

Supporting Information

for

Synthesis of 2,2-difluoro-1,3-diketone and 2,2-difluoro-1,3-ketoester derivatives using fluorine gas

Alexander S. Hampton, David R. W. Hodgson, Graham McDougald, Linhua Wang and Graham Sandford

Beilstein J. Org. Chem. 2024, 20, 460–469. doi:10.3762/bjoc.20.41

Experimental procedures, characterization data, and copies of 1 H, 19 F and 13 C{ 1 H} NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

1	Experimental						
	1.1	General experimental and instrumentation	S3				
	1.2	Synthesis of 1b–i	S4				
	Gene	eral procedure 1 (GP1)—synthesis of compounds 1b–h	S4				
	1.2.1	1-(4-Methylphenyl)-3-phenylpropane-1,3-dione (1b)	S4				
	1.2.2	2 1-(4-Methoxyphenyl)-3-phenylpropane-1,3-dione (1c)	S5				
	1.2.3	3 1-(4-Chlorophenyl)-3-phenylpropane-1,3-dione (1d)	S5				
	1.2.4	1-(4-Fluorophenyl)-3-phenylpropane-1,3-dione (1e)	S6				
	1.2.5	5 1-(4-Nitrophenyl)-3-phenylpropane-1,3-dione (1f)	S7				
	1.2.6	5 1,3-Bis(4-chlorophenyl)-propane-1,3-dione (1g)	S7				
	1.2.7	1,3-Bis(4-fluorophenyl)-propane-1,3-dione (1h)	58				
	1.2.8	3 1,3-Bis(4-nitrophenyi)-propane-1,3-dione (1)	58				
	1.3	Screening conditions for the base-mediated direct fluorination of dibenzoylmethane	. S10				
	1.4 motha	Screening conditions for the quinuclidine-mediated direct fluorination of dibenzoyl-	C11				
	metha	ne	. 311				
	1.5	Experimental to Table 2: Synthesis of 3a-i	. S12				
	Genera	al procedure 2 (GP2)—synthesis of 3a-i	. S12				
	1.5.1	L 2,2-Difluoro-1,3-diphenylpropane-1,3-dione (3a)	S12				
	1.5.2	2 2,2-Difluoro-1-(4-chlorophenyl)-3-phenylpropane-1,3-dione (3d)	S13				
	1.5.3	3 2,2-Difluoro-1-(4-fluorophenyl)-3-phenylpropane-1,3-dione (3e)	S13				
	1.5.3	3 2,2-Difluoro-1-(4-nitrophenyl)-3-phenylpropane-1,3-dione (3f)	S14				
	1.5.5	5 2,2-Difluoro-1,3-bis(4-chlorophenyl)propane-1,3-dione (3g)	S14				
	1.5.6	2,2-DITIUOTO-1,3-DIS(4-TIUOTOPNENYI)propane-1,3-dione (3n)	515				
	1.5.7	Synthosis of 4b_b	515 S16				
	1.0		. 510				
	Genera	al procedure 3 (GP3)– synthesis of compounds 4b–h	. S16				
	1.6.1	Ethyl (4-methoxy)benzoylacetate (4b)	S16				
	1.6.2	2 Ethyl (4-chloro)benzoylacetate (4c)	S17				
	1.6.5	3 Etnyl (4-trifluorometnyl)benzoylacetate (4d)					
	1.0.4	Ethyl (4-hitro)benzoylacetate (4e)	518 0 1 0				
	1.0.5	5 Ethyl (3-nitro)benzovlacetate (41)	010				
	1.0.0	7 Ethyl 3-0x0-3-(nvridin-4-vl)nronanoate (4b)					
	1.0.7						
	1.7	Screening vonditions for the base-mediated direct fluorination of ethyl benzoylacetate	. S21				
	1.8	Synthesis of 5a–g	. S22				
	Genera	al procedure 4 (GP4) — synthesis of compounds 5a-g	. S22				
	1.8.1	Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5a)	S22				
	1.8.2	2 Ethyl 2,2-difluoro-3-(4-chlorophenyl)-3-oxo-propanoate (5c)	S23				
	1.8.3	B Ethyl 2,2-difluoro-3-(4-(trifluoromethyl)phenyl)-3-oxo-propanoate (5d)	S23				
	1.8.4	Ethyl 2,2-difluoro-3-(4-(nitrophenyl)-3-oxo-propanoate (5e)					
	1.8.5	Ethyl 2,2-difluoro-3-(4-(cyanophenyl)-3-oxo-propanoate (5f)					
	1.8.6	Etnyi 2,2-difiuoro-3-(3-(nitrophenyi)-3-oxo-propanoate (5g)	525				
2	NM	R Spectra	. S26				
	2.1	1-(Methylphenyl)-3-phenylpropane-1,3-dione (1b)	. S26				
	2.2	1-(Methoxyphenyl)-3-phenylpropane-1,3-dione (1c)	. S27				
			_				

	2.3	1-(Chlorophenyl)-3-phenylpropane-1,3-dione (1d)	S28		
	2.4	1-(Fluorophenyl)-3-phenylpropane-1,3-dione (1e)	S29		
	2.5	1-(Nitrophenyl)-3-phenylpropane-1,3-dione (1f)	S31		
	2.6	1,3-Bis(4-chlorophenyl)-propane-1,3-dione (1g)	S32		
	2.7	1,3-Bis(fluorophenyl)-propane-1,3-dione (1h)	S33		
	2.8	1,3-Bis(nitrophenyl)-propane-1,3-dione (1i)	S35		
	2.9	2,2-Difluorophenylpropane-1,3-dione (3a)	S36		
	2.10	2,2-Difluoro-1-(4-chlorophenyl)-3-phenylpropane-1,3-dione (3d)	S38		
	2.11	2,2-Difluoro-1-(4-fluorophenyl)-3-phenylpropane-1,3-dione (3e)	S40		
	2.12	2,2-Difluoro-1-(nitrophenyl)-3-phenylpropane-1,3-dione (3f)	S42		
	2.13	2,2-Difluoro-1,3-bis(chlorophenyl)propane-1,3-dione (3 g)	S44		
	2.14	2,2-Difluoro-1,3-bis(fluorophenyl)propane-1,3-dione (3h)	S46		
	2.15	2,2-Difluoro-1,3-bis(nitrophenyl)propane-1,3-dione (3i)	S48		
	2.16	Ethyl (4-methoxy)benzoylacetate (4b)	S50		
	2.17	Ethyl (4-chloro)benzoylacetate (4c)	S51		
	2.18	Ethyl (4-trifluoromethyl)benzoylacetate (4d)	S52		
	2.19	Ethyl (4-nitro)benzoylacetate (4e)	S54		
	2.20	Ethyl (4-cyano)benzoylacetate (4f)	S55		
	2.21	Ethyl (3-nitro)benzoylacetate (4g)	S56		
	2.22	Ethyl 3-oxo-3-(pyridin-4-yl)propanoate (4h)	S57		
	2.23	Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5a)	S58		
	2.24	Ethyl 2,2-difluoro-3-(4-chlorophenyl)-3-oxopropanoate (5c)	S60		
	2.25	Ethyl 2,2-difluoro-3-(4-trifluoromethylphenyl)-3-oxopropanoate (5d)	S62		
	2.26	Ethyl 2,2-difluoro-3-(4-nitrophenyl)-3-oxopropanoate (5e)	S64		
	2.27	Ethyl 2,2-difluoro-3-(4-cyanophenyl)-3-oxopropanoate (5f)	S66		
	2.28	Ethyl 2,2-difluoro-3-(3-nitrophenyl)-3-oxopropanoate (5g)	S68		
3	Sing	e crystal X-ray crystallography	S70		
	3.1 Cry	stallographic data for 1h (polymorph A)	S71		
	3.2 Crystallographic data for 1h (polymorph B)				
	3.3 Crystallographic data for 3a				
	3.4 Crystallographic data for 3f				
	3.5 Crystallographic data for 3i				
	3.6 Cry	rstallographic data for 4c	S76		
	3.7 Cry	stallographic data for 4g	S77		
	3.8 Cry	stallographic data for 5e	S78		
4	Refe	erences	S79		
			S2		

1 Experimental

1.1 General experimental and instrumentation

Chemicals were purchased from Fisher Scientific, Apollo Scientific, Fluorochem or Sigma Aldrich and, unless otherwise stated, were used without any further purification. All column chromatography was carried out using Silicagel LC60A (40-63 micron) purchased from Fluorochem. Proton, carbon and fluorine nuclear magnetic resonance spectra (¹H NMR, ¹³C{¹H} NMR and ¹⁹F NMR) were recorded on Bruker 400 Ultrashield (¹H NMR at 400 MHz; ¹³C{¹H} NMR at 101 MHz; ¹⁹F NMR at 376 MHz), Varian DD2-500 (H NMR at 500 MHz; ¹³C{¹H} NMR at 126 MHz), Varian VNMR-600 Ultrashield (¹H NMR at 600 MHz; ¹³C{¹H} NMR at 151 MHz) spectrometers or a Varian VNMRS-700 (¹H NMR at 700 MHz; ¹³C{¹H} NMR at 176 MHz) spectrometer with residual solvent peaks as the internal standard. ¹H, ¹³C{¹H} and ¹⁹F NMR spectroscopic data are reported as follows: chemical shift (ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), coupling constant (Hz). Accurate mass analysis was achieved with a QtoF Premier mass spectrometer (Waters Ltd, UK) or an LCT Premier XE mass spectrometer (Waters Ltd, UK) equipped with an atmospheric solids analysis probe (ASAP). Infrared (IR) spectra were recorded on a Perkin Elmer FTIR Spectrum Two[™] fitted with an ATR probe. Melting points were measured with a Gallenkamp apparatus at atmospheric pressure and are uncorrected.

Fluorinations were carried out in a borosilicate glass fluorination reactor (100 mL) unless otherwise stated. The reactor was built from a standard glass bottle with a GL 45 thread joint and a PTFE screw cap equipped with a gas inlet/outlet head built of stainless steel, PTFE and FEP Swagelok components. The flow rates were controlled with a Brooks Instrument gas mass flow controller.

The acetophenone derivative (10 mmol), lithium hexamethyldisilizane (1 M in tetrahydrofuran, 20 mmol, 20 mL) and anhydrous tetrahydrofuran (20 mL) were stirred at -78 °C for 30 min under argon. The corresponding acid chloride (10 mmol) was added over the course of a few minutes, and the reaction mixture was allowed to warm to room temperature overnight and stirred for 48 h. Where the acid chloride was a solid, the amount was added to a round-bottomed flask, purged with argon, and dissolved in anhydrous tetrahydrofuran (10 mL) before being transferred to the reaction mixture via cannula. The reaction mixture was quenched with 36% hydrochloric acid (3 mL), then partitioned between water (10 mL) and ethyl acetate (30 mL). The aqueous layer was extracted with ethyl acetate ($2 \times 30 \text{ mL}$) and the combined organic phases were washed with sodium bicarbonate (30 mL) and water (30 mL). The organic layer was dried over magnesium sulphate and the solvent was removed under reduced pressure to yield the crude product, which was further purified by recrystallization or column chromatography, if required.

1.2.1 1-(4-Methylphenyl)-3-phenylpropane-1,3-dione (1b)

Prepared according to **GP1**, 4-methylacetophenone (1.34 mL, 10.04 mmol) and benzoyl chloride (1.16 mL, 9.99 mmol) after purification by column chromatography with ethyl acetate 15% v/v in hexane solvent mixture as the eluent gave a mixture of keto- and enol-tautomers of *1-(4-methylphenyl)-3-phenyl-1,3-propanedione* (2.408 g, 100%) as a white solid; Mp 85–86 °C [lit. Mp 84–85 °C^[1]; 86-89 °C^[2]]. *Enol tautomer* (92%) ¹H NMR (700 MHz, CDCl₃) δ 2.44 (3 H, s, C**8**H₃), 6.84 (1 H, s, C**2**H), 7.28–7.31 (2 H, m, C**6**H), 7.47–7.51 (2 H, m, C**6**'H), 7.53–7.57 (1 H, m, C**7**'H), 7.88–7.92 (2 H, m, C**5**H), 7.97–7.99 (2 H, m, C**5**'H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 21.8 (C**8**), 93.0 (C**2**), 127.2 (C**5**'), 127.4 (C**5**), 128.8 (C**6**'), 129.6 (C**6**), 132.4 (C**7**'), 133.0 (C**4**), 135.8 (C**4**'), 143.4 (C**7**), 185.3 (C**3**), 186.2 (C**1**); *ketone tautomer* (8%) ¹H NMR (700 MHz, CDCl₃)

δ 4.61 (2H, s, C**2**H), 2.42 (3 H, s, - C**8**H); *m/z* (EI⁺) 238.2 ([M]⁺, 92%), 223.1 ([C₁₅H₁₁O₂]⁺, 11%), 161.1 ([C₁₀H₉O₂]⁺, 22%), 147.1 ([C₉H₇O₂]⁺, 16%), 119.1 ([C₈H₇O]⁺, 87%), 105.1 ([C₇H₅O]⁺, 44%), 91.1 ([C₇H₇]⁺, 43%), 77.1 ([C₆H₅]⁺, 39%), 69.0 ([C₅H₉]⁺, 59%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₆H₁₅O₂ 239.1072; found 239.1067. IR (neat, cm⁻¹) 2923, 1459, 1185, 1018, 767, 687, 582. Crystals suitable for X-ray diffraction were grown by slow evaporation from hexane. Data consistent with those previously reported in the literature.^[2]

1.2.2 1-(4-Methoxyphenyl)-3-phenylpropane-1,3-dione (1c)

Prepared according to **GP1**, acetophenone (1.17 mL, 10.03 mmol) and 4methoxybenzoyl chloride (1.35 mL, 9.97 mmol) after recrystallisation from ethyl acetate afforded a mixture of keto- and enol-tautomers of *1-(4-methoxyphenyl)-3-phenyl-1,3propanedione* (2.399 g, 95%) as colourless crystals; Mp 127–128 °C [lit. Mp 127–128 °C;^[3] 128 °C;^[4] 129 °C^[1]]. *Enol tautomer* (90%) ¹H NMR (700 MHz, CDCl₃) δ 3.89 (3 H, s, C8H₃), 6.80 (1 H, s, C2H), 6.97–7.00 (2 H, m, C6H), 7.47–7.50 (2 H, m, C6'H), 7.53– 7.56 (1 H, m, C7'H), 7.96–7.98 (2 H, m, C5'H), 7.98–7.99 (2 H, m, C5H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 55.6 (C8), 92.5 (C2), 114.1 (C6), 127.1 (C5'), 128.4 (C4), 128.8 (C6'), 129.5 (C5), 132.3 (C7'), 135.7 (C4'), 163.4 (C7), 184.2 (C3), 186.3 (C1); *ketone tautomer* (10%) ¹H NMR (700 MHz, CDCl₃) δ 4.59 (2H, s, C2H), 3.87 (3 H, s, -C8H); *m/z* (El⁺) 254.1 ([M]⁺], 100%), 177.1 ([C₁₀H₉O₃]⁺, 19%), 135.1 ([C₈H₇O₂]⁺, 95%), 108.1 ([C₇H₈O]⁺, 60%), 105.1 ([C₇H₅O]⁺, 30%), 77.1 ([C₆H₅]⁺, 56%), 69.0 ([C₅H₉]⁺, 31%), 51.1 ([C₄H₃]⁺, 9%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₆H₁₅O₃ 255.1021; found 255.1024. IR (neat cm⁻¹) 2970, 1452, 1298, 1182, 1020, 843, 766, 582, 502. Data consistent with those previously reported in the literature.^[3-5]

1.2.3 1-(4-Chlorophenyl)-3-phenylpropane-1,3-dione (1d)

Prepared according to **GP1**, acetophenone (1.17 mL, 10.03 mmol) and 4-chlorobenzoyl chloride (1.28 mL, 9.98 mmol) after recrystallisation from hexane afforded a mixture of keto- and enol-tautomers of *1-(4-chlorophenyl)-3-phenyl-1,3-propanedione* (2.314 g, 90%) as a pale yellow solid; Mp 85–87 °C [lit. Mp 87 °C;^[4] 86.9-87.6°C;^[5b] 86–88 °C^[6]].

Enol tautomer (94%) ¹H NMR (600 MHz, CDCl₃) δ 6.81 (1 H, s, C2H), 7.47 (2 H, dt, ³J_{HH} 8.7, ⁴J_{HH} 2.4, C6H), 7.48–7.51 (2 H, m, C5'H), 7.57 (1 H, tt, ³J_{HH} 7.4, ⁴J_{HH} 1.4, C7'H), 7.93 (2 H, dt, ³J_{HH} 8.7, ⁴J_{HH} 2.4, C5H), 7.97–8.00 (2 H, m, C6'H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 93.2 (C2), 127.3 (C6'), 128.7 (C5), 128.9 (C5'), 129.1 (C6), 132.8 (C7'), 134.1 (C4), 135.5 (C4'), 138.9 (C7), 184.7 (C1), 185.9 (C3); *ketone tautomer* (6%) ¹H NMR (600 MHz, CDCl₃) δ 4.61 (2H, s, C2H); *m/z* (El⁺) 258.1 ([M]⁺, 79%), 181.0 ([C₉H₆ClO₂]⁺, 22%), 147.1 ([C₉H₇O₂]⁺, 21%), 139.1 ([C₇H₄ClO]⁺, 43%), 111.1 ([C₆H₄Cl]⁺, 20%), 105 ([C₇H₅O]⁺, 56.7%), 77.1 ([C₆H₅]⁺, 96%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₁₂ClO₂ 259.0526; found 259.0531. IR (neat cm⁻¹) 2924, 1516, 1282, 1093, 1012, 843, 757, 682. Data consistent with those previously reported in the literature.^[4-5]

1.2.4 1-(4-Fluorophenyl)-3-phenylpropane-1,3-dione (1e)

Prepared according to GP1, 4-fluoroacetophenone (1.21 mL, 9.97 mmol) and benzoyl chloride (1.16 mL, 9.99 mmol) after recrystallisation from hexane afforded a mixture of keto- and enol-tautomers of 1-(4-fluorophenyl)-3-phenyl-1,3-propanedione (2.417 g, 100%) as a beige solid; Mp 78–79 °C [lit. Mp 88 °C^[7]]. *Enol tautomer* (93%) ¹H NMR (700 MHz, CDCl₃) δ 6.81 (1 H, s, C2H), 7.14–7.20 (2 H, m, C6H), 7.47–7.52 (2 H, m, C5'H), 7.56 (1 H, tt, ³J_{HH} 7.4, ⁴J_{HH} 1.2, C7'H), 7.97–7.99 (2 H, m, C6'H), 8.00–8.02 (2 H, m, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ – 106.2 (tt, ³*J*_{HF} 8.4, ⁴*J*_{HF} 5.4); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 93.0 (C**2**), 116.0 (d, ²J_{CF} 21.9, C**6**), 127.3 (C**6**'), 128.9 (C**5**'), 129.8 (d, ³*J*_{CF} 9.1, C5), 132.6 (C7'), 135.4 (C4'), 165.6 (d, ¹*J*_{CF} 253.9, C7), 185.26 (C1) 185.27 (C3); ketone tautomer (7%) ¹H NMR (700 MHz, CDCl₃) δ 4.61 (2H, s, C2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.9 (tt, ³J_{HF} 8.3, ⁴J_{HF} 5.3); *m/z* (EI⁺) 242.0 ([M]⁺, 19%), 223.1 ([C₁₅H₁₁O₂]⁺, 3%), 147.1 ([C₉H₇O₂]⁺, 10%), 123.1 ([C₇H₄FO]⁺, 10%), 119.1 ([C₈H₇O]⁺, 4%), 105.1 ([C7H5O]⁺, 20%), 95.0 ([C6H4F]⁺, 10%), 91.1 ([C7H7]⁺, 7%), 77.0 ([C6H5]⁺, 29%), 69.0 ([C₅H₉]⁺, 15%), 51.0 ([C₄H₃]⁺, 12%). HRMS (ASAP) *m*/*z* calculated for [M+H]⁺ C₁₅H₁₂FO₂ 243.0821; found 243.0826. IR (neat cm⁻¹) 3112, 1729, 1520, 1348, 1284, 1108, 955, 764, 688, 562. Data consistent with those previously reported in the literature.^[7]

1.2.5 1-(4-Nitrophenyl)-3-phenylpropane-1,3-dione (1f)

Prepared according to **GP1**, acetophenone (1.17 mL, 10.03 mmol) and 4-nitrobenzoyl chloride (1.860 g, 10.02 mmol) without further purification gave a mixture of keto- and enol-tautomers of *1-(4-nitrophenyl)-3-phenyl-1,3-propanedione* (2.677 g, 99%) as a yellow solid; Mp 145–146 °C [lit. Mp 160–161 °C^[1]]; *enol tautomer* (95%) ¹H NMR (700 MHz, CDCl₃) δ 6.90 (1 H, s, C2H), 7.51–7.54 (2 H, m, C5'H), 7.59–7.62 (1 H, C5H), 8.00–8.03 (2 H, m, C6'H), 8.14 (2 H, dt, J.9.0, 2.3, C6H), 8.34 (2 H, dt, J.9.0, 2.3, C5H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 94.4 (C2), 124.0 (C2), 127.6 (C6'), 128.2 (C6), 129.0 (C5'), 133.3 (C7'), 135.3 (C4'), 141.1 (C2), 150.1 (C7), 181.8 (C1), 188.0 (C3); *ketone tautomert* (5%) ¹H NMR (700 MHz, CDCl₃) δ 4.69 (2 H, s, C2H); *m/z* (El⁺) 269.1 ([M]⁺, 77%), 222.1 ([C₁₅H₁₀O₂]⁺, 15%), 192.0 ([C₉H₆NO₄]⁺, 17%), 147.1 ([C₉H₇O₂]⁺, 24%), 120.1 ([C₈H₈O]⁺, 7%), 105.1 ([C₇H₅O]⁺, 76%), 91.1 ([C₇H₇]⁺, 4%), 77.1 ([C₆H₅]⁺, 49%), 69.0 ([C₅H₉]⁺, 51%), 51.0 ([C₄H₃]⁺, 11%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₁₂NO₄ 270.0766; found 270.0757. IR (neat cm-1) 3121, 2981, 1692, 1513, 1343, 1103, 855, 744. Data consistent with that previously reported in the literature.^[5a]

1.2.6 1,3-Bis(4-chlorophenyl)-propane-1,3-dione (1g)

Prepared according to GP1, 4-chloroacetophenone (1.30 mL, 10.03 mmol) and 4-chlorobenzoyl chloride (1.28 mL, 9.98 mmol) after recrystallisation from hexane and ethyl acetate afforded a mixture of keto- and enol-tautomers of *1,3-bis(4-chlorophenyl)propane-1,3-dione* (2.882 g, 99%) as a very pale yellow solid; Mp 151–153 °C [lit. Mp 160.5-161.9 °C;^[5b] 160–161 °C]. *Enol tautomer* (94%) ¹H NMR (700 MHz, CDCl₃) δ 6.77 (1 H, s, C2H), 7.46–7.48 (4 H, m, C4H), 7.91–7.93 (4 H, m, C5H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 93.0 (C2), 128.7 (C4), 129.2 (C5), 133.9 (C6), 139.1 (C3), 184.8 (C1); *ketone tautomer* (6%) ¹H NMR (700 MHz, CDCl₃) δ 4.58 (2 H, s, C2H); *m/z* (El⁺) 292.1 ([M]⁺, 68%), 223.1 ([C₁₅H₁₁O₂]⁺, 11%), 181.0 ([C₉H₆ClO₂]⁺, 40%), 139.1 ([C₇H₄ClO]⁺, 100%), 111.1 ([C₆H₄Cl]⁺, 54%), 69.0 ([C₅H₉]⁺, 54%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₁₁O₂Cl₂ 293.0136; found 293.0147. IR (neat cm⁻)

¹) 2981, 1582, 1503, 1397, 1279, 1177, 970, 775. Data consistent with those previously reported in the literature.^[5b]

1.2.7 1,3-Bis(4-fluorophenyl)-propane-1,3-dione (1h)

Prepared according to GP1, 4-fluoroacetophenone (1.21 mL, 9.97 mmol) and 4fluorobenzoyl chloride (1.18 mL, 9.99 mmol) after recrystallisation from hexane and ethyl acetate afforded a mixture of keto- and enol-tautomers of 1,3-bis(4fluorophenyl)propane-1,3-dione (2.099 g, 81%) as a beige solid; Mp 107–108 °C [lit. Mp 109 °C;^[8] 137.8-139.1 °C^[5b]]. Enol tautomer (92%) ¹H NMR (700 MHz, CDCl₃) δ 6.74 (1 H, s, C2H), 7.14–7.20 (4 H, m, C5H), 7.98–8.02 (4 H, m, C4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -106.1 (tt, ³*J*_{HF} 8.4, ⁴*J*_{HF} 5.4); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 92.6 (C2), 116.0 (d, ²J_{CF} 21.9, C5), 129.7 (d, ³J_{CF} 9.2, C4), 131.8 (d, ⁴J_{CF} 3.1, C3), 165.6 (d, ¹*J*_{CF} 254.1, C**6**), 184.6 (s, C**1**); *ketone tautomer* (8%) ¹H NMR (700 MHz, CDCl₃) δ 4.58 (2 H, s, C2H); ¹⁹F NMR (376 MHz, CDCl₃) δ –103.6 (tt, ³J_{HF} 8.3, ⁴J_{HF} 5.3); *m/z* (El⁺) 260.1 ([M]⁺, 58%), 223.1 ([C₁₅H₁₁O₂]⁺, 11%), 165.1 ([C₉H₆FO₂]⁺, 30%), 123.1 ([C₇H₄FO]⁺, 100%), 95.1 ([C₆H₄F]⁺, 47%), 69.0 ([C₅H₉]⁺, 32%). HRMS (ASAP) *m/z* calculated for [M+H]⁺. C₁₅H₁₁O₂F₂ 293.0727; found 261.0718. Crystals suitable for Xray diffraction were grown by slow evaporation from hexane—see section 3.1 and 3.2. IR (neat cm⁻¹) 3082, 1596, 1467, 1301, 1221, 1012, 859, 856, 784, 505. Data consistent with those previously reported in the literature.^[5b]

1.2.8 1,3-Bis(4-nitrophenyl)-propane-1,3-dione (1i)

4-Nitroacetophenone (1.648 g, 9.97 mmol) and LiN(SiMe₃)₂ (1 M in tetrahydrofuran, 20 mmol, 20 mL, 2 equiv) in anhydrous tetrahydrofuran (20 mL) were stirred at -78 °C for 30 min under argon. 4-Nitrobenzoyl chloride (1.856 g, 10.0 mmol) was dissolved in anhydrous tetrahydrofuran (10 mL) and added to the reaction mixture which was left to stir for 48 hours. The reaction mixture was quenched with 36% hydrochloric acid (3 mL) before partitioned between water (10 mL) and dichloromethane (500 mL). The aqueous layer was extracted with dichloromethane (2 × 50 mL) and the combined organic phases

washed with sodium bicarbonate (30 mL) and water (20 mL). The organic layer was dried over magnesium sulphate and the solvent removed under reduced pressure to yield the crude product. Recrystallisation from acetone gave the enol tautomer of *1,3-(4-nitrophenyl)propane-1,3-dione* (3.098 g, 99%) as a yellow solid; Mp 240–242 °C [lit. Mp 249.1-250.9 °C^[5b]]. *Enol tautomer* (100%) ¹H NMR (700 MHz, CDCl₃) δ 6.93 (1 H, s, C2H), 8.15–8.18 (4 H, m, C5H), 8.35–8.38 (4 H, m, C4H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 95.2 (C2), 124.2 (C4), 128.5 (C5), 140.5 (C3), 150.4 (C6), 184.1 (C1); *m/z* (ES⁻) 313.2 ([M-H]⁻, 100%. HRMS (ASAP) *m/z* calculated for [M-H]⁺. C₁₅H₉NO₄ 313.0461; found 313.0434. IR (neat cm⁻¹) 3095, 1511, 1344, 1224, 1093, 1009, 855, 747, 450. Data consistent with those previously reported in the literature.^[5b, 9]

1.3 Screening conditions for the base-mediated direct fluorination of dibenzoylmethane

Dibenzoylmethane (0.449 g, 2.00 mmol) and the mediating agent were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v) was passed through the reaction mixture at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. A known mass of α , α , α -trifluorotoluene was added as a reference standard, and the organic products were analysed by NMR spectroscopy.

Entry	Base	Equiv. of	Equiv. of F ₂	Yield by ¹⁹ F NMR		
		base		1a /%	2 a/%	3a /%
1	-	-	1	100	0	0
2	-	-	20	Polyfluorinated Tar		
3	DABCO	1	1	32	4	20
4	DABCO	1	2	1	1	37
5	DABCO	1	3	Polyfluorinated tar		
6	DABCO	2	2	Many fluorinated products		
7	DABCO	0.1	1	22	28	8
8	Quinuclidine	1	1	42	10	43
9	Quinuclidine	1.2	1	54	1	43
10	Et₃N	1	1	56	25	6
11	Cs ₂ CO ₃	1	1	0	4	14
12	NaCl	1	1	0	33	12

NMR yield calculated by comparing the integrals (CF dp at -189.9 ppm, CF₂ s at -102.7 ppm) to a known amount of α , α , α -trifluorotoluene.

1.4 Screening conditions for the quinuclidine-mediated direct fluorination of dibenzoylmethane

Dibenzoylmethane (0.449 g, 2.00 mmol) and quinuclidine were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v) was passed through the reaction mixture at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The organic products were analysed by NMR spectroscopy as described above.

Table S2: Screening conditions for the quinuclidine mediated direct fluorination of DBM

	F ₂ (10% in N ₂)	Ph Ph	+	O O Ph Ph
	quinuclidine	Ė		FF
1a	0°C	2a		3a

Entry	Equiv. of	Equiv. of F ₂	Ratio of products by NMR		
	quinuclidine		1a	2a	3a
1	1	1	3	2	4
2	1.1	2.1	1	5	47
3	1.1	2.3	1	16	120

1.5 Experimental to Table 2: Synthesis of 3a–i General procedure 2 (GP2)—synthesis of 3a–i

The corresponding 1,3-diketone (2 mmol, 1 equiv) and quinuclidine (0.245 g, 2.2 mmol, 1.1 equiv) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine, as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (4.6 mmol, 2.3 equiv, 15 mL min⁻¹) that was controlled by a mass flow controller for 75 min. After purging with nitrogen for 20 minutes, the reaction vessel was removed, and the solvent diluted with water (20 mL) and dichloromethane (90 mL). The two layers were separated, and the aqueous layer was extracted with dichloromethane (3 × 30 mL). The organic fractions were combined, washed with saturated sodium bicarbonate solution (20 mL) and dried over magnesium sulphate. The solvent was removed under reduced pressure to yield the crude product which was purified by column chromatography or recrystallisation.

1.5.1 2,2-Difluoro-1,3-diphenylpropane-1,3-dione (3a)

Prepared according to **GP2**, 1,3-diphenyl-1,3-propanedione (0.448 g, 2.00 mmol) after column chromatography with hexane/dichloromethane (1:1) as the eluent yielded *2,2-difluroro-1,3-diphenyl-1,3-propanedione* (0.338 g, 65%) as a white solid; Mp 56– 57 °C [lit. Mp 56–57 °C^[10]]. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (4 H, td, ³*J*_{HH}, ⁴*J*_{HH} 2.0, C**6**H), 7.62–7.68 (2 H, m, C**7**H), 8.09 (4 H, d, ³*J*_{HH} 7.4, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.7 (s); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 112.8 (t, ¹*J*_{CF} 265.8, C**2**), 129.1 (C**6**), 130.4 (t, ⁴*J*_{CF} 2.7, C**5**), 135.2 (C**7**), 187.5 (t, ²*J*_{CF} 27.0, C**1**); *m*/*z* (El⁺) 105.2 ([C₇H₅O₂]⁺, 87%), 77.1 ([C₆H₅]⁺, 43%). HRMS (ASAP) *m*/*z* calculated for [M+H]⁺ C₁₅H₁₁F₂O₂ 261.0727; found 261.0723. Crystals suitable for X-ray diffraction were grown by slow evaporation from hexane, see section 3.3. IR (neat cm⁻¹) 3073, 1694, 1594, 1449, 1251, 1135, 887, 679. 523. Data consistent with those previously reported in the literature.^[10,11]

1.5.2 2,2-Difluoro-1-(4-chlorophenyl)-3-phenylpropane-1,3-dione (3d)

Prepared according to **GP2**, 1-(4-chlorophenyl)-3-phenyl-1,3-propanedione (0.514 g, 1.99 mmol)) after column chromatography with hexane and dichloromethane (1:1) as the eluent yielded *2,2-difluroro-1-(4-chlorophenyl)-3-phenyl-1,3-propanedione* (0.352 g, 60%) as a white solid; Mp 63–64 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.44–7.49 (2 H, m, C**6**H), 7.50–7.53 (2 H, m, C**6**'H), 7.67 (1 H, tt, ³*J*_{HH} 7.5, ⁴*J*HH 1.2, C**7**'H), 8.03 (2 H, d, ³*J*_{HH} 8.8, C**5**H), 8.08 (2 H, dd, ³*J*_{HH} 8.5, ⁴*J*_{HH} 1.0, C**5**'H); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.7 (p, ⁵*J*_{HF} 0.9); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 112.8 (t, ¹*J*_{CF} 266.0, C**2**), 129.1 (C**6**'), 129.5 (C**6**), 130.1 (C**4**), 130.4 (t, ⁴*J*_{CF} 2.7, C**5**'), 131.6 (C**4**'), 131.8 (t, *J* 2.8, C**5**), 135.3 (C**7**'), 142.0 (C**7**), 186.5 (t, ²*J*_{CF} 27.1, C**1**), 187.4 (t, ²*J*_{CF} 26.9, C**3**); *m/z* (EI⁺) 294.1 ([M]⁺, 1%), 139.1 ([C₇H₄ClO]⁺, 62%), 77.1 ([C₆H₅]⁺, 96%), 51.1 ([C₃H₄]⁺, 12%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₁₀ClF₂O₂ 295.0337; found 295.0335. IR (neat cm⁻¹) 1692, 1588, 1449, 1250, 1138, 884, 682, 561.

1.5.3 2,2-Difluoro-1-(4-fluorophenyl)-3-phenylpropane-1,3-dione (3e)

Prepared according to **GP2**, 1-(4-fluorophenyl)-3-diphenyl-1,3-propanedione (0.484 g, 2.00 mmol) after column chromatography with hexane and dichloromethane (1:1) as the eluent yielded 2,2-difluroro-1-(4-fluorophenyl)-3-phenyl-1,3-propanedione (0.327 g, 59%) as a white solid; Mp 36–37 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.16–7.19 (2 H, m, C**6**H), 7.50–7.52 (2 H, m, C**6**'H), 7.66 (1 H, tt, ³J_{HH} 7.3, ⁴J_{HH} 1.3, C**7**'H), 8.08-8.09 (2 H, m, C**5'**H), 8.13–8.15 (2 H, m, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.6 (s, CF₂, C**2**F), –100.6 (tt, ³J_{HF} 8.2, ⁴J_{HF} 5.3, C**7**F); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 112.8 (t, ¹J_{CF} 265.8, C**2**), 116.5 (d, ²J_{CF} 22.1, C**6**), 128.2 (d, J 2.9, C**4**), 129.1 (s, C**6'**), 130.4 (t, ⁴J_{CF} 2.6, C**5'**), 131.7 (C**4'**), 133.4 (dt, ³J_{CF} 9.9, ⁴J_{CF} 2.8, C**5**), 135.3 (C**7**), 167.0 (d, ¹J_{CF} 259.2, C**2**), 186.0 (t, ²J_{CF} 27.1, C**1**), 187.5 (t, ²J_{CF} 26.8 C**3**); *m*/*z* (EI⁺) 278.1 ([M]⁺, 2%), 123.2 ([C₇H₄FO]⁺, 100%), 105.2 ([C₇H₅O]⁺, 100%), 95.1 ([C6H4F]⁺, 58%), 77.1 ([C6H5]⁺, 90%), 51.1 ([C3H4]⁺, 26%). HRMS (ASAP) *m*/*z* calculated for [M+H]⁺ C₁₅H₁₀F₃O₂ 279.0633; found 279.0642. IR (neat cm⁻¹) 3080, 1693, 1597, 1450, 1241, 1108, 885, 683, 572.

1.5.3 2,2-Difluoro-1-(4-nitrophenyl)-3-phenylpropane-1,3-dione (3f)

Prepared according to **GP2**, 1-(4-nitrophenyl)-3-phenylpropane-1,3-dione (0.535 g, 1.99 mmol) in acetonitrile (60 mL) after column chromatography with hexane and dichloromethane (1:1) as the eluent yielded *2,2-difluoro-1-(4-nitrophenyl)-3-phenylpropane-1,3-dione* (0.304 g, 50%) as a pale yellow solid; Mp 54–56 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.52–7.58 (2 H, m), 7.71 (1 H, tt, ³J_{HH} 7.5, ⁴J_{HH} 1.2), 8.09–8.12 (2 H, m), 8.22–8.25 (2 H, m), 8.33–8.35 (2 H, m); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.7 (p, ⁵J_{HF} 0.8); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 112.5 (t, ¹J_{CF} 266.9, C**2**), 124.1 (C**6**), 129.3 (C**6**'), 130.5 (t, ⁵J_{CF} 2.7, C**5**'), 131.3 (C**4**'), 131.5 (t, ⁵J_{CF} 2.8, C**4**), 135.7 (C**7**'), 136.3 (C**4**), 151.2 (C**7**), 186.6 (t, ²J_{CF} 27.7 C**1**), 187.4 (t, ²J_{CF} 27.1, C**3**); *m/z* (EI⁺) 150.1 ([C₇H₄NO₃]⁺, 32%), 105.2 ([C₇H₅O]⁺, 100%), 77.1 ([C₆H₅]⁺, 54%), 51.1 ([C₃H₄]⁺, 10%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₁₀F₂NO₄ 306.0567; found 306.0578. Crystals suitable for X-ray diffraction were grown by slow evaporation from hexane—see section 3.4. IR (neat cm⁻¹) 3111, 1698, 1525, 1290, 1101, 954, 841, 711, 522.

1.5.5 2,2-Difluoro-1,3-bis(4-chlorophenyl)propane-1,3-dione (3g)

Prepared according to **GP2**, 1,3-bis(4-chlorophenyl)-propane-1,3-dione (0.590 g, 2.01 mmol) in acetonitrile (60 mL) after column chromatography with hexane and dichloromethane (1:1) as the eluent yielded *1,3-bis(4-chlorophenyl)-2,2-difluoro-propane-1,3-dione* (0.475 g, 72%) as a white solid; Mp 93–94 °C. ¹H NMR (700 MHz, CDCl₃) δ 7.48–7.50 (4 H, m, C5H), 8.02 (4 H, d, ³J_{HH} 8.4, C4H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.8 (s); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 112.7 (t, ¹J_{CF} 266.3, C2), 129.6 (C5), 129.9 (t, ³J_{CF} 1.5, C3), 131.8 (t, ⁴J_{CF} 2.8, C4), 142.2 (C6), 186.4 (t, ²J_{CF} 27.1, C1); *m/z* (El)⁺ 328.0 ([M]⁺, 1%), 139.1 ([C₇H₄³⁵ClO]⁺, 100%), 111.0 ([C₆H₄³⁵Cl]⁺, 41%), 50.0 ([C₄H₂]⁺, 4%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₉³⁵Cl₂F₂O₂ 328.9948; found 328.9937. IR (neat cm⁻¹) 1698, 1588, 1488, 1405, 1251, 1139, 1013, 884, 773, 542.

1.5.6 2,2-Difluoro-1,3-bis(4-fluorophenyl)propane-1,3-dione (3h)

Prepared according to **GP2**, 1,3-bis(4-fluorophenyl)-propane-1,3-dione (0.522 g, 2.01 mmol) in acetonitrile (60 mL) after recrystallisation from hexane and chloroform yielded *2,2-difluoro-1,3-bis(4-fluorophenyl)propane-1,3-dione* (0.451 g, 76%) as a pale yellow solid; Mp 79–81 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.16–7.20 (4 H, m, C5H), 8.12–8.16 (4 H, m, C4H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.6 (s, C2F₂), –100.3 (tt, ³J_{HF} 8.2, ⁴J_{HF} 5.3, C6F); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 112.9 (t, ¹J_{CF} 265.9, C2), 116.5 (d, ²J_{CF} 22.2, C5), 128.1 (dt, ³J_{CF} 3.1, ⁴J_{CF} 1.6, C3), 133.5 (dt, ⁴J_{CF} 9.9, ⁵J_{CF} 2.9, C4), 167.0 (d, ¹J_{CF} 259.4, C6), 186.0 (t, ²J_{CF} 27.0, C1); *m*/*z* (EI)⁺ 296 ([M]⁺, 1%), 123.1 ([C₇H₄FO]⁺, 100%), 95.1 ([C₆H₄F]⁺, 78%), 50.0 ([C₄H₂]⁺, 3%). HRMS (ASAP) *m*/*z* calculated for [M+H]⁺ C₁₅H₉F₄O₂ 297.0539; found 297.0537. IR (neat cm⁻¹) 1695, 1596, 1504, 1413, 1235, 1134, 867, 780, 600. Data consistent with those previously reported in the literature.^[12]

1.5.7 2,2-Difluoro-1,3-bis(4-nitrophenyl)-propane-1,3-dione (3i)

Prepared according to **GP2**, 1,3-bis(4-nitrophenyl)-propane-1,3-dione (0.630 g, 2.00 mmol) in acetonitrile (60 mL) after recrystallisation from hexane and chloroform yielded *1,3-bis(4-nitrophenyl)-2,2-difluoropropane-1,3-dione* (0.542 g, 77%) as a pale yellow solid; Mp 117–119 °C. ¹H NMR (700 MHz, CDCl₃) δ 8.25–8.28 (4 H, m, C**4**H), 8.37–8.40 (4 H, m, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.9 (s); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 112.2 (t, ¹*J*_{CF} 267.7, C**2**), 124.3 (C**5**), 131.5 (t, ⁴*J*_{CF} 2.9, C**4**), 135.8 (C**6**), 151.5 (C**2**), 186.3 (t, ²*J*_{CF} 27.9, C**1**). *m/z* (EI)⁺ 150.1 ([C₇H₄NO₃]⁺, 100%), 76.1 ([C₆H₄]⁺, 22%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₅H₉F₂N₂O₆ 351.0430; found 351.0429. Crystals suitable for X-ray diffraction were grown by slow evaporation from hexane—see section 3.5. IR (neat cm⁻¹) 3112, 1729, 1520, 1349, 1126, 955, 827, 715, 562.

1.6 Synthesis of 4b-h

General procedure 3 (GP3)- synthesis of compounds 4b-h

Ethyl potassium malonate (2.383 g, 14 mmol) in ethyl acetate (40 mL) was cooled to 0 °C. Triethylamine (4.9 mL, 35 mmol) and magnesium chloride (1.619 g, 17 mmol) were added, and the resulting slurry was stirred at 30 °C for 6 h before the mixture was cooled to 0 °C and the corresponding benzoyl chloride (10 mmol) was added dropwise over 5 min. The mixture was stirred overnight at rt before being cooled to 0 °C and quenched with 13% hydrochloric acid (30 mL). The aqueous phase was removed and extracted with toluene (20 mL), then the combined organic phases were washed with 13% hydrochloric acid (2 × 10 mL) and water (2 × 10 mL), dried over magnesium sulphate and the solvents were removed under reduced pressure. The crude product was filtered through a silica plug with chloroform as the eluent to give the desired product.

1.6.1 Ethyl (4-methoxy)benzoylacetate (4b)

4-(Methoxy)benzoyl chloride (1.354 mL, 10.00 mmol) gave ethyl (4methoxy)benzoylacetate (1.658 g, 75%) as a pale orange oil containing a mixture of ketoand two enol tautomers. Ketone-tautomer (75%) ¹H NMR (700 MHz, CDCl₃) δ 1.26 (3 H, t, ³J_{HH} 7.1, C**9**H), 3.88 (3 H, s, C**10**H), 3.94 (2 H, s, C**2**H), 4.21 (2 H, q, ³J_{HH} 7.1, C**8**H), 6.93–6.96 (2 H, m, C6H), 7.91–7.94 (2 H, m, C5H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.2 (C9), 46.0 (C2), 55.7 (C10), 61.6 (C8), 114.1 (C6), 129.3 (C4), 131.1 (C5), 164.1 (C7), 167.9 (C1), 191.1 (C3); enol tautomer 1 (17%) ¹H NMR (700 MHz, CDCl₃) δ 5.58 (1 H, s, C2H), 3.85 (3H, s, C10H); enol tautomer 2 (8%) ¹H NMR (700 MHz, CDCl₃) δ 6.06 (1 H, s, C2H), 3.86 (3H, s, C10H); m/z (EI⁺) 222.1 ([M]⁺, 7%), 150.1 ([C₉H₁₀O₂]⁺, 14%), 135.1 ([C₈H₇O₂]⁺, 100%), 107.1 ([C₇H₇O]⁺, 15%), 77.1 (([C₆H₅]⁺, 18%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₂H₁₅O₄ 223.0970, found 223.0968. IR (neat, cm⁻¹) 2982, 1675, 1599, 1511, 1422, 1257, 1170, 1024, 843, 566. Data consistent with those previously reported in the literature.^[13]

1.6.2 Ethyl (4-chloro)benzoylacetate (4c)

4-(Chloro)benzovl chloride (1.282 mL, 10.00 mmol) gave ethyl (4chloro)benzoylacetate (2.053 g, 91%) as a low-melting yellow solid as a mixture of ketoand two enol tautomers. *Ketone tautomer* (73%) ¹H NMR (700 MHz, CDCl₃) δ 1.25 (3 H, t, ³J_{HH} 7.1, C**9**H), 3.95 (2 H, s, C**2**H), 4.20 (2 H, q, ³J_{HH} 7.2, C**8**H), 7.43–7.46 (2 H, m, C6H), 7.87–7.90 (2 H, m, C5H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.19 (s, C9), 46.06 (s, C2), 61.74 (s, C8), 129.25 (s, C6), 130.06 (s, C5), 140.42 (s, C7), 167.32 (s, C1), 191.42 (s, C3); enol tautomer 1 (20%) ¹H NMR (700 MHz, CDCl₃) δ 5.63 (1 H, s, C2H), 12.57 (1H, s, C2OH); enol tautomer 2 (7%) ¹H NMR (700 MHz, CDCl₃) δ 6.04 (1 H, s, C2H), 13.48 (1H, s, C2OH); *m/z* (EI⁺) 226.0, ([M]⁺, 5%), 154.1 ([C₈H₇³⁵ClO]⁺, 9%), 139.1 ([C7H435CIO]+, 100%), 111.0 ([C6H435CI]+, 29%). HRMS (ASAP) *m/z* calculated for $[M+H]^+ = C_{11}H_{12}^{35}CIO_3$ 227.0475, found 227.0471. Crystals suitable for X-ray diffraction were grown by slow evaporation from hexane—see section 3.6. IR (neat, cm⁻¹) 2980, 2160, 1722, 1624, 1426, 1258, 1177, 1073, 796. Data consistent with those previously reported in the literature.^[13a, 14]

1.6.3 Ethyl (4-trifluoromethyl)benzoylacetate (4d)

4-(Trifluoromethyl)benzoyl chloride (1.486 mL, 10.00 mmol) gave a mixture of keto- and enol isomers of *ethyl* (4- *trifluoromethyl)benzoylacetate* (2.463 g, 95%) as a pale orange oil. *Ketone tautomer* (60%) ¹H NMR (700 MHz, CDCl₃) δ 1.26 (3 H, t, ³J_{HH} 7.1, C9H), 4.01 (2 H, s, C2H), 4.22 (2 H, q, ³J_{HH} 7.1, C8H), 7.76 (2 H, d, ³J_{HH} 8.2, C6H), 8.04–8.07 (2 H, m, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –63.2 (s, C10F3), ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.2 (C9), 46.3 (C2), 61.9 (C8), 122.8 (q, ¹J_{CF} 273.0, C10), 126.0 (q, ⁴J_{CF} 3.7, C6), 129.0 (C5), 135.1 (q, ²J_{CF} 32.8, C7), 138.8 (C4), 167.1 (C1), 191.7 (C3); *enol tautomer* (40%) ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ³J_{HH} 7.1, C9H), 4.29 (2 H, q, ³J_{HH} 7.1, C8H),5.71 (1 H, s, C2H), 7.68 (2 H, d, ³J_{HH} 8.3, C6H), 7.87–7.89 (2 H, m, C5H), 12.56 (1 H, s, C3OH); ¹⁹F NMR (376 MHz, CDCl₃) δ –63.0 (s, C10F₃ ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.4 (C9), 60.8 (C8), 89.2 (C2), 124.7 (q, ¹J_{CF} 272.9, C10), 125.7 S17 (q, ${}^{4}J_{CF}$ 3.8, C**6**), 126.5 (C**5**), 132.9 (q, ${}^{2}J_{CF}$ 32.6, C**7**), 137.0 (s, C**4**), 169.6 (C**1**), 173.0 (C**3**); *m/z* (EI⁺) 260.1, ([M]⁺, 6%), 173.1 ([C₈H₄F₃O]⁺, 100%), 145.1 ([C₇H₄F₃]⁺, 39%), 69.0 ([CF₃]⁺, 3%), 45.0 ([C₂H₅O]⁺, 3%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ = C₁₂H₁₂F₃O 261.0739, found 261.0743. IR (neat, cm⁻¹) 2980, 2160, 1722, 1624, 1426, 1258, 1177, 1073, 796. Data consistent with those previously reported in the literature.^[13a]

1.6.4 Ethyl (4-nitro)benzoylacetate (4e)

4-(Nitro)benzoyl chloride (1.856 g, 10.00 mmol) was dissolved in ethyl acetate (5 mL) and gave a mixture of keto- and enol isomers of *ethyl (4-nitro)benzoylacetate* (2.336 g, 98%) as a peach coloured solid; Mp 62–63 °C [lit. Mp. 63–67 °C^[14]; 68-69 °C^[15]]. *Enol tautomer* (74%) ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ³J_{HH} 7.2, C9H), 4.30 (2 H, q, ³J_{HH} 7.1, C8H), 5.76 (1 H, s, C2H), 7.92–7.95 (2 H, m, C5H), 8.26–8.29 (2 H, m, C6H), 12.57 (1 H, s, C2OH); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.4 (C9), 61.0 (C8), 90.4 (C2), 123.9 (C6), 127.1 (C5), 139.5 (C4), 149.4 (C7), 168.4 (C1), 172.8 (C3); *ketone tautomer* (26%) ¹H NMR (700 MHz, CDCl₃) δ 1.26 (3 H, t, ³J_{HH} 7.1, C9H), 4.03 (2 H, s, C2H), 4.22 (2 H, q, ³J_{HH} 7.1, C9H), 8.10–8.13 (2 H, m, C5H), (8.32–8.35 (2 H, m, C6H), ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.2 (C9), 46.4 (C2), 62.0 (C8), 124.1 (C6), 129.7 (C5), 140.5 (C4), 150.8 (C7), 166.8 (C1), 191.2 (C3); *m*/z (EI⁺) 165.0 ([C₈H₇NO₃]⁺, 20%), 150.1 ([C₇H₄NO₃]⁺, 100%). HRMS (ASAP) *m*/z calculated for [M+H]⁺ = C₁₁H₁₁NO₅ 238.0715, found 238.0715. IR (neat, cm⁻¹) 3114, 2910, 2160, 1619, 1519, 1428, 1339, 1215, 1032, 797. Data consistent with those previously reported in the literature.^[14-15]

1.6.5 Ethyl (4-cyano)benzoylacetate (4f)

4-(Cyano)benzoyl chloride (1.656 g, 10.00 mmol) was dissolved in ethyl acetate (5 mL) and gave a mixture of keto- and enol isomers of *ethyl (4-cyano)benzoylacetate* (2.060 g, 95%) as a white solid after recrystallisation from ethanol; Mp 60–62 °C [lit.

Mp. 62–63 °C;^[16]]. *Enol tautomer* (88%) ¹H NMR (400 MHz, CDCl₃) δ 1.34 (3 H, t, ³*J*_{HH} 7.1, C9H), 4.30 (2 H, q, ³*J*_{HH} 7.1, C8H), 5.72 (1 H, s, C2H), 7.71 (2 H, d, ³*J*_{HH} 7.6, C6H), 7.86 (2 H, d, ³*J*_{HH} 7.6, C5H), 12.57 (1 H, s, C2OH); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 14.4 (C9), 60.9 (C8), 89.9 (C2), 123.9 (C6), 137.7 (C4), 118.4 (C10), 126.7 (C5), 132.5 (C6), 149.4 (C7), 168.7 (C1), 172.8 (C3); *ketone tautomer* (12%) ¹H NMR (400 MHz, CDCl₃) δ 1.25 (3 H, t, ³*J*_{HH} 7.0, C9H), 4.00 (2 H, s, C2H), 4.22 (2 H, q, ³*J*_{HH} 7.0, C8H), 7.79 (2 H, d, ³*J*_{HH} 7.7, C6H), 8.04 (2 H, d, ³*J*_{HH} 7.7, C5H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 14.2 (C9), 46.2 (C2), 62.0 (C8), 117.1 (C7), 117.9 (C10), 129.1 (C5), 132.8 (C6), 139.0 (C4), 166.9 (C1), 191.4 (C3); *m*/*z* (EI⁺) 145.1 ([C₉H₇NO]⁺, 34%), 130.1 ([C₈H₄NO]⁺, 100%), 102.1 ([C₇H₄N]⁺, 70%), 75.1 ([C₃H₇O₂]⁺, 16%), 63.1 ([C₂H₅O₂]⁺, 2%), 51.1 ([C₄H₃]⁺, 9%), 43.1 ([C₂H₃O]⁺, 19%). HRMS (ASAP) *m*/*z* calculated for [M+H]⁺ = C₁₂H₁₂NO₃ 218.0817, found 218.0836. IR (neat, cm⁻¹) 2999, 2233, 2159, 1977, 1739, 1621, 1422, 1356, 1253, 1192, 1029, 800, 715, 543, 433. Data are consistent with those previously reported in the literature.^[17]

1.6.6 Ethyl (3-nitro)benzoylacetate (4g)

NO₂

3-(Nitro)benzoyl chloride (1.856 g, 10.00 mmol) was dissolved in ethyl acetate (5 mL) and reacted according to the general procedure to yield a mixture of keto- and enol isomers of ethyl (3-nitro)benzoylacetate (1.777 g, 75%) as a peach coloured solid; Mp 70-71 °C [lit. Mp. 80-82 °C^[15]; 85-87 °C]. Ketone tautomer (58%) ¹H NMR (700 MHz, CDCl₃) δ 1.27 (3 H, t, ³J_{HH} 7.1, C11H), 4.05 (2 H, s, C2H), 4.23 (2 H, q, ³J_{HH} 7.1, C10H), 7.71 (1 H, t, ³*J*_{HH} 7.9, C**8**H), 8.29 (1 H, dt, ³*J*_{HH} 7.9, ⁴*J*_{HH} 1.2, C**9**H), 8.46 (1 H, ddd, ³*J*_{HH} 8.2, ⁴J_{HH} 2.1, ⁴J_{HH} 1.2, C**7**H), 8.77 (1 H, t, ⁴J_{HH} 2.1, C**5**H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.2 (C11), 46.1 (C2), 62.0 (C10), 123.6 (C5), 128.1 (C7), 130.3 (C8), 134.1 (C9), 137.4 (C4), 148.7 (C6), 166.8 (C1), 190.6 (C3); enol tautomer (42%) ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ³J_{HH} 7.1, C11H), 4.30 (1 H, q, ³J_{HH} 7.1, C10H), 5.77 (1 H, s, C2H), 7.62 (1 H, t, ³J_{HH} 7.9, C8H), 8.10 (1 H, ddd, ³J_{HH} 7.9, ⁴J_{HH} 1.7, ⁴J_{HH} 1.0, C9H), 8.31 (1 H, ddd, ³J_{HH} 8.2, ⁴J_{HH} 2.2, ⁴J_{HH} 1.0, C**7**H), 8.62 (1 H, t, ⁴J_{HH} 2.2, C**5**H), 12.62 (1 H, s, C**3**OH); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.4 (C11), 61.0 (C10), 89.4 (C2), 121.2 (C5), 125.7 (C7), 129.8 (C8), 131.8 (C9), 135.4 (C4),128.1 (C9), 148.6 (C6), 168.4 (C1), 172.9 (C3); *m*/*z* (ESI⁺) 238.3 ([C₁₁H₁₁NO₅]⁺, 100%), 115.1 ([C₇H₅NO₃]⁺, 29%), *m*/*z* (EI⁺) 165.0 S19

([C₈H₇NO₃]⁺, 17%), 150.1 ([C₇H₄NO₃]⁺, 100%). HRMS (ASAP) *m/z* calculated for $[M+H]^+ = C_{11}H_{11}NO_5$ 238.0715, found 238.0722. Crystals suitable for X-ray diffraction were grown by slow evaporation from hexane—see section 3.7. Data consistent with those previously reported in the literature.^[13b]

1.6.7 Ethyl 3-oxo-3-(pyridin-4-yl)propanoate (4h)

Ethyl isonicotinate (1.498 mL, 10 mmol) was dissolved in ethyl acetate (30 mL) and cooled to -50 °C before lithium hexamethyldisilizane (1 M in tetrahydrofuran, 30 mL, 30 mmol) was added and the mixture was stirred for 20 min. The reaction was quenched with acetic acid (50 mmol), basified with saturated sodium bicarbonate solution and extracted with ethyl acetate (2×100 mL). The organic phases were combined, washed with water (20 mL), saturated sodium chloride solution (20 mL) before drying over magnesium sulphate and the solvents removed under reduced pressure. Recrystallisation from ethanol gave a mixture of keto- and enol isomers of the desired ethyl 3-oxo-(pyridine-4-yl)propanoate (1.377 g, 71%) as a white solid; Mp 52–54 °C [lit. Mp. 57.5-58 °C^[18]]. *Ketone tautomer* (42%) ¹H NMR (600 MHz, CDCl₃) δ 1.25 (3 H, t, ³ Jнн 7.1, C8H), 3.98 (2 H, s, C2H), 4.21 (2 H, q, ³ Jнн 7.1, C7H), 7.71 (2 H, dt, ³ Jнн 4.3, ⁴*J*_{HH} 1.3C**5**H), 8.83 (2 H, dt, ³*J*_{HH} 4.4, ⁴*J*_{HH} 1.3, C**6**H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 14.2 (C8), 46.1 (C2), 62.0 (C7), 121.4 (C5), 141.9 (C4), 151.3 (C6), 166.8 (C1), 192.2 (C**3**); enol tautomer (58%) ¹H NMR (600 MHz, CDCl₃) δ 1.34 (3 H, t, ³J_{HH} 7.1, C**8**H), 4.28 (2 H, q, ³*J*нн 7.2, C**7**H), 5.76 (1 H, s, C**2**H), 7.60 (2 H, dt, ³*J*нн 4.5, ⁴*J*нн1.3, C**5**H), 8.70 (2 H, dt, ³J_{HH} 4.4, ⁴J_{HH} 1.3, C6H), 12.43 (1 H, s, COH);¹³C{¹H} NMR (151 MHz, CDCl₃) δ 14.4 (C8), 61.0 (C7), 90.1 (C2), 119.8 (C5), 140.9 (C4), 150.6 (C6), 168.4 (C3), 172.8 (C1); m/z (ESI⁺) 194.1 ([C₁₀H₁₁NO₃]⁺, 100%), 148.1 ([C₈H₆NO₂]⁺, 69%), 120.1 (([C7H6NO]⁺, 3%), 106.0 ([C6H4NO]⁺, 1%). HRMS (ASAP) (*m/z*) calculated for [M+H]⁺ C₁₀H₁₂NO₃ 194.0817; found 194.0810. Data consistent with those previously reported in the literature.^[19]

1.7 Screening vonditions for the base-mediated direct fluorination of ethyl benzoylacetate

Ethyl benzoylacetate (0.346 mL, 2.0 mmol) and the mediating agent were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine gas, as a 10% mixture in nitrogen (v/v) was passed through the reaction mixture at a prescribed flow rate, (15 mL min⁻¹) that was controlled by a mass flow controller. After purging with nitrogen for 10 minutes, the reaction vessel was disconnected and the solvent removed under reduced pressure. The organic products were washed through a silica plug with chloroform (100 mL) and concentrated under reduced pressure to give the crude product which was analysed by NMR spectroscopy.

Table S3: Screening conditions for the base mediated fluorination of ethyl benzoylacetate

Entry	Base	Equiv of	Equiv. of	NMR yield	NMR yield/%	
		base	F2	5a	6a	
1	None	-	2.3	8	2	
2	DABCO	1.1	2.3	16	10	
3	DABCO ^a	1.1	2.3	1	1	
4	DABCOb	1.1	2.3	0	0	
5	DABCO	1.5	2.3	0	3	
6	DABCO	1.5	4.0	0	1	
7	DBU	0.5	2.3	12	6	
8	DBU	1.5	2.3	18	3	
9	Et3N	1.1	2.3	11	1	
10	3-Quinuclidinol ^a	1.1	2.3	0	1	
11	Quinuclidine	1.1	2.3	0	42	
12	Quinuclidine	1.1	3.5	6	41	
13	Quinuclidine	1.1	3.0°	6	51	
14	Quinuclidine	1.5	3.0°	0	73	
15	Quinuclidine	1.5	3.0 ^c	0	85 ^d	

^a 40 mL MeCN used; ^b 40 mL MeCN, 4.0 mmol, **4a**, 2.3 equiv. F2 and 1.1 equiv. DABCO used; ^c 30 mL min⁻¹ flow rate of 10% v/v F2 in N2 used; ^d Isolated yield after 20 mL column

1.8 Synthesis of 5a–g General procedure 4 (GP4) — synthesis of compounds 5a–g

MeCN (20 mL) , 0 °C

Quinuclidine (0.334 g, 3.00 mmol, 1.5 equiv) and the relevant ethyl benzoylacetate (2.00 mmol, 1.0 equiv) were added to a SIMAX glass bottle and dissolved in acetonitrile (20 mL). The reaction vessel was cooled to 0 °C, stirred rapidly and purged with nitrogen for 10 minutes before fluorine, as a 10% mixture in nitrogen (v/v), was passed through the reaction mixture at a prescribed flow rate, (6.00 mmol, 3.0 equiv, 30 mL min⁻¹) that was controlled by a mass flow controller for 49 min. After purging with nitrogen for 10 min., the reaction vessel was disconnected, and the solvent was removed under reduced pressure. The crude residue was filtered through a silica plug with chloroform as the eluent to give the desired product.

1.8.1 Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5a)

Following **GP4**, ethyl benzoylacetate (0.35 mL, 2.02 mmol) afforded *ethyl 2,2difluoro-3-oxo-3-phenylpropanoate* (0.393 g, 85%) as a pale yellow oil; ¹H NMR (700 MHz, CDCl₃) δ 1.32 (3 H, t, ³*J*_{HH} 7.1, **C9**H), 4.39 (2 H, q, ³*J*_{HH} 7.1, **C8**H), 7.51–7.54 (2 H, m, C**6**H), 7.66–7.69 (1 H, m, C**7**H), 8.08 (2 H, ddt, ³*J*_{HH} 7.8, ⁴*J*_{HH} 2.2, ⁵*J*_{HH} 1.1, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ –107.6 (s); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.0 (C**9**), 63.9 (C**8**), 109.9 (t, ¹*J*_{CF} 264.6, C**2**), 129.1 (C**4**), 130.1 (t, ⁴*J*_{CF} 2.7, C**5**), 131.2 (t, ⁵*J*_{CF} 2.0, C**6**), 135.2 (C**7**), 161.9 (t, ²*J*_{CF} 30.5, C**1**), 185.6 (t, ²*J*_{CF} 27.6, C**3**); *m/z* (EI)⁺ 183.0 ([C₉H₅F₂O₂]⁺, 2%), 155.1 ([C₈H₅F₂O]⁺, 3%), 105.1 ([C₇H₅O]⁺, 100%), 77.1 ([C₆H₅]⁺, 76%), 51.0 ([C₄H₃]⁺, 17%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₁H₁₁F₂O₃ 229.0676; found 229.0682. IR (neat, cm⁻¹) 2988, 1772, 1599, 1451, 1311, 1098, 922, 832, 685, 584. Data consistent with those previously reported in the literature.^[20]

1.8.2 Ethyl 2,2-difluoro-3-(4-chlorophenyl)-3-oxo-propanoate (5c)

Following **GP4**, ethyl (4-chloro)benzoylacetate (0.453 g, 2.00 mmol,) afforded *ethyl* 2,2-difluoro-3-(4-chlorophenyl)-3-oxopropanoate (0.466 g, 89%) as a pale yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 1.33 (3H, t, ³J_{HH} 7.1, C9H), 4.39 (2H, q, ³J_{HH} 7.1, C8H), 7.49–7.52 (2H, m, C6H), 8.03 (2H, d, ³J_{HH} 8.8, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ -107.6 (s, C2F₂); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 14.0 (s, C9), 64.0 (s, C9), 109.9 (t, ¹J_{CF} 264.8, C2), 129.5 (t, ³J_{CF} 2.1, C4), 129.6 (s, C6), 134.5 (t, ⁴J_{CF} 2.9, C5), 142.1 (s, C7), 161.7 (t, ²JCF 30.4, C1), 184.6 (t, ²J_{CF} 28.0, C3); *m/z* (EI)⁺ 217.0 ([C₉H₄³⁵ClF₂O₂]⁺, 3%), 189.0 ([C₈H₄ClF₂O]⁺, 3%), 139.1 ([C₇H₄³⁵ClO]⁺, 100%), 111.0 ([C₆H₄³⁵Cl]⁺, 83%), 85.0 ([C₆H₁₃]⁺, 3%), 75.0 ([C₃H₇O₂]⁺, 35%), 50.0 ([C₄H₂]⁺, 9%). HRMS (ASAP) *m/z* calculated for [C₁₁H₁₀³⁵ClF₂O₃]⁺ 263.0287; found 263.0287. IR (neat, cm⁻¹) 2988, 1773, 1702, 1589, 1491, 1373, 1406, 1310, 1254, 1158, 1088, 1014, 922, 847, 759, 549.

1.8.3 Ethyl 2,2-difluoro-3-(4-(trifluoromethyl)phenyl)-3-oxo-propanoate (5d)

Following **GP4**, ethyl (4-trifluoromethyl)benzoylacetate (0.520 g, 2.00 mmol) afforded *ethyl 2,2-difluoro-3-(4-trifluoromethylphenyl)-3-oxopropanoate* (0.516 g, 87%) as a pale yellow oil; ¹H NMR (700 MHz, CDCl₃) δ 1.34 (3H, t, ³*J*_{HH} 7.1, C**9**H), 4.41 (2H, q, ³*J*_{HH} 7.1, C**8**H), 7.79–7.81 (2H, m, C**6**H), 8.19–8.21 (2H, m, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ –107.9 (2F, s, C**2**F₂), –63.5 (3F, s, C**10**F₃); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.0 (s, C**9**), 64.2 (s, C**9**), 109.7 (t, ¹*J*_{CF} 264.9, C**2**), 123.4 (q, ¹*J*_{CF} 273.0, C**10**), 126.2 (q, ³*J*CF 3.8, C**6**), 130.5 (t, ⁴*J*_{CF} 2.8, C**5**), 133.9 (s, C**4**), 136.3 (q, ²*J*CF 33.1, C**7**), 161.5 (t, ²*J*CF 30.3, C**1**), 185.1 (t, ²*J*_{CF} 28.4, C**3**); *m/z* (EI)⁺) 297.1 ([C₁₂H₁₀F₅O₃]⁺, 34%), 269.0 ([C₁₀H₆F₅O₃]⁺, 6%), 232.1 ([C₁₀H₄F₄O₂+, 3%), 173.0 ([C₈H₄F₃O]⁺, 16%), 145 ([C₇7H₄F₃]⁺, 4%). HRMS (ASAP) *m/z* calculated for [C₁₂H₁₀F₅O₃]⁺ 297.0539; found 297.0538. IR (neat, cm⁻¹) 1775, 1713, 1514, 1414, 1375, 1327, 1315, 1254, 1128, 1117, 1064, 1017, 925, 857, 832, 708, 595. Data consistent with those previously reported in the literature.^[20a]

1.8.4 Ethyl 2,2-difluoro-3-(4-(nitrophenyl)-3-oxo-propanoate (5e)

Following **GP4**, ethyl (4-nitro)benzoylacetate (0.474 g, 2.00 mmol) afforded *ethyl* 2,2*difluoro-3-(4-nitrophenyl)-oxo-3-phenylpropanoate* (0.455 g, 83%) as a white solid; Mp 66–68 °C [lit. Mp. 80– 83 °C^[11a]]. ¹H NMR (700 MHz, CDCl₃) δ 1.34 (3 H, t, ³*J*_{HH} 7.1, **C9**H), 4.41 (2 H, q, ³*J*_{HH} 7.1, **C9**H), 8.24–8.27 (2 H, m, **C6**H), 8.35–8.38 (2 H, m, **C5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ –107.8 (s); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.0 (**C9**), 64.4 (**C8**), 109.6 (t, ¹*J*_{CF} 265.1, **C2**), 124.2 (s, **C6**), 131.3 (t, ⁴*J*_{CF} 2.9, **C5**), 135.6 (s, ³*J*_{CF} 2.0, **C4**), 151.4 (s, **C7**), 161.2 (t, ²*J*_{CF} 30.2, **C1**), 184.7 (t, ²*J*_{CF} 28.8, **C3**); *m/z* (EI)⁺ 228.0 ([C₁₁H₁₀F₂O₃]⁺, 2%), 200.0 ([C₈H₄F₂NO₃]⁺, 4%), 150.1 ([C₇H₄NO₃]⁺, 100%), 76.1 ([C₆H₄]⁺, 55%), 50.0 ([C₄H₂]⁺, 13%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₁H₁₀F₂NO₅ 274.0527; found 274.0526. IR (neat, cm⁻¹) 3539, 3411, 2991, 1773, 1748, 1724, 1606, 1527, 1349, 1312, 1165, 1137, 1100, 1082, 1043, 1012, 1001, 926, 854, 827, 782, 733, 710, 671, 567. Crystals suitable for X-ray diffraction were grown by slow evaporation from hexane—see section 3.8. Data consistent with those previously reported in the literature.^[11a]

1.8.5 Ethyl 2,2-difluoro-3-(4-(cyanophenyl)-3-oxo-propanoate (5f)

Following **GP4**, ethyl (4-cyano)benzoylacetate (0.4346 g, 2.00 mmol) afforded *ethyl* 2,2*difluoro-3-(4-cyanophenyl)-3-oxopropanoate* (0.339 g, 67%) as a pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (3H, t, ³J_{HH} 7.1, C**9**H), 4.40 (2H, q, ³J_{HH} 7.1, C**8**H), 7.80– 7.86 (2H, m, C**6**H), 8.18 (2H, d, ³J_{HH} 8.1, C**5**H); ¹⁹F NMR (376 MHz, CDCl₃) δ –107.8 (s); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 14.0 (s, C**9**), 64.3 (s, C**9**), 109.6 (t, ¹J_{CF} 265.0, C**2**), 117.5 (s, C**10**), 118.4 (s, C**7**), 130.4 (t, ⁵J_{CF} 2.9, C**5**), 132.8 (s, C**6**), 134.1 (t, ³J_{CF} 2.1, C**4**), 161.3 (t, ²J_{CF} 30.2, C**1**), 184.8 (t, ²J_{CF} 28.7, C**3**); *m/z* (ESI⁺) 208.0 ([C₁₀H₄FN0₂]⁺, 2%), 180.0 ([C₉H₄F₂NO]⁺, 4%), 130.2 ([C₈H₄NO]⁺, 100%), 102.1 ([C₇H₄N]⁺, 76%), 75.1 ([C₃H₇O2]⁺, 17%), 51.0 ([C₄H₃]⁺, 9%). HRMS (ASAP) *m/z* calculated for [C₁₂H₁₀F₂NO₃]⁺ 254.0629; found 254.0635. IR (neat, cm⁻¹) 2986, 2235, 1772, 1718, 1608, 1471, 1448, 1410, 1374, 1312, 1294, 1253, 1156, 1128, 1098, 1077, 1007, 924, 855, 765, 544. Data consistent with those previously reported in the literature.^[20a]

1.8.6 Ethyl 2,2-difluoro-3-(3-(nitrophenyl)-3-oxo-propanoate (5g) $EtO \xrightarrow{O}_{F} \xrightarrow{NO_2} NO_2$

Following **GP4**, ethyl (3-nitro)benzoylacetate (0.474 g, 2.00 mmol) afforded *ethyl* 2,2*difluoro-3-(3-nitrophenyl)-oxo-3-phenylpropanoate* (0.460 g, 84%) as a pale yellow oil. ¹H NMR (700 MHz, CDCl₃) δ 1.35 (3 H, t, ³J_{HH} 7.2, C11H), 4.42 (2 H, q, ³J_{HH} 7.1, C10H), 7.77–7.79 (1 H, m, C9H), 8.40 (1 H, ddq, ³J_{HH} 8.1, ⁴J_{HH} 1.9, ⁵J_{HH} 0.8, C8H), 8.53 (1 H, ddd, ³J_{HH} 8.1, ⁴J_{HH} 2.3, ⁴J_{HH} 1.1, C7H), 8.91 (1 H, ddd, ⁴J_{HH} 2.3, ⁴J_{HH} 1.6, ⁵J_{HH} 0.8, C5H); ¹⁹F NMR (376 MHz, CDCl₃) δ –107.7 (s); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 14.0 (C11), 64.4 (C10), 109.6 (t, ¹J_{CF} 265.2, C2), 125.0 (t, ⁴J_{CF} 2.9, C5), 129.3 (C7), 130.5 (C9), 132.4 (t, ³J_{CF} 2.2, C4), 135.4 (t, ⁵J_{CF} 2.9, C8), 148.7 (C6), 161.2 (t, ²J_{CF} 30.1, C1), 184.2 (t, ²J_{CF} 28.8, C3); *m/z* (EI)⁺ 228.0 ([C₁₁H₁₀F₂O₃]⁺, 1%), 200.0 ([C₈H₄F₂NO₃]⁺, 4%), 150.1 ([C₇H₄NO₃]⁺, 100%), 76.1 ([C₆H₄]⁺, 55%). HRMS (ASAP) *m/z* calculated for [M+H]⁺ C₁₁H₁₀F₂NO₅ 274.0527; found 274.0525. IR (neat, cm⁻¹) 2990, 1773, 1714, 1615, 1534, 1350, 1316, 1250, 1163, 1126, 1078, 1003, 968, 949, 929, 857, 829, 719, 691, 585.

2 NMR Spectra

2.1 1-(Methylphenyl)-3-phenylpropane-1,3-dione (1b)

¹H NMR (700 MHz, CDCl₃)

2.2 1-(Methoxyphenyl)-3-phenylpropane-1,3-dione (1c)

2.3 1-(Chlorophenyl)-3-phenylpropane-1,3-dione (1d)

2.4 1-(Fluorophenyl)-3-phenylpropane-1,3-dione (1e)

¹⁹F NMR (376 MHz, CDCl₃) 6.801 (376 MHz, CDCl₃) 6.801 (376 MHz, CDCl₃)

$^{13}C{^{1}H} NMR (176 MHz, CDCI_{3})$

2.5 1-(Nitrophenyl)-3-phenylpropane-1,3-dione (1f)

2.6 1,3-Bis(4-chlorophenyl)-propane-1,3-dione (1g)

¹H NMR (700 MHz, CDCl₃)

2.7 1,3-Bis(fluorophenyl)-propane-1,3-dione (1h)

-101

-102

-103

-104

-105

-107

-108

-109

-106

ΔF (ppm)

-110

-111

-112

¹³C{¹H} NMR (176 MHz, CDCl₃)

¹³C{¹H} NMR (176 MHz, CDCl₃)

2.9 2,2-Difluorophenylpropane-1,3-dione (3a)

¹⁹F NMR (376 MHz, CDCl₃)

-97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 ΔF (ppm)

2.10 2,2-Difluoro-1-(4-chlorophenyl)-3-phenylpropane-1,3-dione (3d)

2.11 2,2-Difluoro-1-(4-fluorophenyl)-3-phenylpropane-1,3-dione (3e)

¹⁹F NMR (376 MHz, CDCl₃)

2.12 2,2-Difluoro-1-(nitrophenyl)-3-phenylpropane-1,3-dione (3f)

¹⁹F NMR (376 MHz, CDCl₃)

ΔF (ppm)

¹³C{¹H} NMR (151 MHz, CDCl₃)

2.13 2,2-Difluoro-1,3-bis(chlorophenyl)propane-1,3-dione (3g)

S45

2.14 2,2-Difluoro-1,3-bis(fluorophenyl)propane-1,3-dione (3h)

¹⁹F NMR (376 MHz, CDCl₃)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ΔC (ppm)

2.15 2,2-Difluoro-1,3-bis(nitrophenyl)propane-1,3-dione (3i)

¹⁹F NMR (376 MHz, CDCl₃)

2.16 Ethyl (4-methoxy)benzoylacetate (4b)

2.17 Ethyl (4-chloro)benzoylacetate (4c)

2.18 Ethyl (4-trifluoromethyl)benzoylacetate (4d)

¹⁹F NMR (376 MHz, CDCl₃)

2.19 Ethyl (4-nitro)benzoylacetate (4e)

¹³C{¹H} NMR (176 MHz, CDCl₃)

2.20 Ethyl (4-cyano)benzoylacetate (4f)

¹H NMR (400 MHz, CDCl₃)

ΔC (ppm)

2.21 Ethyl (3-nitro)benzoylacetate (4g)

¹H NMR (700 MHz, CDCl₃)

S56

2.22 Ethyl 3-oxo-3-(pyridin-4-yl)propanoate (4h)

2.23 Ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5a)

2.24 Ethyl 2,2-difluoro-3-(4-chlorophenyl)-3-oxopropanoate (5c)

¹H NMR (600 MHz, CDCl₃)

-99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 ΔF (ppm)

2.25 Ethyl 2,2-difluoro-3-(4-trifluoromethylphenyl)-3-oxopropanoate (5d)

¹⁹F NMR (376 MHz, CDCl₃)

ΔF (ppm)

2.26 Ethyl 2,2-difluoro-3-(4-nitrophenyl)-3-oxopropanoate (5e)

¹⁹F NMR (376 MHz, CDCl₃)

-103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 ΔF (ppm)

2.27 Ethyl 2,2-difluoro-3-(4-cyanophenyl)-3-oxopropanoate (5f)

¹⁹F NMR (376 MHz, CDCl₃)

$^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz, CDCl₃)

2.28 Ethyl 2,2-difluoro-3-(3-nitrophenyl)-3-oxopropanoate (5g)

3 Single crystal X-ray crystallography

The X-ray single crystal data have been collected at temperature 120.0(2)K using Mo Kα radiation ($\lambda = 0.71073$ Å) on Bruker D8Venture (Photon100 CMOS detector, IµS-microsource, focusing mirrors, compounds **1hA**, **1hB**, **3a**, **3f**, **4c**, **4g** and **5e**) and Agilent XCalibur (compound **3i**, Sapphire-3 CCD detector, fine-focus sealed tube, graphite monochromator) diffractometers equipped with Cryostream (Oxford Cryosystems) open-flow nitrogen cryostats. All structures were solved by direct method and refined by full-matrix least squares on F² for all data using Olex2^[21] and SHELXTL^[22] software. All non-hydrogen atoms were refined in anisotropic approximation, hydrogen atoms in structures **1hA**, **1hB**, **4c** and **5e** were refined isotropically, the hydrogen atoms in other structures were placed in the calculated positions and refined in riding mode. Crystal data and parameters of refinement for **1hA**, **1hB**, **3a**, **3i**, **3f**, **4c**, **4g** and **5e** are listed in sections **3.1** to **3.8**, respectively, below. Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre, CCDC-2288841-2288848.

3.1 Crystallographic data for 1h (polymorph A)

1,3-Bis(4-fluorophenyl)-3-phenylpropane-1,3-dione (enol) **1h**

,	
CCDC	2288841
Empirical formula	$C_{15}H_{10}F_2O_2$
Formula weight	260.23
Temperature/K	120.0
Crystal system	monoclinic
Space group	P21/c
a/ Å	11.8429(6)
b/ Å	8.9668(4)
c/ Å	10.9377(5)
a/°	90
β/°	97.383(2)
γ/°	90
Volume/ Å ³	1151.88(9)
Z	4
$ ho_{ m calc} g/ m cm^3$	1.501
µ/mm⁻¹	0.120
F(000)	536.0
Crystal size/mm ³	0.41 × 0.23 × 0.08
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.716 to 57.99
Index ranges	-16≤h≤16, -12≤k≤12, -14≤l≤14
Reflections collected	17075
Independent reflections	$3054 \ [R_{int} = 0.0620, \ R_{sigma} = 0.0563]$
Data/restraints/parameters	3054/0/213
Goodness-of-fit on F ²	1.048
Final R indexes $[I>=2\sigma (I)]$	$R_1 = 0.0394$, $wR_2 = 0.0986$
Final R indexes [all data]	$R_1 = 0.0528$, $wR_2 = 0.1055$
Largest diff. peak/hole [e/Å ³]	0.32/-0.24

Crystal data and structure refinement for $\mathbf{1h}$
3.2 Crystallographic data for 1h (polymorph B)

1,3-Bis(4-fluorophenyl)-3-phenylpropane-1,3-dione (enol) **1h**

CCDC	2288842
Empirical formula	$C_{15}H_{10}F_2O_2$
Formula weight	260.23
Temperature/K	120.0
Crystal system	monoclinic
Space group	C2/c
a/ Å	3.8574(15)
b/ Å	11.914(5)
c/ Å	25.388(10)
$\alpha /^{\circ}$	90
β/°	94.36
γ/°	90
Volume/ Å ³	1163.4(8)
Z	4
$ ho_{ m calc} g/ m cm^3$	1.486
µ/mm⁻¹	0.119
F(000)	536.0
Crystal size/mm ³	0.28 imes 0.24 imes 0.01
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.828 to 53.952
Index ranges	−4 ≤ h ≤ 4, −14 ≤ k ≤ 14, −32 ≤ l ≤ 32
Reflections collected	7253
Independent reflections	1257 [$R_{int} = 0.1021$, $R_{sigma} = 0.0998$]
Data/restraints/parameters	1257/0/108
Goodness-of-fit on F ²	0.951
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0553$, $wR_2 = 0.1169$
Final R indexes [all data]	$R_1 = 0.1410, wR_2 = 0.1505$
Largest diff. peak/hole [e/Å3]	0.16/-0.27

Crystal data and structure refinement for 1hB

3.3 Crystallographic data for 3a

2,2-Difluoro-1,3-diphenylpropane-1,3-dione **3a**

Crystal data a	and structure	refinement	for 3a
----------------	---------------	------------	--------

CCDC	2288843
Empirical formula	$C_{15}H_{10}F_2O_2$
Formula weight	260.23
Temperature/K	120.0
Crystal system	monoclinic
Space group	C2/c
a/ Å	19.9091(14)
b/ Å	5.3345(4)
c/ Å	13.0943(9)
a/°	90
β/°	123.898(2)
γ/°	90
Volume/ Å ³	1154.31(15)
Z	4
$ ho_{calc}g/cm^3$	1.497
µ/mm⁻¹	0.120
F(000)	536.0
Crystal size/mm ³	0.31 × 0.3 × 0.18
Radiation	MoK α ($\lambda = 0.71073$)
2 Θ range for data collection/°	4.93 to 57.924
Index ranges	−26 ≤ h ≤ 26, −7 ≤ k ≤ 7, −17 ≤ l ≤ 17
Reflections collected	11191
Independent reflections	1531 [$R_{int} = 0.0338$, $R_{sigma} = 0.0206$]
Data/restraints/parameters	1531/0/87
Goodness-of-fit on F ²	1.086
Final R indexes $[I>=2\sigma (I)]$	$R_1 = 0.0480, wR_2 = 0.1373$
Final R indexes [all data]	$R_1 = 0.0597, wR_2 = 0.1480$
Largest diff. peak/hole [e/Å3]	0.45/-0.39

3.4 Crystallographic data for 3f

2,2-Difluoro-1-(4-nitrophenyl)-3-phenylpropane-1,3-dione **3f**

CCDC	2288844
Empirical formula	$C_{15}H_9F_2NO_4$
Formula weight	305.23
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/ Å	7.1508(3)
b/ Å	8.0322(3)
c/ Å	12.1238(5)
a/°	77.7835(16)
β/°	76.0100(16)
γ/°	77.3328(17)
Volume/ Å ³	649.93(5)
Z	2
$ ho_{ m calc} g/cm^3$	1.560
µ/mm⁻¹	0.133
F(000)	312.0
Crystal size/mm ³	0.35 imes 0.17 imes 0.06
Radiation	MoK α (λ = 0.71073)
20 range for data collection/°	5.272 to 55.996
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -16 \le l \le 15$
Reflections collected	12595
Independent reflections	3138 [$R_{int} = 0.0521$, $R_{sigma} = 0.0453$]
Data/restraints/parameters	3138/0/199
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0415, wR_2 = 0.1082$
Final R indexes [all data]	$R_1 = 0.0518$, $wR_2 = 0.1138$
Largest diff. peak/hole [e/Å ³]	0.58/-0.25

Crystal data and structure refinement for $\mathbf{3f}$

3.5 Crystallographic data for 3i

2,2-Difluoro-1,3-bis(4-nitrophenyl)-propane-1,3-dione **3i**

CCDC	2288845
Empirical formula	$C_{15}H_8F_2N_2O_6$
Formula weight	350.23
Temperature/K	120.0
Crystal system	monoclinic
Space group	P21/c
a/ Å	13.4814(12)
b/ Å	6.9481(5)
c/ Å	15.0112(11)
$\alpha/^{\circ}$	90
β/°	96.591(7)
γ/°	90
Volume/ Å ³	1396.82(19)
Z	4
$ ho_{ m calc} g/cm^3$	1.665
µ/mm ^{−1}	0.147
F(000)	712.0
Crystal size/mm ³	0.34 imes 0.3 imes 0.02
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.464 to 55
Index ranges	$-17 \le h \le 17, -9 \le k \le 8, -19 \le I \le 19$
Reflections collected	17018
Independent reflections	3204 [$R_{int} = 0.0904$, $R_{sigma} = 0.0730$]
Data/restraints/parameters	3204/0/226
Goodness-of-fit on F ²	1.018
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0841, wR_2 = 0.2604$
Final R indexes [all data]	$R_1 = 0.1276$, $wR_2 = 0.2511$
Largest diff. peak/hole [e/Å ³]	0.87/-0.34

Crystal data and structure refinement for $\mathbf{3i}$

3.6 Crystallographic data for 4c

Ethyl (4-chloro)benzoylacetate **3c**

	_
CCDC	2288846
Empirical formula	C ₁₁ H ₁₁ CIO ₃
Formula weight	226.65
Temperature/K	120.0
Crystal system	monoclinic
Space group	P21/c
a/ Å	5.5336(3)
b/ Å	26.5949(14)
c/ Å	7.2914(4)
a/°	90
β/°	102.921(2)
γ/°	90
Volume/ Å ³	1045.87(10)
Z	4
$ ho_{ m calc} g/cm^3$	1.439
µ/mm⁻¹	0.348
F(000)	472.0
Crystal size/mm ³	0.23 imes 0.17 imes 0.03
Radiation	MoK α (λ = 0.71073)
20 range for data collection/°	5.934 to 58.998
Index ranges	$-7 \le h \le 7, -36 \le k \le 36, -10 \le I \le 9$
Reflections collected	21815
Independent reflections	2903 [$R_{int} = 0.0410, R_{sigma} = 0.0280$]
Data/restraints/parameters	2903/0/180
Goodness-of-fit on F ²	1.056
Final R indexes $[I>=2\sigma (I)]$	$R_1 = 0.0394, wR_2 = 0.0878$
Final R indexes [all data]	$R_1 = 0.0532, wR_2 = 0.0927$
Largest diff. peak/hole [e/Å3]	0.38/-0.24

Crystal data and structure refinement for 3c

3.7 Crystallographic data for 4g

Ethyl (3-nitro)benzoylacetate 4g

CCDC	2288847
Empirical formula	$C_{11}H_{11}NO_5$
Formula weight	237.21
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/ Å	8.6967(10)
b/ Å	8.7824(10)
c/ Å	15.0932(17)
α/°	76.146(4)
β/°	76.070(4)
γ/°	76.820(5)
Volume/ Å ³	1068.4(2)
Z	4
$ ho_{calc}g/cm^3$	1.475
µ/mm ⁻¹	0.118
F(000)	496.0
Crystal size/mm ³	0.34 imes 0.17 imes 0.08
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	4.858 to 56.998
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -20 \le l \le 20$
Reflections collected	19986
Independent reflections	5398 [$R_{int} = 0.0527$, $R_{sigma} = 0.0661$]
Data/restraints/parameters	5398/0/318
Goodness-of-fit on F ²	1.030
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0630, wR_2 = 0.1624$
Final R indexes [all data]	$R_1 = 0.0940, wR_2 = 0.1859$
Largest diff. peak/hole [e/Å ³]	0.68/-0.41

Crystal data and structure refinement for ${\bf 4g}$

3.8 Crystallographic data for 5e

Ethyl 2,2-difluoro-3-(4-(nitrophenyl)-3-oxo-propanoate **5e**

CCDC	2288848
Empirical formula	$C_{11}H_{11}F_2NO_6$
Formula weight	291.21
Temperature/K	120.0
Crystal system	triclinic
Space group	P-1
a/ Å	7.0838(5)
b/ Å	9.1649(7)
c/ Å	9.4064(7)
α/°	92.399(3)
β/°	97.285(3)
γ/°	106.626(3)
Volume/ Å ³	578.46(7)
Z	2
ρ _{calc} g/cm³	1.672
µ/mm ^{−1}	0.156
F(000)	300.0
Crystal size/mm ³	0.43 × 0.21 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.38 to 58
Index ranges	-9 ≤ h ≤ 9, -12 ≤ k ≤ 12, -12 ≤ l ≤ 12
Reflections collected	11966
Independent reflections	$3062 [R_{int} = 0.0380, R_{sigma} = 0.0318]$
Data/restraints/parameters	3062/0/225
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0333$, $wR_2 = 0.0896$
Final R indexes [all data]	$R_1 = 0.0407, wR_2 = 0.0940$
Largest diff. peak/hole [e/ų]	0.44/-0.24

Crystal data and structure refinement for ${\bf 5e}$

4 References for Supplementary Information

[1] I. Urasaki and Y. Ogata, *Journal of the Chemical Society-Perkin Transactions* **1 1975**, 1285-1287.

[2] S. Nakaiida, S. Kato, O. Niyomura, M. Ishida, F. Ando and J. Koketsu, *Phosphorus Sulfur* and *Silicon and the Related Elements* **2010**, *185*, 930-946.

[3] E. Hasegawa, K. Ishiyama, T. Horaguchi and T. Shimizu, *Journal of Organic Chemistry* **1991**, *56*, 5236.

[4] H. S. P. Rao and N. Muthanna, *European Journal of Organic Chemistry* **2015**, *2015*, 1525-1532.

[5] a) Z. He, X. T. Qi, S. Q. Li, Y. S. Zhao, G. Gao, Y. Lan, Y. W. Wu, J. B. Lan and J. S. You, *Angewandte Chemie-International Edition* **2015**, *54*, 855-859; b) J. Zawadiak and M. Mrzyczek, *Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy* **2012**, *96*, 815-819.

[6] H. Ishihara and Y. Hirabayashi, Chemistry Letters 1978, 1007-1010.

[7] J. C. Hubaud, I. Bombarda, L. Decome, J. C. Wallet and E. M. Gaydou, *Journal of Photochemistry and Photobiology B-Biology* **2008**, *9*2, 103-109.

[8] M. Lipp, F. Dallacker and S. Munnes, *Annalen Der Chemie-Justus Liebig* **1958**, *618*, 110-117.

[9] S. Choi, H. Oh, J. Sim, E. Yu, S. Shin and C. M. Park, *Organic Letters* **2020**, *22*, 5528-5534.
[10] S. Stavber, B. Sket, B. Zajc and M. Zupan, *Tetrahedron* **1989**, *45*, 6003-6010.

[11] a) T. J. Nash and G. Pattison, European Journal of Organic Chemistry 2015, 2015, 3779-

3786; b) G. Stavber, M. Zupan, M. Jereb and S. Stavber, Organic Letters 2004, 6, 4973-4976.

[12] J. Qian, W. Yi, X. Huang, J. P. Jasinski and W. Zhang, *Advanced Synthesis & Catalysis* **2016**, *358*, 2811-2816.

[13] a) M. Gao, Y. K. Zhao, C. Zhong, S. S. Liu, P. K. Liu, Q. Yin and L. Hu, *Organic Letters* **2019**, *21*, 5679-5684; b) C. Tarigopula, G. K. Thota and R. Balamurugan, *European Journal of Organic Chemistry* **2016**, *2016*, 5855-5861.

[14] U. Košak, A. Kovač and S. Gobec, *Synlett* **2012**, 1609-1612.

[15] J. Lee, H. Jung, M. Kim, E. Lee, D. Im, W. Aman and J. M. Hah, *Bioorganic & Medicinal Chemistry* **2018**, *26*, 1628-1637.

[16] in 3-(4-Cyano-phenyl)-3-oxo-propionic acid ethyl ester (CAS 49744-93-6), Vol. 2023 Santa Cruz Biotechnology.

[17] S. Korsager, D. U. Nielsen, R. H. Taaning and T. Skrydstrup, *Angewandte Chemie-International Edition* **2013**, *52*, 9763-9766.

[18] H. O. Burrus and G. Powell, *Journal of the American Chemical Society* **1945**, *67*, 1468-1472.

[19] P. Drouhin and R. J. K. Taylor, European Journal of Organic Chemistry 2015, 2015, 2333-

2336.

[20] a) H.-Y. Zhao, Z. Feng, Z. Luo and X. Zhang, *Angewandte Chemie-International Edition* **2016**, *55*, 10401-10405; b) G. Stavber and S. Stavber, *Advanced Synthesis & Catalysis* **2010**, *352*, 2838-2846.

[21] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography* **2009**, *4*2, 339-341.

[22] G. M. Sheldrick, Acta Crystallographica a-Foundation and Advances 2008, 64, 112-122.