 3823-3830.
14. Holkenbrink, A.; Koester, D. C.; Kaschel, J.; Werz, D. B. Eur. J. Org. Chem. 2011, 2011, 6233-6239.
15. Woodward, R.; Yi, W.; Li, L.; Zhao, G.; Eguchi, H.; Sridhar, P. R.; Guo, H.; Song, J. K.; Motari, E.; Cai, L.; Kelleher, P.; Liu, X.; Han, W.; Zhang, W.; Ding, Y.; Li, M.; Wang, P. G. Nat. Chem. Biol. 2010, 6, 418-423.
16. Wingen, L. M.; Rausch, M.; Schneider, T.; Menche, D. J. Org. Chem. 2020, 85, 1020610215.
17. Shih, H. W.; Chang, Y. F.; Li, W. J.; Meng, F. C.; Huang, C. Y.; Ma, C.; Cheng, T. J. R.; Wong, C. H.; Cheng, W. C. Angew. Chem. Int. Ed. 2012, 51, 10123-10126.
18. Ye, X.-Y.; Lo, M.-C.; Brunner, L.; Walker, D.; Kahne, D.; Walker, S. J. Am. Chem. Soc. 2001, 123, 3155-3156.

Spectroscopic data of synthesized compounds

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $1 \mathbf{1 a}$

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 1a

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 1b

Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 b}$

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 c}$

Figure S6: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 c}$

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 1d

Figure S8: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 1d

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 e}$

Figure S10: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 e}$

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 f}$

Figure S12: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 f}$

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 g}$

Figure S14: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 g}$

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 6}$

Figure S16: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 6}$

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}) of compound $\mathbf{S 1 0}$

Figure S18: ${ }^{13}$ C NMR spectrum (100 MHz , DMSO-d d_{6}) of compound $\mathbf{S 1 0}$

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 1 1}$

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 1 1}$

Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2a

Figure S22: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2a

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{S 1 2}$

Figure S24: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 1 2}$

Figure $\mathbf{S 2 5}:{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 b}$

Figure S26: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2b

Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3a

Figure S28: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3a

Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4}$

Figure S30: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4

Figure S31: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ of compound 5

Figure S32: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}\right.$) of compound 5

Figure S33: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ of compound 6

Figure S34: ${ }^{13} \mathrm{C}$ NMR spectrum $(100 \mathrm{MHz}$, DMSO-d 6) of compound 6

\qquad
Figure S35: ${ }^{31} \mathrm{P}$ NMR spectrum (162 MHz , DMSO- d_{6}) of compound 6

Figure S36: ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 1 4}$

Figure S37: ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 1 4}$

Figure S38: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}) of compound $\mathbf{S 1 5}$

Figure S39: ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz , DMSO- d_{6}) of compound $\mathbf{S 1 5}$

Figure S40: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}) of compound $\mathbf{S 1 6}$

Figure S41: ${ }^{1} \mathrm{H}$ NMR spectrum (100 MHz , DMSO- d_{6}) of compound $\mathbf{S 1 6}$

Figure S42: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{S 1 7}$

Figure S43: ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 2 0}$

Figure $\mathbf{S 4 4}:{ }^{31} \mathrm{P}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{S 2 2}$

\qquad
Figure S45: ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{S 2 4}$

Figure S46: ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 1: 1$) of compound 11

Figure S47: HRMS (ESI) of compound 11 (full spectrum)

Figure S48: HRMS (ESI) of compound 11 (expanded; [M-2H] ${ }^{-}$)

Figure S49: ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$: $\mathrm{CD}_{3} \mathrm{OD} 1: 1$) of compound $\mathbf{1 0}$

Figure S50: HRMS (ESI) of compound 10 (full spectrum)

Figure S51: HRMS (ESI) of compound 10 (expanded; [M-H] ${ }^{-}$)

Figure S52: HRMS (ESI) of compound 10 (expanded; [M-2H] ${ }^{-}$)

Figure S53: ${ }^{31} \mathrm{P}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 1: 1$) of compound 9

Figure S54: HRMS (ESI) of compound 9 (full spectrum)

Figure S55: HRMS (ESI) of compound 9 (expanded; [M-H] ${ }^{-}$)

Figure S56: HRMS (ESI) of compound 9 (expanded; [M-2H])

Figure S57: HRMS (ESI) of compound $\mathbf{8}$ (full spectrum)

Figure S58: HRMS (ESI) of compound $\mathbf{8}$ (expanded; $[\mathrm{M}-\mathrm{H}]^{-}$)

Figure S59: HRMS (ESI) of compound 8 (expanded; $[\mathrm{M}-2 \mathrm{H}]^{-}$)

