Supporting Information

for

Additive-controlled chemoselective inter-/intramolecular hydroamination via electrochemical PCET process

Kazuhiro Okamoto, Naoki Shida and Mahito Atobe

Beilstein J. Org. Chem. 2024, 20, 264-271. doi:10.3762/bjoc.20.27

Detailed experimental procedures, CV simulation, copies of NMR spectra

Table of contents

I Experimental section S2
II Simulation for cyclic voltammogram (Figures S1 and S2) S8
III ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds S 10

I. Experimental section

General information

All reactions were performed under an argon atmosphere, unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} using a Bruker DRX500 spectrometer $\left({ }^{1} \mathrm{H} 500 \mathrm{MHz},{ }^{13} \mathrm{C} 126 \mathrm{MHz}\right)$. Tetramethylsilane ($\left.{ }^{1} \mathrm{H}, 0.00 \mathrm{ppm}\right)$ and $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}, 7.26\right.$ $\left.\mathrm{ppm},{ }^{13} \mathrm{C}, 77.16 \mathrm{ppm}\right)$ were used as internal standards. Mass spectra were recorded on a JEOL JMS-T100GCV mass spectrometer. Cyclic voltammetry (CV) was performed using a Bio-Logic VSP-3e instrument. The oxidation potential was measured using glassy carbon as the anode ($\varphi 3 \mathrm{~mm}$), platinum as the cathode ($\varphi 3 \mathrm{~mm}$), and $\mathrm{Ag} / \mathrm{AgCl}$ as the reference electrode. Merck pre-coated silica gel F_{254} plates (thickness: 0.25 mm) were used for thin-layer chromatography (TLC). All materials were obtained from TCI Fine Chemicals, Wako Pure Chemical Industries, Kanto Chemical, and Sigma-Aldrich and were used without purification. Silica gel column chromatography was performed using Kanto Chemical Silica Gel 60N (spherical, neutral, 63-210 $\mu \mathrm{m}$).

Abbreviations

BOM, benzyloxymethyl; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; DMAP, 4-dimethylaminopyridine; DMF, N,N-dimethylformamide; HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol; MVK, methyl vinyl ketone; THF, tetrahydrofuran; TIPDS, tetraisopropyldisiloxan-1,3-diyl

3-((Benzyloxy)methyl)-1-((6aR,8R,9R,9aS)-9-hydroxy-2,2,4,4-tetraisopropyltetrahydr

 o-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)pyrimidine-2,4(1H,3H)-dione (S1): То a solution of uridine $(2.44 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine $(50 \mathrm{~mL})$ was added $\mathrm{TIPDSCl}_{2}(3.28$ $\mathrm{mL}, 10.5 \mathrm{mmol}$). After stirring at rt for $40 \mathrm{~h}, \mathrm{MeOH}(5 \mathrm{~mL})$ was added to the reaction mixture, and the solvent was removed in vacuo. The resulting residue was partitioned between EtOAc $(100 \mathrm{~mL})$ and water $(200 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the filtrate was concentrated in vacuo. The resulting crude product was dissolved in DMF (50 mL) and $\mathrm{DBU}(2.99 \mathrm{~mL}, 20 \mathrm{mmol})$ and $\mathrm{BOM}-\mathrm{Cl}(2.06 \mathrm{~mL}, 15$ mmol) were added at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h , $\mathrm{MeOH}(5 \mathrm{~mL})$ was added to the reaction mixture, which was then partitioned between EtOAc (50 mL) and water (100 $\mathrm{mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$, and the combined organic layer was washed with water $(2 \times 200 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the filtrate was concentrated in vacuo, the resulting residue was purified by silica gel column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=2: 1$ to $2: 3)$ to obtain 4.925 g of the title compound as a colorless oil ($8.12 \mathrm{mmol}, 81 \%$ over two steps).${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.39-7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph})$, $7.26\left(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}\right.$, overlapped with $\left.\mathrm{CHCl}_{3}\right), 5.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1$ '), $5.71(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.52-5.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{O}\right), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.35(\mathrm{dd}, J=8.8$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), $4.20\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 4.13$ (d, $\left.J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.10$
(dt, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 4.00 (dd, $\left.J=13.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right), 1.13-0.98$ (m, 28H, $\left.\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{x} 4\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.68,150.78,138.61,138.08$, $128.32,127.68,127.65,101.57,91.47,82.01,75.29,72.44,70.41,69.21,60.43,17.48$, 17.42, 17.32, 17.30, 17.11, 17.04, 16.99, 16.91, 13.50, 13.01, 12.98, 12.65; HRMS (ESI) Calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2}\right]^{+}$607.2861, found 607.2858.

