Supporting Information

for

Substitution reactions in the acenaphthene analog of quino[7,8-h]quinoline and an unusual synthesis of the corresponding acenaphthylenes by tele-elimination

Ekaterina V. Kolupaeva, Narek A. Dzhangiryan, Alexander F. Pozharskii, Oleg P. Demidov and Valery A. Ozeryanskii

Beilstein J. Org. Chem. 2024, 20, 243-253. doi:10.3762/bjoc.20.24

Additional experimental and XRD information, synthetic procedures, copies of NMR spectral data for new compounds

Table of contents

Attempted amination of dipyrido[3,2-e:2', $\left.3^{\prime}-h\right]$ acenaphthene (Table S1) S2
Oxidative dehydrogenation of dipyrido[3,2-e:2', $\left.3^{\prime}-h\right]$ acenaphthene (Table S1) S3
Experimental data S4
Spectral data of pure and intermediate compounds (Figures S1-S21) S9
Crystal data and structure refinement for the studied compounds S21
Crystal packing in salts $\mathbf{5} \cdot \mathrm{HBF}_{4}$ and $\mathbf{8} \cdot \mathrm{HBF}_{4}$ (Figure S22) S22

Attempted amination of dipyrido[3,2-e:2', $\left.\mathbf{3}^{\prime}-h\right]$ acenaphthene

Table S1: Interaction of dipyrido[3,2-e: $\left.2^{\prime}, 3^{\prime}-h\right]$ acenaphthene (5) with amines

Entry	Amine	Oxidant	Addition of n-BuLi	T, ${ }^{\circ} \mathrm{C}$	Time (h)	Result of interaction
1	$\mathrm{Me}_{2} \mathrm{NH}$	KMnO_{4}	-	$-15 \div-10$	20	ND
2	$\mathrm{Me}_{2} \mathrm{NH}$	KMnO_{4}	+	$-15 \div-10$	24	ND
3	$\mathrm{Me}_{2} \mathrm{NH}$	KMnO_{4}	-	20	336	ND
4	$\mathrm{Me}_{2} \mathrm{NH}$	$\mathrm{AgPy}_{2} \mathrm{MnO}_{4}$	-	$-15 \div-10$	168	ND
5	$\mathrm{Me}_{2} \mathrm{NH}$	$\mathrm{AgPy}_{2} \mathrm{MnO}_{4}$	+	$-15 \div-10$	168	ND
6	$\mathrm{Me}_{2} \mathrm{NH}$	$\mathrm{AgPy}_{2} \mathrm{MnO}_{4}$	-	$\begin{gathered} 75-80 \\ \text { (sealed ampule) } \end{gathered}$	3	ND
7	$\mathrm{Me}_{2} \mathrm{NH}$	$\mathrm{AgPy}_{2} \mathrm{MnO}_{4}$	-	$95-100$ (sealed ampule)	2.5	tarring
8	$\mathrm{Me}_{2} \mathrm{NH}$	KMnO_{4}	-	$95-100$ (sealed ampule)	0.5	ND
9	Piperidine	KMnO_{4}	-	20	144	ND
10	Piperidine	KMnO_{4}	+	20	120	ND
11	$n-\mathrm{BuNH}_{2}$	$\mathrm{AgPy}_{2} \mathrm{MnO}_{4}$	-	20	24	ND
12	$n-\mathrm{BuNH}_{2}$	AgMnO_{4}	-	20	2160	ND
13	NH_{3}	KMnO_{4}	-	-33	24	ND

ND - no product detected; only unreacted starting material was recovered.
For typical conditions and reagents used for amination and alkylamination of azaarenes (pyridines/quinolines) see the following works. ${ }^{\text {S1-S3 }}$

[^0]Oxidative dehydrogenation of dipyrido $\left.3,2-e: 2^{\prime}, 3^{\prime}-h\right]$ acenaphthene

Table S2: Dehydrogenation of dipyrido $\left[3,2-e: 2^{\prime}, 3^{\prime}-h\right]$ acenaphthene (5)

Entry	Oxidant	Solvent	$T,{ }^{\circ} \mathrm{C}$	Time (h)	Result of interaction
1	chloranil	benzene	reflux	24	ND
2	chloranil	1,2-dichlorobenzene	reflux	12	ND
3	DDQ	benzene	reflux	24	ND
4	DDQ	PhNO_{2}	180	20	ND
5	MnO_{2}	benzene	reflux	12	ND
6	MnO_{2}	PhNO_{2}	180	14	ND

ND - no product detected.

