

Supporting Information

for

Unveiling the regioselectivity of rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions for open-cage C₇₀ production

Cristina Castanyer, Anna Pla-Quintana, Anna Roglans, Albert Artigas and Miquel Solà

Beilstein J. Org. Chem. 2024, 20, 272–279. doi:10.3762/bjoc.20.28

General materials and methods, experimental procedures and characterization of all new compounds

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

General materials and methods	S3
Table S1. Influence of the reaction conditions on the reaction outcome	S4
Figure S1. (a) HPLC trace of material (X = NTs) isolated after 16 h (entry 4 in Table S1);	
(b) HPLC trace of material isolated after 24 h (entry 5 in Table S1); (c) UV–vis spectra of C _{70,}	
peak 1, peak 2 and previously reported alpha adduct [1].	S5
Figure S2. (a) HPLC trace of material ($X = C(COOEt)_2$) isolated after 4 h (entry 10 in Table S1	•
(b) UV-vis spectra of peak C ₇₀ and peak 1	S6
Scheme S1. Preparation and characterization of 2a	S7
Figure S3. ¹ H NMR spectrum (400 MHz, CDCl ₃ /CS ₂) of compound 2a	S8
Figure S4: MALDI-TOF HRMS spectrum of compound 2a.	S9
Figure S5. UV–vis spectrum (toluene) of compound 2a (inset: HPLC trace of 2a)	S9
Scheme S2. Preparation and characterization of 2b	S10
Figure S6. ¹ H NMR spectrum (400 MHz, CDCl ₃ /CS ₂) of compound 2b	S11
Figure S7. ¹³ C NMR spectrum (101 MHz, CDCl ₃) of compound 2b	S12
Figure S8. 2D-HSQC NMR spectrum of compound 2b	S13
Figure S9. 2D-HMBC NMR spectrum of compound 2b	S13
Figure S10. 2D-COSY NMR spectrum of compound 2b	S14
Figure S11. MALDI-TOF HRMS spectrum of 2b .	S14
Figure S12. UV–vis spectrum (CHCl ₃) of compound 2b (inset: HPLC trace of 2b)	S15
Scheme S3. Oxidative cleavage of 2a	S16
Figure S13. ¹ H NMR spectrum (400 MHz, CDCl ₃ /CS ₂) of compound 3a	S17
Figure S14. ¹³ C NMR spectrum (101 MHz, CDCl ₃ /CS ₂) of compound 3a	S18
Figure S15. 2D-HSQC NMR spectrum of compound 3a .	S19
Figure S16. 2D-HMBC NMR spectrum of compound 3a .	S19
Figure S17. MALDI-TOF HRMS spectrum of compound $3a (m/z)$.	S20
Figure S18. UV–vis spectrum (CHCl ₃) of compound 3a .	S21

Scheme S4. Preparation and characterization of 3b
Figure S19. ¹ H NMR spectrum (400 MHz, CDCl ₃) of 3b
Figure S20. ¹³ C NMR spectrum (101 MHz, CDCl ₃) of compound 3b S24
Figure S21. 2D-HSQC NMR spectrum of compound 3b S25
Figure S22. 2D-HMBC NMR spectrum of compound 3b
Figure S23. MALDI-TOF HRMS spectrum of compound 3b
Figure S24. UV–vis spectrum (CHCl ₃) of compound 3b S26
Computational details
Figure S25. Molecular structures of the two possible regioisomers of β -2a and their relative
electronic energies computed at the B3LYP-D3/cc-pVDZ//B3LYP/cc-pVTZ level of theory
Figure S26. Molecular structure of (a) α -TS 1 (b) α -TS 2 (c) β -TS 1 (d) β -TS 2S29
References

General materials and methods

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. CH₂Cl₂ was dried under nitrogen by passing through solvent purification columns (MBraun, SPS-800). Reaction progress during the preparation of all compounds was monitored using thin layer chromatography on Macherey-Nagel Xtra SIL G/UV254 silica gel plates. Solvents were removed under reduced pressure with a rotary evaporator. Reaction mixtures were chromatographed on silica gel. All ¹H and ¹³C NMR spectra were recorded on a Bruker ASCEND 400 spectrometer equipped with a 5 mm BBFO probe using CDCI₃ as a deuterated solvent. Chemical shifts for ¹H and ¹³C NMR are reported in ppm (δ) relative to residual solvent signals. Coupling constants are given in hertz (Hz). ¹H and ¹³C NMR signals were assigned based on 2D-NMR HSQC, HMBC and COSY experiments. Mass spectrometry analyses were recorded on a Bruker micrOTOF-Q II mass spectrometer (high resolution), equipped with electrospray ion source. The instrument was operated in the positive ESI(+) ion mode. HPLC data were collected on Agilent Technologies LC 1200 series instrument equipped with a Cosmosil Buckyprep-M column (10 mm × 250 mm, Nacalai Tesque, Inc.) monitored with a UV detector at 320 nm. Toluene was used as mobile phase (flow 0.5 mL/min). UVvis spectra were performed with an Agilent 8452 UV-vis spectrophotometer (1 cm quartz cell) in toluene.

-			Y	[C ₇₀]	Tempe	Time	Yield	%
Entry	Solvent	у	X	(mM)	rature (⁰C)	(h)	(%)	<i>bis</i> (fulleroid)
1	o-DCB	10	NTs	1.2	90	4	46	90
2	o-DCB	10	NTs	1.2	120	4	42	90
3	o-DCB	10	NTs	1.2	180	4	42	90
4	o-DCB	10	NTs	1.2	90	16	45	95
5	o-DCB	10	NTs	1.2	90	24	45	>99
6	Toluene	10	NTs	1.2	90	24	22	>99
7	СВ	10	NTs	1.2	90	24	28	>99
8	o-DCB	10	NTs	2.4	90	24	38	>99
9	o-DCB	5	NTs	1.2	90	24	30	>99
10	o-DCB	10	C(COOEt) ₂	1.2	90	4	34	>99

o-DCB: ortho-Dichlorobenzene; CB: Chlorobenzene

Figure S1. (a) HPLC trace of material (X = NTs) isolated after 16 h (entry 4 in Table S1); (b) HPLC trace of material isolated after 24 h (entry 5 in Table S1); (c) UV–vis spectra of C_{70} , peak 1, peak 2 and previously reported alpha adduct [1].

S5

Figure S2. (a) HPLC trace of material (X = C(COOEt)₂) isolated after 4 h (entry 10 in Table S1; (b) UV–vis spectra of peak C₇₀ and peak 1.
a)

Scheme S1. Preparation and characterization of 2a

In a manner analogous to reference [2], in a 10 mL capped vial in an inert atmosphere, a solution of $[Rh(cod)_2]BF_4$ (2.4 mg, 0.006 mmol) and (*R*)-Tol-BINAP (4.1 mg, 0.006 mmol) in anhydrous CH₂Cl₂ (4 mL) was prepared. Hydrogen gas was bubbled into the catalyst solution for 30 min before it was concentrated to dryness, dissolved in anhydrous *o*-DCB and introduced *via* syringe into an *o*-DCB solution (1.2 mM) of C₇₀ (50 mg, 0.06 mmol) and diyne **1a** (83 mg, 0.30 mmol) preheated to 90 °C. The resulting mixture was stirred at 90 °C overnight, allowed to cool to room temperature and concentrated under reduced pressure. The crude product was subjected to column chromatography (SiO₂, 40–63 µm, toluene) to provide **2a** (30 mg, 45%, *α*-**2a**/β-**2a** 70:30 as estimated by ¹H NMR integration) as a brown solid.

MW (C₈₅H₁₇NO₂S): 1115.1 g/mol; **R**_f: 0.28 (toluene); ¹H NMR (400 MHz, CDCl₃/CS₂) δ (ppm) α-2a: 2.27 (s, 3H, CH₃-C), 2.28 (s, 3H, CH₃-C), 3.24 (s, 3H, CH₃-Ar), 4.33-4.70, m, 4H, CH₂-N), 7.30 (d, J = 8.0 Hz, 2H, CH-Ar), 7.79 (d, J = 8.0 Hz, 2H, CH-Ar); β-2a: 2.40 (s, 6H, CH₃-C), 2.62 (s, 3H, CH₃-Ar), 4.33-4.70, m, 4H, CH₂-N), 7.56 (d, J = 8.0, C-H_{Ar}), 7.91 (d, J = 8.0, C-H_{Ar}); UV-vis (toluene) λ_{max} (nm): 337, 387, 467; ESI-HRMS (*m/z*) calcd for [M+Na]⁺ = 1138.0872; found: 1138.0868.

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃/CS₂) of compound 2a.

Figure S5. UV-vis spectrum (toluene) of compound 2a (inset: HPLC trace of 2a).

Scheme S2. Preparation and characterization of 2b

In a manner analogous to reference [2], in a 10 mL capped vial in an inert atmosphere, a solution of [Rh(cod)₂]BF₄ (2.4 mg, 0.006 mmol) and (*R*)-Tol-BINAP (50 mg, 0.006 mmol) in anhydrous CH₂Cl₂ (4 mL) was prepared. Hydrogen gas was bubbled into the catalyst solution for 30 min before it was concentrated to dryness, dissolved in anhydrous *o*-DCB and introduced *via* syringe into an *o*-DCB solution (1.2 mM) of C₇₀ (50 mg, 0.06 mmol) and diyne **1b** (79 mg, 0.30 mmol) preheated to 90 °C. The resulting mixture was stirred at 90 °C for 4h, allowed to cool to room temperature and concentrated under reduced pressure. The crude product was subjected to column chromatography (SiO₂, 40–63 μ m, toluene) to provide unreacted and **2b** (17 mg, 34%, **α**-**2b**/β-**2b** 80:20 as estimated by ¹H as a brown solid.

MW (C₈₅H₂₀O₄): g/mol; **R**_f: 0.56 (toluene); ¹**H NMR (400 MHz, CDCl₃/CS₂) δ (ppm) α-2b:** 1.27 (t, *J* = 7.1 Hz, 3H, CH₂–CH₃), 1.35 (t, *J* = 7.1 Hz, 3H, CH₂–CH₃), 2.36 (s, 3H, C–CH₃), 3.23–3.62 (m, 4H, C-CH₂), 4.24 (q, *J* = 7.1 Hz, 2H, CH₂–CH₃), 4.33 (q, *J* = 7.1 Hz, 2H, CH₂–CH₃); **β-2b:** 1.35 (t, *J* = 7.1 Hz, 3H, CH₂–CH₃), 1.46 (t, *J* = 7.1 Hz, 3H, CH₂–CH₃), 2.48 (s, 6H, C–CH₃), 3.42 (s, 4H, C–CH₂), 4.43 (q, *J* = 7.1 Hz, 2H, CH₂–CH₃); one methylene signal overlapped; ¹³C NMR (101 MHz, CDCl₃/CS₂) δ (ppm) α-2b 14.29 (CH₂–CH₃), 14.33 (CH₂–CH₃), 27.00 (C–CH₃), 32.17 (C–CH₃), 40.24 (C–CH₃), 40.32 (C–CH₂), 40.39 (C-CH₂), 41.38 (C–CH₃); 58.32 (CH₂-C), 62.16 (CH₂-CH₃), 119.63–151.07 (C_{quat}), 171.54 (C=O), 171.86 (C=O); β-2b: 14.57 (CH₂–CH₃), 26.61 (C–CH₃), 40.02 (C– CH₂), 40.48 (C–CH₂), 40.39, 58.37 (CH₂-C–C=O), 62.33 (CH₂-CH₃), 119.63–151.07 (C_{quat}), 171.54 (C=O), 171.67 (C=O); UV-vis (toluene) λ_{max} (nm): 337, 387, 469; ESI-HRMS (*m*/z) calcd for [M+Na]⁺ = 1127.1254; found: 1127.1243. **Figure S6.** ¹H NMR spectrum (400 MHz, CDCl₃/CS₂) of compound **2b**. **a)**

Figure S7. ¹³C NMR spectrum (101 MHz, CDCl₃) of compound 2b.

Figure S8. 2D-HSQC NMR spectrum of compound 2b.

Figure S9. 2D-HMBC NMR spectrum of compound 2b.

Figure S10. 2D-COSY NMR spectrum of compound 2b.

Figure S11. MALDI-TOF HRMS spectrum of 2b.

Figure S12. UV-vis spectrum (CHCl₃) of compound 2b (inset: HPLC trace of 2b).

In a 250 mL round-bottomed flask compound **2a** (200 mg, 0.18 mmol) was dissolved in CS₂ (100 mL) and irradiated with a conventional lamp for 5 h (TLC monitoring). The solvent was removed under reduced pressure and the crude product was subjected to column chromatography (SiO₂, 40–63 μ m, CS₂/toluene 1:1 \rightarrow toluene) to provide compound **3a** (83 mg, 40%) as a 56:29:15 mixture of three different isomers as estimated by ¹H NMR integration.

MW (C₈₅H₁₇NO₄S): 1148.13 g/mol; **R**_{*f*}: 0.13 (toluene); **UV-vis (toluene)** λ_{max} (nm): 371, 451, 677; **ESI-HRMS** (*m/z*) calcd for [M+Na]⁺ = 1170.0770; found: 1170.0756.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃/CS₂) of compound 3a.

Figure S14. ¹³C NMR spectrum (101 MHz, CDCl₃/CS₂) of compound 3a.

S18

Figure S15. 2D-HSQC NMR spectrum of compound 3a.

Figure S16. 2D-HMBC NMR spectrum of compound 3a.

Figure S17. MALDI-TOF HRMS spectrum of compound 3a (m/z).

Scheme S4. Preparation and characterization of 3b.

In a 250 mL round-bottomed flask compound **2b** (95 mg, 0.084 mmol) was dissolved in CS₂ (100 mL) and irradiated with a conventional lamp for 5 h (TLC monitoring). The solvent was removed under reduced pressure and the crude product was subjected to column chromatography (SiO₂, 40–63 μ m, CS₂/toluene 1:1 \rightarrow toluene) to provide compound **3a** (52 mg, 53%) as a 52:38:10 mixture of three different isomers as estimated by ¹H NMR integration. **MW** (C₈₅H₂₀O₆): 1136.13 g/mol; **R***f*: 0.32 (toluene); **UV-vis (toluene)** λ_{max} (nm): 369, 451, 677; **ESI-HRMS (***m*/*z***)** calcd for [M+Na]⁺ = 1159.1152; found: 1159.1147.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃) of 3b.

a)

Figure S20. ¹³C NMR spectrum (101 MHz, CDCl₃) of compound **3b**.

Figure S21. 2D-HSQC NMR spectrum of compound 3b.

Figure S22. 2D-HMBC NMR spectrum of compound 3b.

a)

Figure S23. MALDI-TOF HRMS spectrum of compound 3b.

Figure S24. UV–vis spectrum (CHCl₃) of compound 3b.

Computational details

Geometries of all stationary points were optimized without symmetry constraints with the Gaussian 09 program [3] using the DFT B3LYP hybrid exchange-correlation functional [4] in conjunction with the all-electron cc-pVDZ basis set [5]. The D3 Grimme energy corrections for dispersion with the original damping function were added. [6] The electronic energy was improved by performing single point energy calculations with the cc-pVTZ basis set [7] and the B3LYP-D3 functional including solvent corrections for o-DCB computed with the solvent model based on density (SMD) [8]. Analytical Hessians were computed to determine the nature of stationary points (one and zero imaginary frequencies for TSs and minima, respectively) and to calculate unscaled zero-point energies (ZPEs) as well as thermal corrections and entropy effects using the standard statistical-mechanics relationships for an ideal gas [9]. These two latter terms were computed at 363.15 K and 1 atm to provide the reported relative Gibbs energies. As a summary, the reported Gibbs energies contain electronic energies including solvent effects calculated at the B3LYP-D3/cc-pVTZ//B3LYP-D3/ccpVDZ level together with gas phase thermal and entropic contributions computed at 363.15 K and 1 atm with the B3LYP-D3/cc-pVDZ method. All stationary points were unambiguously confirmed by IRC calculations. In order to reduce the computational cost, the tosyl substituent in 1a was substituted by a mesyl substituent in the model substrate and BIPHEP was used as a model phosphine ligand instead of Tol-BINAP.

Figure S25. Molecular structures of the two possible regioisomers of β-2a and their relative electronic energies computed at the B3LYP-D3/cc-pVDZ//B3LYP/cc-pVTZ level of theory.
a)
b)

 $\Delta E = 0.0 \text{ kcal} \cdot \text{mol}^{-1}$

 $\Delta E = 8.8 \text{ kcal·mol}^{-1}$

Figure S26. Molecular structure of (a) α -TS 1 (b) α -TS 2 (c) β -TS 1 (d) β -TS 2

d)

References

[1] Castro, E.; Fernandez-Delgado, O.; Artigas, A.; Zavala, G.; Liu, F.; Moreno-Vicente, A.; Rodríguez-Fortea, A.; Velasquez, J. D.; Poblet, J. M.; Echegoyen, L. *J. Mater. Chem. C* **2020**, *8*, 6813–6819. DOI:10.1039/d0tc01382j.

[2] Artigas, A.; Castanyer, C.; Roig, N.; Lledó, A.; Solà, M.; Pla-Quintana, A.; Roglans, A. *Adv. Synth. Catal.* **2021**, *363*, 3835-3844. DOI: 10.1002/adsc.202100644.

[3] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

[4] a) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623–11627. doi:10.1021/j100096a001 b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. DOI:10.1063/1.464913.
c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785–789. DOI:10.1103/physrevb.37.785.

[5] Dunning, T. H. J. Chem. Phys. **1989**, *90*, 1007–1023. DOI:10.1063/1.456153.

[6] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* **2010**, *13*2, 154104. DOI:10.1063/1.3382344.

[7] Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. *J. Chem. Phys.* **1992**, *96*, 6796-6806. DOI:10.1063/1.462569.

[8] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. *J. Phys. Chem. B* **2009**, *113*, 6378–6396. DOI:10.1021/jp810292n.

[9] P. Atkins, J. De Paula, The Elements of Physical Chemistry, 3rd ed.; Oxford University Press: Oxford, **2006**.