(6aR,8R,9R,9aR)-8-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) -2,2,4,4-tetraisopropyItetrahydro-6H-furo[3,2-fl[1,3,5,2,4]trioxadisilocin-9-yl phenylcarbamate (1): To a solution of $\mathbf{S 1}(5.11 \mathrm{~g}, 8.42 \mathrm{mmol})$ in THF (42 mL) was added $\operatorname{DBU}(1.26 \mathrm{~mL}, 8.42 \mathrm{mmol})$ and $\mathrm{PhNCO}(912 \mu \mathrm{~L}, 8.42 \mathrm{mmol})$ and the reaction was stirred at rt for 2 h . the reaction mixture was concentrated in vacuo, and the resulting residue was purified by silica gel column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=2: 1)$ to afford 5.32 g of the title compound as a white amorphous solid ($7.33 \mathrm{mmol}, 87 \%$).

Note: This compound has the same R_{f} value as $\mathbf{S 1}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.43-7.28(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph})$, 7.08 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.76$ (s, 1H, NH), 5.86 (s, 1H, H-1’), 5.72 (d, $J=8.2 \mathrm{~Hz}$, 1H, H-5), 5.53 - 5.43 (m, 2H, NCH2O), 5.35 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 4.71 (d, $J=4.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.40\left(\mathrm{dd}, J=9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.22\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $4.06-3.96$ (m, 2H, H-5'ab), $1.16-0.93\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2} \times 4\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 162.73,162.57,150.71,138.10,137.73,129.12,129.08,128.38$,
127.74, 127.70, 127.67, 123.79, 102.02, 101.62, 89.41, 82.43, 76.27, 72.49, 70.59, $68.22,59.92,17.52,17.47,17.36,17.34,17.15,17.08,17.02,17.00,16.97,16.95,16.93$, $16.91,13.91,13.61,13.54,13.32,13.12,13.05,13.03,13.02,13.00,12.80,12.71$, 12.70; HRMS (ESI) Calcd. for $\left[\mathrm{C}_{36} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}_{2}\right]^{+} 726.3237$, found 726.3229.

(6aR,8R,9R,9aR)-8-(3-((Benzyloxy)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)

-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-fl[1,3,5,2,4]trioxadisilocin-9-yl

(3-oxobutyl)(phenyl)carbamate (3): Compound $\mathbf{1}$ ($145 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ (387 $\mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, phosphate base $(90 \mathrm{mg}, 0.2 \mathrm{mmol})$ and methyl vinyl ketone ($32.7 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) were added to a test tube, which was then subjected to a constant electrical current of $5 \mathrm{~mA}(3 \mathrm{~F} / \mathrm{mol}, 57.9 \mathrm{C})$ through the CF anode $(1 \times 1 \mathrm{~cm})$ and the Pt cathode $(1 \times 1 \mathrm{~cm})$. The reaction mixture was concentrated in vacuo and $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added. The resulting precipitate was removed by filtration through a short silica gel pad under reduced pressure. The filtrate was concentrated in vacuo and the resulting residue was purified by silica gel column chromatography ($\mathrm{Hex} / \mathrm{EtOAc}=3: 1$ to $2: 1$) afforded 78 mg of the title compound as a colorless oil ($0.098 \mathrm{mmol}, 49 \%$). The analytical yield was determined based on ${ }^{1} \mathrm{H}$ NMR spectra, using benzaldehyde (20.4 $\mu \mathrm{L}, 0.2 \mathrm{mmol}$) as an internal standard and the integral of $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COMe}$ in $\mathbf{3}$ was compared with that of the reference peak (CHO of benzaldehyde).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.41-7.20(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}$,
overlapped with $\left.\mathrm{CHCl}_{3}\right), 7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 6.12(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $5.73(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{O}\right), 5.20-5.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2$ '), $4.68(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.53(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ') , $4.14-4.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4$ ', H-5'ab), $2.44(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{COCH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.56\left(\mathrm{q}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.14-0.92(\mathrm{~m}$, $\left.28 \mathrm{H}, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2} \times 4\right) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.65,151.28,138.56,138.09$, 129.27, 128.46, 127.80, 127.78, 124.31, 102.47, 87.83, 84.63, 72.47, 70.62, 69.00, $61.32,43.56,30.00,23.38,17.49,17.42,17.40,17.35,13.59,13.48,13.15,13.10,13.00$, 0.13; HRMS (APCI) Calcd. for $\left[\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{Si}_{2}\right]^{+} 796.3655$, found 796.3646 .