Experimental data

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DPX-250 (250 MHz) spectrometer with the solvent residual peaks as the internal standard. The HR-ESI mass spectra were obtained on a Bruker maXis spectrometer equipped with an electrospray ionization (ESI) source; methanol was used as the solvent. The instrument was operated in the positive mode using an m / z range of 501200. The capillary voltage of the ion source was set at 4000 V . The nebulizer gas pressure was 1.0 bar , and the drying gas flow was set to $4.0 \mathrm{~L} / \mathrm{min}$. Thin layer chromatography was carried out on $\mathrm{Al}_{2} \mathrm{O}_{3}$ and on silica gel ($70-230$ mesh, Aldrich). The progress of reactions and the purity of products were monitored by TLC on $\mathrm{Al}_{2} \mathrm{O}_{3}$; development with iodine vapor or UV-light. The melting points were measured in sealed capillaries and are uncorrected. The solvents were purified and dried by standard methods.

Crystal structure determination. XRD measurements were conducted with four-circle XtaLAB Synergy and SuperNova diffractometers, single source at home/near, HyPix3000 and AtlasS2 detectors. The structures were solved by direct methods and refined by the full-matrix least-squares against F 2 in anisotropic (for nonhydrogen atoms) approximation. The $\mathrm{C}-\mathrm{H}$ hydrogen atoms were placed in geometrically calculated positions and were refined in isotropic approximation in the riding model. The $\mathrm{X}-\mathrm{H}(\mathrm{X}=\mathrm{N}, \mathrm{O})$ hydrogen atoms were found in the difference Fourier synthesis and refined in isotropic approximation. Atomic coordinates, bond lengths, bond angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC).
Dipyridoacenaphthene 5 was prepared according to the published procedure. ${ }^{\text {S4 }}$ Light-yellow crystals, mp 230-232 ${ }^{\circ} \mathrm{C}$ (decomp.). The crystals, yellowish prisms, suitable for XRD measurements were obtained from acetonitrile.

Proton and molecular complexes ($\mathbf{5 \cdot} \cdot \mathbf{H X}$) were prepared by mixing equimolar amounts of base 5 and the corresponding acid (1 equivalent in the case of aqueous HBF_{4} or 0.5 equivalents in the case of 4,6-dichlororesorcinol) in a minimum volume of acetonitrile followed by 5 -fold dilution with $\mathrm{Et}_{2} \mathrm{O}$. The residue thus formed was washed with $\mathrm{Et}_{2} \mathrm{O}$, vacuum dried and recrystallized to give the desired salt almost quantitatively. The solvent was CHCl_{3} in the case of 4,6dichlororesorcinol followed by evaporation of the clear solution to dryness.

Tetrafluoroborate 5•HBF4. Pale-yellow crystals, darken above $300{ }^{\circ} \mathrm{C}$. For spectral and analytical data see ref. ${ }^{\text {S4 }}$ The crystals, yellowish needles, suitable for XRD measurements were obtained from acetonitrile.

Chloride dihydrate $\mathbf{5 \cdot} \cdot \mathbf{H C l} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$. The compound was occasionally obtained from a $1: 1$ mixture of $\mathbf{5}$ and chloranil on evaporation of its acetonitrile solution in air at ambient temperature. Small

[^1]pale-yellow crystals, darken above $290^{\circ} \mathrm{C}$. The crystals, pale-yellow needles, suitable for XRD measurements were obtained from acetonitrile.

Molecular complex 2(5)•(4,6-dichlororesorcinol). Light-yellow crystals, darken above $200{ }^{\circ} \mathrm{C}$, decomp. 225-227 ${ }^{\circ} \mathrm{C}$. The crystals, yellowish prisms, suitable for XRD measurements were obtained from a mixture of chloroform/acetonitrile.

Interaction of dipyridoacenaphthene 5 with chloranil. A mixture of compound 5 (70 mg , 0.27 mmol) and chloranil ($67 \mathrm{mg}, 0.27 \mathrm{mmol}$) in toluene (6 mL) was refluxed for 20 min . The residue formed was filtered, washed with toluene, and dried to give complex 9 ($95 \mathrm{mg}, 69 \%$) as a dark brown solid with mp 243-245 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}): $\delta=9.28$ (d, $J=3.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{dd}, J=8.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $57.40 ; \mathrm{H}, 2.41 ; \mathrm{Cl}, 28.24$. Found: C, $54.48 ; \mathrm{H}, 2.84 ; \mathrm{Cl}, 26.24$.

5,8-Dinitro-6,7-dihydropyrido $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ indeno[1,7-gh]quinoline (10). Dipyridoacenaphthene $5(75 \mathrm{mg}, 0.30 \mathrm{mmol})$ was dissolved in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1.5 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, $65 \% \mathrm{HNO}_{3}(1.0 \mathrm{~mL}, 15 \mathrm{mmol})$ was added within a minute, and the reaction mixture was stirred at rt for 2 h . The resulting mixture was poured onto crushed ice and basified with conc. aqueous ammonia solution to $\mathrm{pH}>7$. The yellow-colored residue was filtered and washed with distilled $\mathrm{H}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ to give crude product $\mathbf{1 0}(99 \mathrm{mg}, 95 \%)$. Further purification was carried out by dissolving compound $\mathbf{1 0}$ in boiling $\mathrm{CHCl}_{3}(\approx 9 \mathrm{~mL})$ and filtering. The residue was additionally washed with $\mathrm{CHCl}_{3}(2 \times 2 \mathrm{~mL})$. The solvent was evaporated to afford $\mathbf{1 0}(60 \mathrm{mg}, 58 \%)$ as a lightyellow, light sensitive solid which decomposes at $191-192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 9.51 (dd, $J=4.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.84(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=8.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ (s, 4H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.4,146.0,142.0,141.4,139.0,131.9,129.0$, 123.4, 123.3, 30.5. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$: 347.0775; found: 347.0771 .

5-Nitro-6,7-dihydropyrido[$\left.3^{\prime}, 2^{\prime}: 5,6\right]$ indeno[1,7-gh]quinoline (11). Dipyridoacenaphthene 5 $(25 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}, 65 \%$ $\mathrm{HNO}_{3}(7.5 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$ was added, and the reaction mixture was stirred for 8 min . The resulting mixture was poured onto crushed ice and basified with conc. aqueous ammonia solution to $\mathrm{pH}>$ 7. The yellow-colored residue was filtered and washed with distilled $\mathrm{H}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The crude product was dissolved in boiling $\mathrm{CHCl}_{3}(\approx 3 \mathrm{~mL})$ and filtering. The residue was additionally washed with $\mathrm{CHCl}_{3}(2 \times 1 \mathrm{~mL})$. The solvent was evaporated to give $\mathbf{1 1}(16 \mathrm{mg}, 55 \%)$ as a yellow, light sensitive solid which decomposes at $170-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.46-$ $9.41(\mathrm{~m}, 2 \mathrm{H}), 8.80(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72$ (dd, $J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (dd, $J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.83$ (m, 2H), 3.65-3.60 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.6$ (2C), 146.7, 145.4, 144.4 (2C), 141.9, 140.4, 136.8,
131.6, 131.4, 126.7, 124.0, 122.07, 122.05, 121.8, 30.8, 29.5. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}: 302.0924$; found: 302.0921 .
 $(20 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chloranil ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$) in benzene $(8 \mathrm{~mL})$ was refluxed for 1 h in darkness. The hot resulting mixture was filtered off to remove admixtures. The solution was washed with 10% aqueous $\mathrm{KOH}(6 \times 10 \mathrm{~mL})$ to remove chloranil and its derivatives. The solvent was evaporated, and the crude product was purified by PTLC (silica gel, CHCl_{3}) to give $\mathbf{1 2}(4 \mathrm{mg}$, 19%) as a bright-yellow solid which decomposes at $223-225{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.49 (dd, $J=4.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.77 (dd, $J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 (dd, $J=8.7,4.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (s, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.0,135.1,133.8,133.6,123.4$ (some carbons are missed due to low solubility and instability of the substance in solutions). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}: 345.0618$; found: 345.0623.

Route 2. A mixture of compound $10(20 \mathrm{mg}, 0.06 \mathrm{mmol})$ and chloranil ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was refluxed for 1 h in darkness. The solvent was evaporated, and the crude product was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CHCl}_{3}\right)$ to give $\mathbf{1 2}$ ($7 \mathrm{mg}, 33 \%$) with the properties identical to those of the sample prepared by Route 1.

5-Nitropyrido[$\left.\mathbf{3}^{\prime}, 2^{\prime}: 5,6\right]$ indeno[1,7-gh]quinoline (13). A mixture of compound 11 (14 mg , 0.04 mmol) and chloranil ($12 \mathrm{mg}, 0.05 \mathrm{mmol}$) in benzene (8 mL) was refluxed for 1 h in darkness. The hot resulting mixture was filtered off to remove admixtures. The solution was washed with 10% aqueous $\mathrm{KOH}(6 \times 10 \mathrm{~mL})$ to remove chloranil and its derivatives. The solvent was evaporated to give $\mathbf{1 3}(6 \mathrm{mg}, 50 \%)$ as a yellow solid which decomposes at $195-197{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.46 (dd, $\left.J=4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.39$ (dd, $\left.J=4.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.80(\mathrm{dd}, J=$ $8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.38$ (dd, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.75$ (dd, $J=8.7,4.3 \mathrm{~Hz} .1 \mathrm{H}), 7.65$ (dd, $J=8.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.34,151.25$, $147.8,147.7,138.5,138.0,136.3,134.0,133.1,132.9,131.3,131.1,129.4,127.4,125.1,122.1$ (2C), 121.6. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 300.0768; found: 300.0765.
5,8-Dimethoxypyrido[3',2':5,6]indeno[1,7-gh]quinoline (14). Compound 12 (34 mg, 0.10 mmol) was added to a solution of sodium ($12 \mathrm{mg}, 0.52 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$. The reaction mixture was refluxed for 4 h . The solvent was evaporated, and the crude product was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CHCl}_{3}\right)$ to give $\mathbf{1 4}(6 \mathrm{mg}, 19 \%)$ as a light-yellow solid (its solutions possess blue fluorescence under UV light), which decomposes at $216-217^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 9.37 (dd, $J=4.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), $8.90(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H})$, $7.55(\mathrm{dd}, J=8.4,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=151.0,150.8$, 148.1, 138.2, 132.6, 126.1, 122.8, 122.7, 119.7, 118.0, 60.8. HRMS (ESI): m/z [M + H $]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$: 315.1128; found: 315.1133. ($\mathbf{1 4} \cdot \mathbf{H B F 4}$). Compound $\mathbf{1 4}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$ was partially dissolved in $\mathrm{MeCN}(1 \mathrm{~mL})$ and treated with 40% aqueous $\mathrm{HBF}_{4}(6.0 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$ resulting in a homogeneous solution. The solvent was evaporated, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and vacuum-dried to give 14. $\mathrm{HBF}_{4}(5 \mathrm{mg}, 42 \%)$ as a dark-yellow solid with $\mathrm{mp} 284-285{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: $17.22(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.88(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{dd}, J=8.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 6 \mathrm{H})$.
5,8-Dibromo-6,7-dihydropyrido[$\left.\mathbf{3}^{\prime}, \mathbf{2}^{\prime}: 5,6\right]$ indeno $\left.\mathbf{1 , 7}-\mathrm{gh}\right]$ quinoline (15). Compound 5 (75 mg , $0.30 \mathrm{mmol})$ was dissolved in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1.0 \mathrm{~mL})$. NBS ($118 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added to the solution and the reaction mixture was stirred at rt for 3 h . The resulting mixture was poured onto crushed ice, basified with solid KOH to $\mathrm{pH} 9-10$, and extracted with $\mathrm{CHCl}_{3}(6 \times 10 \mathrm{~mL}$). The solvent was removed to give pure $15(103 \mathrm{mg}, 83 \%)$ as a light-beige solid which decomposes at temperatures above $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.40(\mathrm{dd}, J=4.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.80$ (dd, $J=8.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=8.5,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (62.9 MHz , CDCl_{3}): $\delta=150.6,146.9,145.5,141.0,135.6,128.7,121.9,118.4,31.9$. HRMS (ESI): m/z [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{2}{ }^{+}$: 414.9264; found: 414.9257 .

5-(Pyrrolidin-1-yl)pyrido[$\left.3^{\prime}, \mathbf{2}^{\prime}: 5,6\right]$ indeno[1,7-gh]quinoline (16). A mixture of dibromide $\mathbf{1 5}$ $(16 \mathrm{mg}, 0.04 \mathrm{mmol})$ and pyrrolidine $(1.8 \mathrm{~mL})$ was heated in a sealed ampule for 18 h at $150{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was allowed to cool to rt, poured in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, basified with aqueous KOH to $\mathrm{pH} 10-11$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 7 \mathrm{~mL})$. The crude product was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CHCl}_{3}\right)$ to give $\mathbf{1 6}(12 \mathrm{mg}, 92 \%)$ as a yellow-orange solid (its solutions possess yellow-green fluorescence under UV light) with mp $124-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.35(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.29(\mathrm{dd}, J=4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{dd}, J$ $=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=150.1,150.0,149.9,146.1,146.0,145.8,137.7,136.7,135.8,135.3,131.9$, 127.6, 125.8, 124.9, 123.4, 120.7, 119.4, 118.5, 54.8, 25.8. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3}{ }^{+}$: 324.1495 ; found: 324.1500 .

Interaction of dibromide $\mathbf{1 5}$ with anionic bases. Route 1 . Dibromide 15 ($82 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added to a solution of sodium ($345 \mathrm{mg}, 15 \mathrm{mmol}$) in $\mathrm{EtOH}(12 \mathrm{~mL})$. The reaction mixture was refluxed for 2 d . The resulting mixture was poured in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times$ 10 mL). The solvent was removed, and the crude products were purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $\mathbf{8}(16 \mathrm{mg}, 31 \%)$ followed by $\mathbf{5}(17 \mathrm{mg}, 33 \%)$.
Route 2. Dibromide 15 ($82 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added to a solution of $\mathrm{KOH}(1.12 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{EtOH}(12 \mathrm{~mL})$. The reaction mixture was refluxed for 3 d . The resulting mixture was poured in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The solvent was removed, and the crude
products were purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $\mathbf{8}(17 \mathrm{mg}, 33 \%)$ followed by 5 ($7 \mathrm{mg}, 14 \%$).

Pyrido $\left.3^{\prime}, 2^{\prime}: 5,6\right]$ indeno[1,7-gh]quinoline (dipyrido[3,2-e:2', $\left.\mathbf{3}^{\prime}-h\right]$ acenaphthylene) (8). Beige solid which possesses green fluorescence under UV light in solutions and solid state; mp 179$181{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.38(\mathrm{dd}, J=4.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=8.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.6,148.0,138.0,134.6,131.8,130.1,124.8,122.9,120.8$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}: 255.0917$; found: 255.0920 .

Dipyridoacenaphthene 5. Light-yellow solid; mp, ${ }^{1} \mathrm{H}$ NMR, and other properties are consistent with the published data. ${ }^{54}$
Pyrido [$\left.3^{\prime}, 2^{\prime}: 5,6\right]$ indeno[1,7-gh] quinoline hydrogen tetrafluoroborate ($8 \cdot \mathbf{H B F}_{4}$). Compound $\mathbf{8}$ $(8 \mathrm{mg}, 0.03 \mathrm{mmol})$ was treated with 40% aqueous $\mathrm{HBF}_{4}(6.0 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$ in a minimum volume of $\mathrm{MeCN}(0.6 \mathrm{~mL})$ followed by dilution with $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL})$. The residue formed was washed with $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL})$ and vacuum-dried to give $\mathbf{8} \cdot \mathrm{HBF}_{4}(8 \mathrm{mg}, 80 \%)$ as a yellow solid which darkens above $308-310^{\circ} \mathrm{C}$. Salt $\mathbf{8} \cdot \mathrm{HBF}_{4}$ possesses green fluorescence under UV light in solutions and solid state. Crystals suitable for XRD analysis were obtained from $\mathrm{MeCN} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): 17.25 ($\mathrm{s}, 1 \mathrm{H}$), $9.07-9.05(\mathrm{~m}, 2 \mathrm{H}), 8.85(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~s}, 2 \mathrm{H}), 7.96$ (dd, $J=8.5$, $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=146.2,144.9,143.8,141.5$, 139.0, 135.2, 133.5, 130.1, 125.3, 123.1.

Spectral data of pure and intermediate compounds

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectra of complex $9: \boldsymbol{a}$ - pure quinoquinoline $\mathbf{5} ; \boldsymbol{b}$ - complex $\mathbf{9}, 30 \mathrm{~min}$ after dissolution; \boldsymbol{c} - complex $\mathbf{9}$, 3 d after dissolution; \boldsymbol{d} - picrate $\mathbf{5 \cdot} \cdot \mathrm{H}^{+} \mathrm{PicO}^{-}(250 \mathrm{MHz}$, DMSO$d_{6}$.

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of 10 and an "unknown" admixture (*) in a ~9:1 ratio (250 MHz , CDCl_{3}).

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S4: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{1 0}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S6: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{1 1}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
商

Figure S8: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S10: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{1 3}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S12: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{1 4}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4} \cdot \mathrm{HBF}_{4}\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure S14: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S15: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{1 5}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S17: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{1 6}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S19: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{8}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8} \cdot \mathrm{HBF}_{4}\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure S21: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT-NMR spectrum of $\mathbf{8} \cdot \mathrm{HBF}_{4}\left(62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

Crystal data and structure refinement for the studied compounds

	```Bond precision: C-C = 0.0071 A Wavelength=1.54184 Cell: a=15.1828(18) b=14.5390(17) c=14.0625(16) alpha=90 beta=98.229(12) gamma=90 Volume 3072.2(6) Space group I 2/a Moiety formula C18 H12 N2, 0.5(C6 H4 Cl2 O2) Mr 345.79 Dx,g cm-3 1.495 Z } Mu (mm-1) 2.288 F000 1432.0 h,k,1max 18,17,17 Nref 2833 Tmin,Tmax 0.891,1.000 Data completeness= 0.969 Theta(max)=69.995 R(reflections)= 0.0892(2384) wR2(reflections)= 0.2281(2833) S = 1.079 Npar= 231 CCDC 2294253```
	```Bond precision: C-C = 0.0017 A Wavelength=1.54184 Cell: a=13.8173(2) b=16.4608(2) c=6.8712(1) alpha=90 beta=101.562(1) gamma=90 Volume 1531.10(4) Space group P 21/c Moiety formula C18 H13 N2, Cl, 2(H2 O) Mr 328.79 Dx,g cm-3 1.426 Z 4 Mu (mm-1) 2.305 F000 688.0 h,k,1max 16,20,8 Nref 2905 Tmin,Tmax 0.774,1.000 Data completeness= 1.000 Theta(max)= 69.985 R(reflections)= 0.0282(2826) wR2(reflections)= 0.0804(2905) S = 1.063 Npar= 228 CCDC 2294257```
	```Bond precision: C-C = 0.0016 A Wavelength=1.54184 Cell: a=11.1435(1) b=12.8407(1) c=13.8368(1) alpha=74.524(1) beta=83.643(1) gamma=77.720(1) Volume 1861.40(3) Space group P -1 Moiety formula C18 H12 N2 Mr 256.30 Dx,g cm-3 1.372 z 6 Mu (mm-1) 0.636 F000 804.0 h,k,1max 13,15,16 Nref 7057 Tmin,Tmax 0.901,1.000 Data completeness= 0.999 Theta(max)= 69.984 R(reflections)= 0.0350(6451) wR2(reflections) = 0.0968(7057) S = 1.022 Npar= 541 CCDC 2294256```


	```Bond precision: C-C = 0.0020 A Wavelength=1.54184 Cell: a=11.4104(2) b=6.7594(1) c=18.8779(4) alpha=90 beta=95.323(2) gamma=90 Volume 1449.73(5) Space group P 21/n Moiety formula C18 H13 N2, B F4 Mr 344.11 Dx,g cm-3 1.577 Z 4 Mu (mm-1) 1.105 F000 704.0 h,k,lmax 14,8,23 Nref 3065 Tmin,Tmax 0.735,1.000 Data completeness= 0.990 Theta(max)= 77.455 R(reflections)= 0.0438(2731) wR2(reflections)= 0.1257(3065) S = 1.030 Npar= 234 CCDC 2294254```
8•官 ${ }_{4}(P=50 \%, 100 \mathrm{~K})$	```Bond precision: C-C = 0.0028 A Wavelength=1.54184 Cell: a=6.7710(5) b=10.3820(7) c=11.4650(6) alpha=116.396(6) beta=90.535(6) gamma=94.680(6) Volume 718.58(9) Space group P -1 Moiety formula C18 H11 N2, B F4 Mr 342.10 Dx,g cm-3 1.581 Z 2 Mu (mm-1) 1.115 F000 348.0 h,k,lmax 8,13,14 Nref 3001 Tmin,Tmax 0.564,1.000 Data completeness= 0.986 Theta(max)= 76.762 R(reflections)= 0.0550(2583) wR2(reflections)= 0.1643(3001) S = 1.052 Npar= 267 CCDC 2294255```

Crystal packing in salts $\mathbf{5} \cdot \mathrm{HBF}_{4}$ and $\mathbf{8} \cdot \mathrm{HBF}_{4}$

Figure S22 Crystal packing motifs in salts $\mathbf{5} \cdot \mathrm{HBF}_{4}$ (left) and $\mathbf{8} \cdot \mathrm{HBF}_{4}$ (right) showing the formation of dense columns consisting of stacking flat heterocyclic cations (along the b-axis for $\mathbf{5} \mathrm{H}^{+}$and along the a-axis for $\mathbf{8} \mathrm{H}^{+}$). Hydrogen atoms are omitted for clarity. The shortest distance between the antiparallel π-systems of two molecular planes is $3.372 \AA$ for $\mathbf{5} \cdot \mathrm{HBF}_{4}$ and $3.328 \AA$ for $\mathbf{8} \cdot \mathrm{HBF}_{4}$).

[^0]: ${ }^{\text {S1 }}$ Gulevskaya, A. V.; Pozharskii, A. F. The $\mathrm{S}_{\mathrm{N}}{ }^{\mathrm{H}}$-Amination of Heteroaromatic Compounds. In Metal Free C-H Functionalization of Aromatics; 2013; 179-239. doi:10.1007/7081_2013_114
 ${ }^{\text {S2 }}$ Gulevskaya, A. V.; Maes, B. U. W.; Meyers, C.; Herrebout, W. A.; van der Veken, B. J. Eur. J. Org. Chem. 2006, 2006, 5305-5314. doi:10.1002/ejoc. 200600573.
 ${ }^{\text {S3 }}$ Wozniak, M.; van der Plas, H. C. Acta Chem. Scand. 1993, 47, 95-101.

[^1]: ${ }^{\text {S4 Pozharskii, A. F.; Ozeryanskii, V. A.; Mikshiev, V. Y.; Chernyshev, A. V.; Metelitsa, A. V.; Antonov, A. S. Org. }}$ Biomol. Chem. 2019, 17, 8221-8233.

