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General materials and methods

Unless otherwise noted, materials were obtained from commercial suppliers and used without further
purification. CH2Cl> was dried under nitrogen by passing through solvent purification columns
(MBraun, SPS-800). Reaction progress during the preparation of all compounds was monitored using
thin layer chromatography on Macherey-Nagel Xtra SIL G/UV254 silica gel plates. Solvents were
removed under reduced pressure with a rotary evaporator. Reaction mixtures were chromatographed
on silica gel. All *H and **C NMR spectra were recorded on a Bruker ASCEND 400 spectrometer
equipped with a 5 mm BBFO probe using CDCl; as a deuterated solvent. Chemical shifts for *H and
13C NMR are reported in ppm (8) relative to residual solvent signals. Coupling constants are given in
hertz (Hz). *H and *C NMR signals were assigned based on 2D-NMR HSQC, HMBC and COSY
experiments. Mass spectrometry analyses were recorded on a Bruker micrOTOF-Q Il mass
spectrometer (high resolution), equipped with electrospray ion source. The instrument was operated
in the positive ESI(+) ion mode. HPLC data were collected on Agilent Technologies LC 1200 series
instrument equipped with a Cosmosil Buckyprep-M column (10 mm x 250 mm, Nacalai Tesque, Inc.)
monitored with a UV detector at 320 nm. Toluene was used as mobile phase (flow 0.5 mL/min). UV-
vis spectra were performed with an Agilent 8452 UV-vis spectrophotometer (1 cm quartz cell) in

toluene.
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Table S1. Influence of the reaction conditions on the reaction outcome.

[Rh(cod),]BF4 (y mol%)
(R)-Tol-BINAP (y mol%)

H2Y CHzclz‘ r.t.
X/ - +  Crp catalytic species
=
(5 equiv.)
[Crl | T®™PE | Time | Yield ”
Entry Solvent y X rature ) )
(mM) o (h) (%) bIS(fU“eI’OId)
(°C)
1 0-DCB 10 NTs 1.2 90 4 46 90
2 0-DCB 10 NTs 1.2 120 4 42 90
3 0-DCB 10 NTs 1.2 180 4 42 90
4 0-DCB 10 NTs 1.2 90 16 45 95
5 0-DCB 10 NTs 1.2 90 24 45 >99
6 Toluene 10 NTs 1.2 90 24 22 >99
7 CB 10 NTs 1.2 90 24 28 >99
8 0-DCB 10 NTs 24 90 24 38 >99
9 0-DCB 5 NTs 1.2 90 24 30 >99
10 0-DCB 10 | C(COOKEt): 1.2 90 4 34 >99

0-DCB: ortho-Dichlorobenzene; CB: Chlorobenzene
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Figure S1. (a) HPLC trace of material (X = NTs) isolated after 16 h (entry 4 in Table S1); (b)

HPLC trace of material isolated after 24 h (entry 5 in Table S1); (c) UV-vis spectra of Cro,

peak 1, peak 2 and previously reported alpha adduct [1].
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Figure S2. (a) HPLC trace of material (X = C(COOEt)2) isolated after 4 h (entry 10 in Table

S1; (b) UV-vis spectra of peak Croand peak 1.
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Scheme S1. Preparation and characterization of 2a

[Rh(cod),]BF4 (10 mol%)
(R)-Tol-BINAP (10 mol%)

J H2, CH20|2‘ r.t.

CH
,— CHj catalytic species °
TsN + C70 >
= CH, 0-DCB *
90°C, 24 h
1a

45%
(a-2a/B-2a 70:30)

In a manner analogous to reference [2], in a 10 mL capped vial in an inert atmosphere, a
solution of [Rh(cod)z]BF4 (2.4 mg, 0.006 mmol) and (R)-Tol-BINAP (4.1 mg, 0.006 mmol) in
anhydrous CHCIl; (4 mL) was prepared. Hydrogen gas was bubbled into the catalyst solution
for 30 min before it was concentrated to dryness, dissolved in anhydrous o-DCB and introduced
via syringe into an 0-DCB solution (1.2 mM) of Cz (50 mg, 0.06 mmol) and diyne 1a (83 mg,
0.30 mmol) preheated to 90 °C. The resulting mixture was stirred at 90 °C overnight, allowed
to cool to room temperature and concentrated under reduced pressure. The crude product was
subjected to column chromatography (SiO2, 40—-63 um, toluene) to provide 2a (30 mg, 45%, a-
2a/B-2a 70:30 as estimated by *H NMR integration) as a brown solid.

MW (CgsH17NO2S): 1115.1 g/mol; Rs: 0.28 (toluene); *H NMR (400 MHz, CDCI3/CS2) &
(ppm) a-2a: 2.27 (s, 3H, CH3-C), 2.28 (s, 3H, CHs3-C), 3.24 (s, 3H, CHs-Ar),
4.33-4.70, m, 4H, CH2-N), 7.30 (d, J = 8.0 Hz, 2H, CH-Ar), 7.79 (d, J = 8.0 Hz, 2H,
CH-Ar); B-2a: 2.40 (s, 6H, CH3-C), 2.62 (s, 3H, CHs-Ar), 4.33-4.70, m, 4H, CH2—N),
7.56 (d, J=8.0, C-Har), 7.91 (d, J = 8.0, C—Har); UV-vis (toluene) Amax (nm): 337, 387,
467; ESI-HRMS (m/z) calcd for [M+Na]* = 1138.0872; found: 1138.0868.
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Figure S3.*H NMR spectrum (400 MHz, CDCIs/CS2) of compound 2a.
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Figure S4: MALDI-TOF HRMS spectrum of compound 2a.
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3
"
N /\
(=]
8
10 15 20
Time (min)

Absorbance (a.u.)

300 350 400 450 500 550 600 650 700
Wavelength (nm)

S9



Scheme S2. Preparation and characterization of 2b

[Rh(cod),]BF,4 (10 mol%)
(R)-Tol-BINAP (10 mol%) EtOOC cooEt

\ H2’ CH2C|2’ r.t.

EtOOC><iCH3 e catalytic species
70 -
EOOC™ \_ = cp, 0-DCB

90°C, 4 h

1b

34%
(a-2b/B-2b 80:20)

In a manner analogous to reference [2], in a 10 mL capped vial in an inert atmosphere, a solution
of [Rh(cod):]BF4 (2.4 mg, 0.006 mmol) and (R)-Tol-BINAP (50 mg, 0.006 mmol) in anhydrous
CH.CI; (4 mL) was prepared. Hydrogen gas was bubbled into the catalyst solution for 30 min
before it was concentrated to dryness, dissolved in anhydrous 0-DCB and introduced via syringe
into an 0-DCB solution (1.2 mM) of C7 (50 mg, 0.06 mmol) and diyne 1b (79 mg, 0.30 mmol)
preheated to 90 °C. The resulting mixture was stirred at 90 °C for 4h, allowed to cool to room
temperature and concentrated under reduced pressure. The crude product was subjected to
column chromatography (SiO», 40-63 um, toluene) to provide unreacted and 2b (17 mg, 34%, a-
2b/B-2b 80:20 as estimated by H as a brown solid.

MW (CssH2004): g/mol; Rt: 0.56 (toluene); *H NMR (400 MHz, CDCI3/CS2) 6 (ppm) a-2b:
1.27 (t, J=7.1 Hz, 3H, CH2—-CHs), 1.35 (t, J = 7.1 Hz, 3H, CH2—-CHs), 2.36 (s, 3H, C-CH?3),
3.23-3.62 (m, 4H, C-CH2), 4.24 (q, J = 7.1 Hz, 2H, CH2-CHs), 4.33 (q, J = 7.1 Hz, 2H,
CH2—-CHza); B-2b: 1.35 (t, J = 7.1 Hz, 3H, CH2-CHs3s), 1.46 (t, J = 7.1 Hz, 3H, CH2—-CHz3),
2.48 (s, 6H, C-CHs), 3.42 (s, 4H, C-CH2), 4.43 (q, J = 7.1 Hz, 2H, CH2-CHz3); one
methylene signal overlapped; *C NMR (101 MHz, CDCI3/CS2) & (ppm) a-2b 14.29
(CH2—-CH3s), 14.33 (CH2-CHs), 27.00 (C-CHs), 32.17 (C-CHs), 40.24 (C-CHs), 40.32
(C-CHz2), 40.39 (C-CH2), 41.38 (C—-CHs3); 58.32 (CH2-C), 62.16 (CH2-CH3), 119.63-151.07
(Cquat), 171.54 (C=0), 171.86 (C=0); B-2b: 14.57 (CH2—-CHs), 26.61 (C-CHs), 40.02 (C-
CH2), 40.48 (C-CH2), 40.39, 58.37 (CH2-C-C=0), 62.33 (CH2-CHs), 119.63-151.07
(Cquat), 171.54 (C=0), 171.67 (C=0); UV-vis (toluene) Amax (nm): 337, 387, 469; ESI-
HRMS (m/z) calcd for [M+Na]* = 1127.1254; found: 1127.1243.
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Figure S6. 'H NMR spectrum (400 MHz, CDCIs/CS:) of compound 2b.
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Figure S7. 13C NMR spectrum (101 MHz, CDCI3) of compound 2b.
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Figure S8. 2D-HSQC NMR spectrum of compound 2b.
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Figure S10. 2D-COSY NMR spectrum of compound 2b.
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Figure S12. UV-vis spectrum (CHCIs) of compound 2b (inset: HPLC trace of 2b).
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Scheme S3. Oxidative cleavage of 2a

a-2a p-2a a-3ala'-3a B-3a

3a, 40% yield (o/p 71:29)

In a 250 mL round-bottomed flask compound 2a (200 mg, 0.18 mmol) was dissolved in CS;
(100 mL) and irradiated with a conventional lamp for 5 h (TLC monitoring). The solvent was
removed under reduced pressure and the crude product was subjected to column
chromatography (SiO», 40—-63 um, CSy/toluene 1:1 — toluene) to provide compound 3a (83 mg,

40%) as a 56:29:15 mixture of three different isomers as estimated by 'H NMR integration.

MW (CssH17NO4S): 1148.13 g/mol; Rt: 0.13 (toluene); UV-vis (toluene) Amax (nm): 371,
451, 677; ESI-HRMS (m/z) calcd for [M+Na]* = 1170.0770; found: 1170.0756.
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Figure S13. 'H NMR spectrum (400 MHz, CDCIs/CS2) of compound 3a.
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Figure S14.13C NMR spectrum (101 MHz, CDCI3/CSz2) of compound 3a.
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Figure S15. 2D-HSQC NMR spectrum of compound 3a.
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Figure S18. UV-vis spectrum (CHCI3) of compound 3a.
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Scheme S4. Preparation and characterization of 3b.

EtOOC

a-2b B-2b a-3b/o'-3b B-3b
3b, 53% yield (a/B 90:10)

In a 250 mL round-bottomed flask compound 2b (95 mg, 0.084 mmol) was dissolved in CS;
(100 mL) and irradiated with a conventional lamp for 5 h (TLC monitoring). The solvent was
removed under reduced pressure and the crude product was subjected to column
chromatography (SiO», 40—-63 um, CSy/toluene 1:1 — toluene) to provide compound 3a (52 mg,
53%) as a 52:38:10 mixture of three different isomers as estimated by *H NMR integration.
MW (CssH2006): 1136.13 g/mol; Rs: 0.32 (toluene); UV-vis (toluene) Amax (nm): 369, 451,
677; ESI-HRMS (m/z) calcd for [M+Na]* = 1159.1152; found: 1159.1147.
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Figure S19. 'H NMR spectrum (400 MHz, CDCIs) of 3b.
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Figure S20. 13C NMR spectrum (101 MHz, CDCIz) of compound 3b.
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Figure S21. 2D-HSQC NMR spectrum of compound 3b.
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Figure S23. MALDI-TOF HRMS spectrum of compound 3b.
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Figure S24. UV-vis spectrum (CHCI3) of compound 3b.
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Computational details

Geometries of all stationary points were optimized without symmetry constraints with the Gaussian
09 program [3] using the DFT B3LYP hybrid exchange-correlation functional [4] in conjunction with
the all-electron cc-pVDZ basis set [5]. The D3 Grimme energy corrections for dispersion with the
original damping function were added. [6] The electronic energy was improved by performing single
point energy calculations with the cc-pVTZ basis set [7] and the B3LYP-D3 functional including solvent
corrections for 0-DCB computed with the solvent model based on density (SMD) [8]. Analytical
Hessians were computed to determine the nature of stationary points (one and zero imaginary
frequencies for TSs and minima, respectively) and to calculate unscaled zero-point energies (ZPESs)
as well as thermal corrections and entropy effects using the standard statistical-mechanics
relationships for an ideal gas [9]. These two latter terms were computed at 363.15 K and 1 atm to
provide the reported relative Gibbs energies. As a summary, the reported Gibbs energies contain
electronic energies including solvent effects calculated at the B3LYP-D3/cc-pVTZ//B3LYP-D3/cc-
pVDZ level together with gas phase thermal and entropic contributions computed at 363.15 K and
1 atm with the B3LYP-D3/cc-pVDZ method. All stationary points were unambiguously confirmed by
IRC calculations. In order to reduce the computational cost, the tosyl substituent in 1a was substituted
by a mesyl substituent in the model substrate and BIPHEP was used as a model phosphine ligand
instead of Tol-BINAP.
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Figure S25. Molecular structures of the two possible regioisomers of 3-2a and their relative
electronic energies computed at the B3LYP-D3/cc-pVDZ//B3LYP/cc-pVTZ level of theory.

AE = 0.0 kcal-mol*? AE = 8.8 kcal-mol?
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Figure S26. Molecular structure of (a) a-TS 1 (b) a-TS 2 (¢c) B-TS 1 (d) B-TS 2
a) b)
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