(7aR,7bR, $7^{\prime} a R, 7$ 'bR,13aR,13 'aR,14aR,14'aR)-2,2'-Bis((benzyloxy)methyl)-9,9,9',9',11 ,11,11',11'-octaisopropyl-5,5'-diphenyldodecahydro-1H,1'H,13H,13'H-[4,4'-bis[1,3,5, 2,4]trioxadisilocino[6',7':4,5]furo[2,3-flpyrimido[6,1-d][1,3,5]oxadiazepine]-1,1',3,3', 6,6'(2H,2'H,4H,4'H)hexaone (4): Compound $\mathbf{1}$ ($145 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ (387 mg , $1 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, phosphate base ($90 \mathrm{mg}, 0.2 \mathrm{mmol}$), methyl vinyl ketone ($32.7 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$), and HFIP ($41.5 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) were added to a test tube, which was then subjected to a constant electrical current of $5 \mathrm{~mA}(3 \mathrm{~F} / \mathrm{mol}, 57.9 \mathrm{C})$ through the CF anode $(1 \times 1 \mathrm{~cm})$ and the Pt cathode $(1 \times 1 \mathrm{~cm})$. The reaction mixture was concentrated in vacuo and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The resulting precipitate was removed by filtration through a short silica gel pad under reduced pressure. The filtrate was concentrated in vacuo and the resulting residue was passed through a short pad of silica gel $\left(\mathrm{Hex} / \mathrm{EtOAc}=1: 2\right.$, containing $\left.0.5 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ and further purified by preparative

TLC (Hex:EtOAc $=2: 3$) to afford 39.7 mg of the title compound as a brown oil $(0.027$ mmol, 27\%). The analytical yield was determined based on ${ }^{1} \mathrm{H}$ NMR spectra, using benzaldehyde ($20.4 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) as an internal standard and the integral of $\mathrm{SiC} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}$ in $\mathbf{4}$ was compared with that of the reference peak (CHO of benzaldehyde). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ph), $7.40-7.20$ (m, 18H, Ph), 5.83 (s, 1H, H-1'), 5.73 - 5.66 (m, 3H, H-1', $\mathrm{NCH}_{2} \mathrm{O}$), $5.52-5.37\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{O}, \mathrm{H}-2\right.$ ' x $2, \mathrm{H}-3$ ' x 2), 4.71 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph} \times 2$), $4.46-3.86$ (m, 10H, H-4' x 2, H-5'ab x 2, H-5 x 2, H-6 x 2), 1.64 (m, 4H, $\operatorname{SiCH}\left(\mathrm{CH}_{3}\right)_{2} \times 4$, overlapped with $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{x} 4\right), 1.16-0.85(\mathrm{~m}, 48 \mathrm{H}$, $\left.\operatorname{SiCH}\left(\mathrm{CH}_{3}\right)_{2} \times 8\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.67,151.85,150.69,138.17$, 130.24, 129.16, 129.04, 128.57, 128.44, 128.43, 127.75, 127.73, 101.91, 89.39, 89.17, $82.28,82.06,76.61,72.54,70.62,69.28,69.19,68.20,68.03,59.61,32.32,32.30,32.25$, $23.38,18.68,18.67,17.57,17.52,17.51,17.41,17.39,17.37,17.21,17.08,17.04,17.00$, 16.98, 13.69, 13.64, 13.62, 13.08, 12.81, 12.76; HRMS (APCI) Calcd. for $\left[\mathrm{C}_{72} \mathrm{H}_{101} \mathrm{~N}_{6} \mathrm{O}_{18} \mathrm{Si}_{4}\right]^{+}$1449.6244, found 1449.6250.

II. Simulation for cyclic voltammogram (Figures S1 and S2)

CV simulation was performed using DigiElch 8 (Gamry Instruments).
Simulation parameters:
$\mathbf{1} \rightleftarrows \mathbf{1}^{++}+\mathrm{e}^{-}$

$$
E^{0}=2.0 \mathrm{~V} ; k_{s(1)}=1 \mathrm{~cm} \mathrm{~s}^{-1}
$$

$\mathbf{1}+$ phosphate base $\rightleftarrows \mathbf{1 - p h o s p h a t e}$ base $+\mathrm{e}^{-} \quad E^{0}=1.8 \mathrm{~V} ; k_{\mathbf{s}(\mathbf{1}+\text { phosphate base })}=0.1$ $\mathrm{cm} \mathrm{s}^{-1}$
$\mathbf{1}+$ phosphate base + HFIP $\rightleftarrows \mathbf{1}$-phosphate base-HFIP $+\mathrm{e}^{-} \quad E^{0}=1.8 \mathrm{~V}$;
$k_{\mathrm{s}(1+\text { phosphate base }+\mathrm{HFIP})}=0.01 \mathrm{~cm} \mathrm{~s}^{-1}$

Figure S1. CV simulation for $\mathbf{1}$ and 1-phosphate base complex.

Figure S2. CV simulation for 1-phosphate base-HFIP complex.

We hypothesized that the two- or three-component hydrogen bond complexes (1-phosphate base and 1-phosphate base-HFIP) would have a diffusion coefficient smaller than that of $\mathbf{1}$. Although a decrease in the diffusion coefficient decreased the current value, similar to our experimental results, the reported diffusion coefficient of the hydrogen-bond complex between the amide and phosphate base is only twice as small as that of the sole amide molecule (Gschwind et al., J. Am. Chem. Soc., 2021, 143, 724-735.), while our simulated diffusion coefficient was unrealistically smaller than previously reported values. Therefore, we concluded that the diffusion coefficient is not a major factor affecting the CV behavior in the present study.
III. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds

